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ABSTRACT

The training process of neural networks is known to be time-

consuming, and having a deep architecture only aggravates the

issue. This process consists mostly of matrix operations, among

which matrix multiplication is the bottleneck. Several sampling-

based techniques have been proposed for speeding up the training

time of deep neural networks by approximating the matrix prod-

ucts. These techniques fall under two categories: (i) sampling a

subset of nodes in every hidden layer as active at every itera-

tion and (ii) sampling a subset of nodes from the previous layer

to approximate the current layer’s activations using the edges

from the sampled nodes. In both cases, the matrix products are

computed using only the selected samples. In this paper, we eval-

uate the feasibility of these approaches on CPU machines with

limited computational resources. Making a connection between

the two research directions as special cases of approximating

matrix multiplications in the context of neural networks, we

provide a negative theoretical analysis that shows feedforward

approximation is an obstacle against scalability. We conduct com-

prehensive experimental evaluations that demonstrate the most

pressing challenges and limitations associated with the studied

approaches. We observe that the hashing-based node selection

method is not scalable to a large number of layers, confirming

our theoretical analysis. Finally, we identify directions for future

research.

1 INTRODUCTION

The database community has played a significant role in tackling

the complexities of big data, developing advanced technologies

for addressing scalability challenges in very large data. Many

such technologies have been used to address big-data challenges

across various domains. For example, Asudeh et al. [3, 4] leverage

sampling-based similarity joins [10] and selectivity estimation

queries [7, 24] for signal reconstruction at scale. Among such ex-

amples, data management for machine learning (ML) [32, 35, 62]

shines as an interdisciplinary domain that led to many key ad-

vances, including SystemML [8, 9, 20], join optimization for fea-

ture selection [33], federated learning [41], MLmodel materializa-

tion [26, 61], etc. Following the theme of Extended Database Tech-

nologies for Machine Learning, this paper studies the extension of

sampling-based techniques for efficient training of deep neural

networks (DNNs) on CPU machines with limited resources.

One of the crucial factors in developing DNNmodels with high

performance is the network architecture. The task and dataset

at hand determine the most appropriate architecture to use. In

addition to a large number of layers, DNNs often have a high
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number of nodes per layer. While large models can better gener-

alize, training them can be computationally expensive, requiring

extensive amounts of data and powerful hardware, including ex-

pensive GPUs. On the other hand, “the ubiquity of CPUs provides

a workaround to the GPU’s dominance” [49], motivating “democ-

ratiz[ing] AI with CPUs” (Shrivastava as quoted by Smith [49]).

Nevertheless, limited resources on personal computers with or-

dinary CPUs or mobile devices leads to difficulties in training

DNNs to a sufficient level of accuracy. DNNs need to compute

“activation values” for every layer in a forward pass and calcu-

late gradients to update weights in the backpropagation. This

requires performing expensive matrix multiplications that make

the training process inefficient. Furthermore, large matrices of-

ten do not fit in the cache, and storing them in main memory

necessitates constant communication between the processor and

memory, which is even more time consuming.

In this work, we explore the scalability of two directions in

sampling-based approaches based on locality-sensitive hashing

(LSH) [21, 28] and Monte-carlo (MC) estimations [46] for ef-

ficient training of DNNs, which can be applied on memory-

and computation-constrained devices. LSH was introduced in

VLDB’99 [21] for near-neighbor queries. Since then, there have

been consistent contributions to this line of research, including

recent publications [5, 54, 58]. Similarly, sampling-based Monte-

carlo estimations and inner-product estimation (and search) have

been two core techniques for approximate query processing [2,

44] and Vector-DBs [43].We hope that evaluating sampling-based

techniques for efficient training of DNNs in this paper inspires

(DB) researchers to address the open problems identified.

Our contributions can be summarized as follows.

• We make a connection between two separate sampling-based

research directions for training DNNs by showing that both

techniques can be viewed as special cases of matrix approxima-

tion, where one samples rows of the weight matrix while the

other sample its columns. To the best of our knowledge, there

is no previous work in the literature to make this observation.

• After careful exploration of different techniques, we provide

negative theoretical results that show estimation errors during

the feedforward step propagate across layers. In particular, for

the model of [50], we prove that estimation error increases

exponentially with the number of hidden layers.

• Weprovide extensive experiments using five training approaches

and six benchmark datasets to evaluate the scalability of sampling-

based approaches. Our experimental results confirm our theo-

retical analysis that feedforward approximation is an obstacle

against scalability. In addition to other findings, our experi-

ments reveal that while the model of [1] is scalable for mini-

batch gradient decent when the batch size is relatively large,

there is a research gap when it comes to designing scalable

sampling-based approaches for stochastic gradient decent.

The rest of our paper is organized as follows. We first discuss
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some of the potential benefits of training DNNs on CPUmachines

in §2, followed by related work in §3.

We define the problem formulation and provide a taxonomy

of sampling-based approaches for efficient training in §4. We

discuss two of these approaches in further detail in §5 and §6.

We present our theoretical analysis in §7.

We discuss the extensions to convolutional neural networks

in our technical report [17].

Experiment details and takeaways are discussed in §8–10, and

we offer concluding remarks in §11.

2 BENEFITS OF TRAINING NEURAL

NETWORKS ON CPUS

The pursuit of advancing DNN training on CPUs unveils a com-

pelling avenue replete with practical advantages. Below, we

briefly explain some of these potential benefits:

Abundance of CPU Machines. CPU-equipped personal com-

puting devices, including PCs and smartphones, enjoy wide-

spread availability and accessibility among a vast segment of

the population. Remarkably, the computational potential of these

devices often remains underutilized. Leveraging such resources

for DNN training introduces the opportunity to conduct this

computational-intensive task at no additional hardware cost for

personal endeavors. Furthermore, while individual devices pos-

sess limited capacity, their collective potential can effectively

address a multitude of moderate-sized artificial intelligence (AI)

challenges. Recognizing this collective capability, recent endeav-

ors have emerged to design client-side AI frameworks, exempli-

fied by JavaScript packages like Tensorflow.js, facilitating ma-

chine learning on the client-side. Advancements in DNN training

on CPU machines directly benefit these platforms.

Independence from Backend Servers. Personalized AI neces-

sitates the training, or at the very least, fine-tuning of machine

learning models with user-specific data. Opting for DNN training

on CPU machines renders this process independent of backend

GPU servers. Instead of transmitting data to the server, each per-

sonal device can locally fine-tune the models using its own data.

This approach instantly confers several additional advantages:

Privacy By refraining from transmitting data to a server, con-

cerns regarding data privacy are substantially alleviated.

Reduced Backend Computation The computational burden

is shifted to the client side, at no expense to the server.

Offline Availability By localizing computations, the need for

communication with a server is eliminated. This is es-

pecially useful for users with limited/unreliable internet

access.

Democratizing DNNTraining. GPU-equippedmachines, while

gradually becoming more affordable, still pose a considerable

financial barrier. These costs manifest in the form of GPU access

or enterprise APIs, especially in the context of large models like

ChatGPT. Consequently, such resources remain inaccessible to

a significant portion of the population. The facilitation of DNN

training on CPUmachines effectively dismantles this accessibility

barrier.

Incorporating these considerations into the discourse of DNN

training on CPU machines not only enriches the academic dis-

cussion but also underscores the profound implications of this

research direction in addressing pressing real-world challenges

and democratizing AI accessibility. It is evident that significant

research efforts have been judiciously directed towards the princi-

pal trajectory of DNN training on GPU systems. Conversely, the

avenue of training DNNs on CPU machines remains relatively

under-explored within the research landscape.

3 RELATEDWORK

The increasing importance of DNN applications opened the door

to a variety of challenges associated with training these mod-

els. While there are numerous works on techniques for scaling

DNNs, many of them have expensive hardware requirements

and use GPUs to accelerate training [18]. Unlike GPUs, CPUs are

available on any device, so optimizing training performance on

CPUs is beneficial. There have been studies in which distributed,

concurrent, or parallel programming on CPUs has been used to

accelerate training [13, 25, 27, 29, 50, 55], but these methods are

not always applicable due to variation in hardware requirements.

Thus, algorithms focused on algorithmic optimization of feedfor-

ward and backpropagation are essential. Usually, methods with

little to no special hardware requirements are preferred. Several

algorithms apply a variety of sampling-based [1, 6, 19, 36, 37, 50]

or non-sampling-based approximations [25, 38, 39, 63] to improve

training for DNNs.

Several studies have shown that one way to scale up DNNs

is to simplify the matrix-matrix or vector-matrix operations in-

volved [1, 6, 50, 52, 57]. The complexity of matrix multiplication

dominates the computational complexity of training a neural

network. The multiplication of large matrices is known to be

the main bottleneck in training DNNs. Often, we try to sparsify

the matrices, which can minimize the communication between

the memory and the processors [60]. Pruning the network and

limiting the calculations in both directions to a subset of nodes

per layer is one solution to train DNNs efficiently. This is what

dropout-type algorithms suggest [6, 19, 52]. Dropout-type meth-

ods either use a data-dependent sampling distribution [1, 6, 57]

or a predetermined sampling probability [50, 52]. Note that these

techniques are able to provide a good approximation only if

used in the context of neural networks; they are not necessarily

applicable to general matrix multiplication.

4 PRELIMINARIES

In this section, we describe the neural network model, feedfor-

ward step, and backpropagation in the form of matrix operations.

Finally, we discuss state-of-the-art sampling-based algorithms.

4.1 Problem Description

Many neural network architectures have been studied over the

past decade. In this paper we focus on the standard multi-layer

perceptron (MLP) model and analyze two major directions of

sampling-based techniques for training neural networks.

Consider a feedforward neural network with𝑚𝑖 inputs,𝑚𝑜
outputs, and ℓ hidden layers. In general, every hidden layer 𝑘

contains 𝑛𝑘 hidden nodes while the nodes in the (𝑘 − 1)-th and

𝑘-th layers are fully connected. Without loss of generality, for

ease of explanation, we assume all hidden layers have exactly 𝑛

hidden nodes (Figure 1). For each layer 𝑘 , we denote the vector

of outputs by 𝑎𝑘 ∈ R1×𝑛
. Similarly,𝑊 𝑘 ∈ R𝑛×𝑛 and 𝑏𝑘 ∈ R1×𝑛

are the weights and the biases of layer 𝑘 ,1 respectively.

Let 𝑓 be the activation function (e.g., sigmoid or ReLU). With

input vector 𝑥 ∈ R1×𝑚𝑖
, the feedforward step is a chain of matrix

products and activation functions that maps input vector 𝑥 to

1
The first and last layer are exceptions:𝑊 1 ∈ R𝑚𝑖 ×𝑛 and𝑊 ℓ ∈ R𝑛×𝑚𝑜

.
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Figure 1: Neural network with ℓ = 3 layers and 𝑛 nodes per

hidden layer.

Table 1: Table of Notations

Notation Description

𝑎𝑘 output vector of 𝑘-th layer

𝑧𝑘 input vector of the 𝑘-th layer

𝑊 𝑘
weight matrix of the 𝑘-th layer

𝑊 𝑘
𝑖,:

row 𝑖 of𝑊 𝑘

𝑊 𝑘
:, 𝑗

column 𝑗 of𝑊 𝑘

⟨𝑥1, 𝑥2 ⟩ inner product of 𝑥1 and 𝑥2

output vector 𝑦; it can be represented as follows (with 𝑎0 = 𝑥 ):

𝑧𝑘 = 𝑎𝑘−1𝑊 𝑘 + 𝑏𝑘 𝑎𝑘 = 𝑓 (𝑧𝑘 )

In the setting described above, matrix-vector multiplication

can be done in Θ(𝑛2) time and applying the element-wise acti-

vation function takes Θ(𝑛) time for each layer. Thus, the entire

feedforward process for the whole network is in the order of

Θ(ℓ𝑛2).
The final aspect in the training of neural networks is back-

propagation, an efficient method of computing gradients for the

weights to move the network towards an optimal solution via

stochastic gradient descent
2
(SGD) [22]. The weight gradients

for the backpropagation step can be computed recursively using

Equation 1, where L is the loss function and ⊙ is the Hadamard

product.

𝛿ℓ = ∇𝑧ℓL = 𝑓 ′ (𝑧ℓ ) ⊙ ∇𝑎ℓL ∇𝑊 𝑘L = 𝑎𝑘𝛿𝑘+1

𝛿𝑘 = ∇𝑧𝑘L = 𝑓 ′ (𝑧𝑘 ) ⊙𝑊𝛿𝑘+1 ∇𝑏𝑘L = 𝛿𝑘+1

(1)

With gradient 𝑎𝑘𝛿𝑘+1
and learning rate 𝜂, the weight matrix𝑊 𝑘

will be updated to𝑊 𝑘 − 𝜂𝑎𝑘𝛿𝑘+1
. The gradient computation and

update operations are also in form of vector-matrix operations

that take Θ(𝑛2) time for each layer. As a result, the backpropaga-

tion step in SGD also requires Θ(ℓ𝑛2) time.

2
While SGD uses only one data point to compute the gradients, an alternative

approach is mini-batch gradient descent (MGD), where a small sample set (mini-

batch) of the training set is used for estimations. Note that SGD can be viewed as a

special case of MGD where the batch size is 1. Following our scope in this paper,

SGD is considered for problem formulation, explaining the learning algorithm,

and analysis. Nevertheless, as we shall later explain in §6.1, one of the evaluated

approaches, MC-approx, is based on MGD, the generalization of SGD. While SGD

operations are in form of vector to matrix multiplication, MGD operations are in

form of matrix (vectors of samples in the mini-batch) to matrix multiplication.

𝑎𝑘−1

1
· · · 𝑎𝑘−1
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1
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Sampling from Current Layer Sampling
from

Prev.
Layer

Figure 2: High-level idea of the sampling-based techniques.

4.2 Taxonomy of Sampling-Based Techniques

The computation bottleneck in the training of a DNN is matrix

multiplication, in form of a (1 × 𝑛) to (𝑛 × 𝑛) vector-matrix

product for SGD. Sampling-based approaches seek to speed up

this operation by skipping a large portion of the scalar operations.

SGD is a noisy algorithm by nature. As such, it is more tolerant

of small amounts of noise [40], allowing for approximation. At

a high level, these approaches fall in two categories, as shown

below:

Sampling-Based Techniques

Sampling from

Current Layer

Dropout

[6, 52]

ALSH-approx

[50]

Sampling from

Previous Layer

MC-approx

[1, 15]

Sampling from Current Layer. The approaches in this cat-

egory select a small subset of nodes in each layer during each

feedforward–backpropagation step, and update the values of only

those nodes. In Figure 2, each column𝑊 𝑘
:, 𝑗

corresponds to the

node 𝑛𝑘
𝑗
in layer 𝑘 , while each cell𝑊 𝑘

𝑖,𝑗
in that column represents

the weight of the edge from 𝑛𝑘−1

𝑖
to 𝑛𝑘

𝑗
. As a result, these ap-

proaches can be viewed as selecting a small subset of the columns

of𝑊 𝑘
(e.g., the highlighted columns) and conducting the inner

product only for those.

Sampling from Previous Layer. Instead of selecting a subset

of columns and computing the exact inner-product for them, the

alternative is to select all columns but compute the inner-product

approximately for them by selecting a small subset of rows of𝑊 𝑘

(e.g., highlighted rows in Figure 2). That is, instead of computing

the sum for all 𝑛 scalars in an inner-product, to estimate the sum

by sampling a small number of scalars.

5 EFFICIENT TRAINING BY SAMPLING

FROM CURRENT LAYER

5.1 Dropout

Srivastava et al. [52] introduced Dropout, a computationally

efficient training approach that reduces the risk of overfitting.

During each feedforward step, the algorithm picks a subset of

nodes uniformly at random in each hidden layer and drops the

remaining nodes temporarily. The sampled nodes are then used

for feedforward evaluation and backpropagation.

While Dropout was originally introduced to fix overfitting,

it introduced a computation reduction to the training process.
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In many cases, Dropout improved the runtime efficiency com-

pared to the standard training process on the same architecture.

However, there are scenarios in which training under Dropout

requires more training iterations and eventually hurts the run-

time. One can observe that due to the randomness in sampling

with a fixed probability (usually 𝑝 = 1/2), there is a risk of drop-

ping nodes that significantly affect the output values. Ba and Frey

[6] addressed this issue by proposingAdaptive-Dropout, which

uses a data-dependent distribution that is an approximation of

the Bayesian posterior distribution over the model architecture

and updates the sampling ratio adaptively w.r.t the current net-

work. This method avoids randomly dropping significant nodes

in the model.

5.2 Asymmetric Locality-Sensitive Hashing

for Training Approximation

Unlike inDropout, one might want to intelligently select a small

subset of so-called active nodes for each layer for computing the

inner products. In particular, given the vector 𝑎𝑘−1
, the goal is to

find a small portion of nodes 𝑗 in layer 𝑘 for which the value of

𝑎𝑘−1𝑊 𝑘
:, 𝑗

is maximized in order to avoid computing inner prod-

ucts for small values (estimating them as zero). Given a set 𝑆

of vectors (in this case, the set of columns in𝑊 𝑘
) and a query

vector 𝑎, the problem of finding a vector 𝑤∗ ∈ 𝑆 with maxi-

mum inner product ⟨𝑎,𝑤∗⟩ is called maximum inner-product

search (MIPS). To solve MIPS, Shrivastava and Li [48] employ

asymmetric locality-sensitive hashing (ALSH).

Definition 5.1 (Asymmetric Locality-Sensitive Hashing [48]).

Given a similarity threshold 𝑆0 and similarity function sim(·),
a family H of hash functions are (𝑆0, 𝑐𝑆0, 𝑝1, 𝑝2)-sensitive for

𝑐-NNS3 with 𝑎 ∈ R𝑛 as query and a set of 𝑤 ∈ R𝑛 vectors if

for all ℎ ∈ H chosen uniformly, the following conditions are

satisfied:

sim(𝑤, 𝑎) ≥ 𝑆0 =⇒ Pr[ℎ(𝑄 (𝑎)) = ℎ(𝑃 (𝑤))] ≥ 𝑝1

sim(𝑤, 𝑎) ≤ 𝑐𝑆0 =⇒ Pr[ℎ(𝑄 (𝑎)) = ℎ(𝑃 (𝑤))] ≤ 𝑝2

For𝑤 , 𝑎 ∈ R𝑛 with ∥𝑤 ∥ ≤ 𝐶 , where 𝐶 is a constant less than

1, and ∥𝑎∥ = 1, they define the transformations 𝑃 and 𝑄 for the

inner product as follows.

𝑃 : R𝑛 → R𝑛+𝑚, 𝑤 ↦→
[
𝑤 ; ∥𝑤 ∥2

1

, . . . , ∥𝑤 ∥2
𝑚 ]

𝑄 : R𝑛 → R𝑛+𝑚, 𝑎 ↦→
[
𝑎; 1/2, . . . , 1/2

] (2)

In other words, to generate 𝑃 ,𝑤 is padded with𝑚 terms, where

term 𝑖 is the ℓ2 norm of𝑤 to the power of 2
𝑖
. 𝑄 is generated by

padding 𝑎 with𝑚 copies of the constant 1/2. Shrivastava and Li

[48] prove that NNS in the transformed space is equivalent to

the maximum inner product in the original space:

arg max

𝑤
⟨𝑤, 𝑎⟩ ≈ arg min

𝑤
∥𝑄 (𝑎) − 𝑃 (𝑤)∥ . (3)

Equation 3motivates usingMIPS for efficient training of DNNs.

Spring and Shrivastava [50] build their algorithm (referred to as

ALSH-approx in this paper) upon Equation 3. As explained in

§4, the feedforward step and backpropagation consist of many

matrix multiplications, each of which involve a set of inner prod-

ucts as large as each hidden layer. ALSH-approx uses ALSH to

prune each layer by finding active nodes, in this case, nodes with

maximum activation values. This is equivalent to solving MIPS

in each layer.

3𝑐-approximation of nearest neighbor search [28].

Essentially, ALSH-approx uses ALSH to find active nodes 𝑗

whoseweight vector𝑊 𝑘
:, 𝑗
collides with an input vector𝑎𝑘−1

under

the same hash function. The probability of collision captures the

similarity of vectors in each hidden layer. To do so, it sets the

query vector as 𝑞 = 𝑎𝑘−1
and the set of vectors using the columns

of𝑊 𝑘
as 𝑆 =

{
𝑊 𝑘

:,1
, . . . ,𝑊 𝑘

:,𝑛

}
. Then, after constructing 𝑄 and 𝑃

based on Equation 2, we have

arg max

𝑗

〈
𝑊 𝑘

:, 𝑗 , 𝑎
𝑘−1

〉
≈ arg min

𝑗

𝑄 (
𝑎𝑘−1

)
− 𝑃

(
𝑊 𝑘

:, 𝑗

) . (4)

ALSH-approx constructs 𝐿 independent hash tables with 2
𝐾
hash

buckets and assigns a 𝐾-bit randomized hash function to every

table. Each layer has been assigned 𝐿 hash tables and a meta hash

function to compute a hash signature for the weight vectors and

fill all the hash tables before training. In this setting, 𝐾 and 𝐿

are tunable hyperparameters that affect the active set’s size and

quality.

During training, ALSH-approx computes the hash signature

of each incoming input using the existing hash functions. Then,

a set of weight vectors will be returned using the hash values

corresponding to the hash bucket. The active nodes in a layer are

the union of their corresponding weight vectors from probing

𝐿 hash tables. Then, the model only performs the exact inner

product on these active nodes and skips the rest. Finally, the

gradient will only backpropagate through the active nodes and

update the corresponding weights. In other words, ALSH is used

to sample a subset of nodes with probability 1 − (1 − 𝑝𝐾 )𝐿 if 𝑝 is

the probability of collision.

Updating the hash tables ensures that the modified weight

vectors are recognized. Based on the results reported by Spring

and Shrivastava [50], the number of active nodes for each input

can be as small as 5% of the total nodes per layer. Thus, ALSH-

approx performs a significantly smaller set of inner products in

each iteration. Moreover, due to the sparsity of the active sets

belonging to different data inputs, the overlap between them

throughout the dataset is small, so the weight gradient updates

corresponding to these inputs are sparse as well. Thus, the hash

table updates are executed after processing a batch of inputs

and can be executed in parallel. The main advantage of ALSH-

approx is that, unlike Dropout, it finds the active nodes before

computing the inner products.

6 EFFICIENT TRAINING BY SAMPLING

FROM PREVIOUS LAYER

While techniques discussed in §5 reduce the vector-matrix mul-

tiplication time by selecting a subset of columns (nodes) from

each weight matrix𝑊 𝑘
and computing the inner product exactly

for them, an alternative approach is to select all columns but

to compute inner products approximately. This idea has been

proposed by Adelman et al. [1]. This paper is built on the MC

method by Drineas et al. [15] for fast approximation of matrix

multiplication. We first review the work of Drineas et al. [15] in

§6.1 and then in §6.2 we explain how Adelman et al. [1] adapt the

method to develop an algorithm for efficient training of DNNs.

6.1 Fast Approximation of Matrix

Multiplication

For many applications, a fast estimation of the matrix product

is good enough. In addition to hardware/software oriented opti-

mizations such as cache management [18, 23] or half-precision

computations [40, 55], MC methods [46] have been used for such

188



estimations. At a high level, MC methods use repeated sampling

and the law of large numbers to estimate aggregate values.

Recall that given two matrices 𝐴 ∈ R𝑚×𝑛
and 𝐵 ∈ R𝑛×𝑝 , the

product 𝐴𝐵 is an𝑚 × 𝑝 matrix, where every element 𝐴𝐵𝑖, 𝑗 is the

inner product of 𝑖-th row of 𝐴 with the 𝑗-th column of 𝐵:

𝐴𝐵𝑖, 𝑗 = ⟨𝐴𝑇𝑖,:, 𝐵:, 𝑗 ⟩ =
𝑛∑︁
𝑡=1

𝐴𝑖,𝑡𝐵𝑡, 𝑗 (5)

In an MC estimation of 𝐴𝐵𝑖, 𝑗 , instead of computing the sum over

all 𝑡 ∈ [1, 𝑛], only a small sample of elements 𝜎 ⊂ { 1, . . . , 𝑛 },
where 𝑐 = |𝜎 | ≪ 𝑛, are considered. Arguing that uniform sam-

pling would add a high error in estimating𝐴𝐵, Drineas et al. [15]

introduce a nonuniform sampling method to generate 𝜎 with a

probability proportional to the magnitude of data. Specifically,

they develop a randomized algorithm that samples each column

𝑖 of A and row 𝑖 of B with probability

𝑝𝑖 =
∥𝐴:,𝑖 ∥ · ∥𝐵𝑖,:∥∑𝑛
𝑡=1

∥𝐴:,𝑡 ∥ · ∥𝐵𝑡,:∥
, (6)

where ∥·∥ is the ℓ2 norm. They define the matrices𝐶 ∈ R𝑚×𝑐
and

𝑅 ∈ R𝑐×𝑝 as 𝐶 = 𝐴𝑆𝐷 and 𝑅 = (𝑆𝐷)𝑇𝐵, respectively. 𝑆 is then

defined as an 𝑛 × 𝑐 sampling matrix, with 𝑆𝑖 𝑗 = 1 if the 𝑖th row

of 𝐴 is the 𝑗th sample. 𝐷 is a 𝑐 × 𝑐 diagonal scaling matrix with

𝐷 𝑗 𝑗 =
1√
𝑐𝑝 𝑗

. The authors prove that defining 𝑝𝑖 as in Equation 6

minimizes the expected estimation error, E
[
∥𝐴𝐵−𝐶𝑅∥𝐹

]
, where

∥·∥𝐹 is the Frobenius norm. Each element 𝐴𝐵𝑖, 𝑗 is estimated as∑𝑐
𝑡=1

𝐶𝑖,𝑡𝑅𝑡, 𝑗 =
∑𝑐
𝑡=1

1

𝑐𝑝𝑖
𝐴𝑖,𝑡𝐵𝑡, 𝑗 ≈ 𝐴𝐵𝑖, 𝑗 . Sampling row-column

pairs w.r.t 𝑝𝑖 reduces the complexity of matrix multiplication to

𝑂 (𝑚𝑐𝑝).

6.2 MC-approx

Training DNNs involves computationally expensive matrix mul-

tiplication operations. However, the gradients computed during

backpropagation only approximate directions towards the op-

timal solution, so the training process has a high tolerance to

small amounts of noise. This makes approximation of matrix

multiplication a reasonable choice to speed up training of DNNs.

Following this idea, Adelman et al. [1] propose a MC approxima-

tion method for fast training of DNNs (in this paper, referred to

asMC-approxM for the mini-batch setting andMC-approxS

for the stochastic setting) based on the MC estimation of matrix

multiplication explained in §6.1. Despite the fact that Drineas

et al. [15] provide an unbiased estimate for the matrix multipli-

cation 𝐴𝐵 (i.e., 𝐸 [𝐶𝑅] = 𝐴𝐵), Adelman et al. [1] prove that the

sampling distribution is not able to provide an unbiased estima-

tion of the weight gradient if it is used for both the forward step

and backward pass simultaneously.

One way to eliminate the bias is to use MC approximation

only in the forward pass, propagate the gradient through the

entire network, and perform the exact computations. However,

experiments show this approach results in lower accuracy in

practice. Therefore, Adelman et al. [1] propose a new sampling

distribution that yields an unbiased estimate of the weight gra-

dient ∇𝑊 ˆL when it is used only during the feedforward step.

Specifically, they sample column-row pairs independently from

𝐴 ∈ R𝑚×𝑛
and 𝐵 ∈ R𝑛×𝑝 .

Let 𝑘 be the number of samples for estimation, let 𝑉 ∈ R𝑛×𝑛
be a diagonal sampling matrix with 𝑉𝑖,𝑖 = 𝑍𝑖 ∼ Bernoulli(𝑝𝑖 ),
where

∑𝑛
𝑖=0

𝑝𝑖 = 𝑘 , and let 𝐷 ∈ R𝑛×𝑛 be a diagonal scaling ma-

trix with 𝐷𝑖,𝑖 =
1√
𝑝𝑖
. Then, the multiplication of matrices 𝐴 and

𝐵 can be estimated as 𝐴𝐵 ≈ ∑𝑛
𝑖=0

𝑍𝑖
𝑝𝑖
𝐴:,𝑖𝐵𝑖,: = 𝐴𝑉𝐷𝐷𝑇𝑉𝑇𝐵 =

𝐴′𝐵′. The estimation error in this case is 𝐸
[
∥𝐴𝐵 − 𝐴′𝐵′∥2

𝐹

]
=∑𝑛

𝑖=0

1−𝑝𝑖
𝑝𝑖

∥𝐴𝑖 ∥2∥𝐵𝑖 ∥2
. Hence, the following assignment of prob-

abilities minimizes the estimation error under the constraint∑𝑛
𝑖=0

𝑝𝑖 = 𝑘 .

𝑝𝑖 = min

{
𝑘 ∥𝐴𝑖 ∥∥𝐵𝑖 ∥∑𝑛
𝑡=0

∥𝐴𝑡 ∥∥𝐵𝑡 ∥
, 1

}
(7)

The authors prove that training a neural network by approximat-

ing matrix products in backpropagation converges with the same

rate as standard SGD and results in an unbiased estimator when

nonlinearities are not considered. When accounting for nonlin-

earities, the results hold as long as the MC approximation of𝑊𝑥

is unbiased and the activation and loss functions are 𝛽-Lipschitz.

7 THEORETICAL ANALYSIS

As explained in §5.2 and §6.1, sampling-based approaches seek

to speed up the training of DNNs by skipping a large number

of computations and approximating matrix multiplications. In

this section we provide negative theoretical results for scalabil-

ity against the feedforward approximation. At a high level, we

show that small estimation errors in the initial layers get prop-

agated and compounded in subsequent layers. Adelman et al.

[1] already observed the low performance of MC-approx when

the feedforward step is approximated and therefore only applied

approximation during backpropagation for MLPs. As such, we

focus onALSH-approx for our analysis. First, let us introduce the

following notation, which we will use throughout this section.

• 𝑎𝑘
𝑗
: the estimation of 𝑎𝑘

𝑗
by ALSH-approx.

• 𝑒𝑘
𝑗
= 𝑎𝑘

𝑗
− 𝑎𝑘

𝑗
: the activation value estimation error.

• ↑𝑘
𝑗
: the set of active nodes for 𝑛𝑘

𝑗
.

Lemma 7.1. Let 𝑓 be a linear activation function such that 𝑎 =

𝑓 (𝑧) = 𝑧. Assuming the active nodes are detected exactly, the

estimation error for the node 𝑛𝑘
𝑗
by ALSH-approx is as follows.

𝑒𝑘𝑗 =


∑
𝑖∉↑1

𝑗

𝑥𝑖𝑊
1

𝑖, 𝑗
if 𝑘 = 1

𝑒𝑘−1𝑊 𝑘
:, 𝑗

+ ∑
𝑖∉↑𝑘

𝑗

𝑎𝑘−1

𝑖
𝑊 1

𝑖, 𝑗
otherwise

Proof. We want to show that the estimation error for the

node 𝑛𝑘
𝑗
by ALSH-approx is as follows.

𝑒𝑘𝑗 =


∑
𝑖∉↑1

𝑗
𝑥𝑖𝑊

1

𝑖, 𝑗
if 𝑘 = 1

𝑒𝑘−1𝑊 𝑘
:, 𝑗

+∑
𝑖∉↑𝑘

𝑗
𝑎𝑘−1

𝑖
𝑊 1

𝑖, 𝑗
otherwise

First, for 𝑘 = 1:

𝑎1

𝑗 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑊
1

𝑖, 𝑗 =
∑︁
𝑙∈↑𝑘

𝑗

𝑥𝑙𝑊
1

𝑙, 𝑗
+
∑︁
𝑖∉↑𝑘

𝑗

𝑥𝑖𝑊
1

𝑖, 𝑗 = 𝑎
1

𝑗 +
∑︁
𝑖∉↑𝑘

𝑗

𝑥𝑖𝑊
1

𝑖, 𝑗

=⇒ 𝑒1

𝑗 = 𝑎
1

𝑗 − 𝑎
1

𝑗 =
∑︁
𝑖∉↑𝑘

𝑗

𝑥𝑖𝑊
1

𝑖, 𝑗
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Analogously, when 𝑘 > 1:

𝑎𝑘𝑗 =

𝑛∑︁
𝑖=1

𝑎𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗 =

𝑛∑︁
𝑖=1

(𝑎𝑘−1

𝑖 + 𝑒𝑘−1

𝑖 )𝑊 𝑘−1

𝑖, 𝑗

=
∑︁
𝑙∈↑𝑘

𝑗

𝑎𝑘−1

𝑙
𝑊 𝑘−1

𝑙, 𝑗
+
∑︁
𝑖∉↑𝑘

𝑗

𝑎𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗 +
𝑛∑︁
𝑖=1

𝑒𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗

= 𝑎𝑘𝑗 + 𝑒
𝑘−1𝑊 𝑘

:, 𝑗 +
∑︁
𝑖∉↑𝑘

𝑗

𝑎𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗

=⇒ 𝑒1

𝑗 = 𝑎
1

𝑗 − 𝑎
1

𝑗 = 𝑒
𝑘−1𝑊 𝑘

:, 𝑗 +
∑︁
𝑖∉↑𝑘

𝑗

𝑎𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗

□

Lemma 7.1 provides a recursive formula for the activation

value estimation error in terms of the weighted summation over

active nodes versus inactive nodes. To provide a non-recursive

and easier to understand formula, in Theorem 7.2 we assume that

the weighted summation over the active nodes is always 𝑐 times

that of the inactive nodes.

Theorem 7.2. Let 𝑓 be a linear activation function such that

𝑎 = 𝑓 (𝑧) = 𝑧. Suppose for any node 𝑛𝑙𝑝 ,∑︁
𝑖∈↑𝑙𝑝

𝑎𝑙−1

𝑖 𝑊𝑖,𝑝 = 𝑐
∑︁
𝑖∉↑𝑙𝑝

𝑎𝑙−1

𝑖 𝑊𝑖,𝑝 .

Then, 𝑎𝑘
𝑗
= 𝑎𝑘

𝑗

(
𝑐+1

𝑐

)𝑘
. That is, 𝑒𝑘

𝑗
= 𝑎𝑘

𝑗

( (
𝑐+1

𝑐

)𝑘 − 1

)
.

Proof. For any node 𝑛𝑙𝑝 , we have∑︁
𝑖∈↑𝑙𝑝

𝑎𝑙−1

𝑖 𝑊𝑖,𝑝 = 𝑐
∑︁
𝑖∉↑𝑙𝑝

𝑎𝑙−1

𝑖 𝑊𝑖,𝑝 .

We then use induction to prove 𝑎𝑘
𝑗
= 𝑎𝑘

𝑗

(
𝑐+1

𝑐

)𝑘
.

Base case.When 𝑘 = 1:

𝑎1

𝑗 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑊
1

𝑖, 𝑗 =
∑︁
𝑙∈↑𝑘

𝑗

𝑥𝑙𝑊
1

𝑙, 𝑗
+
∑︁
𝑖∉↑𝑘

𝑗

𝑥𝑖𝑊
1

𝑖, 𝑗 = 𝑎
1

𝑗 +
1

𝑐
𝑎1

𝑗 = 𝑎
1

𝑗

𝑐 + 1

𝑐

Inductive step. Assuming 𝑎𝑘−1

𝑗
= 𝑎𝑘−1

𝑗

(
𝑐+1

𝑐

)𝑘−1

:

𝑎𝑘𝑗 =

𝑛∑︁
𝑖=1

𝑎𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗 =

𝑛∑︁
𝑖=1

(𝑎𝑘−1

𝑖 + 𝑒𝑘−1

𝑖 )𝑊 𝑘−1

𝑖, 𝑗 (8)

=
∑︁
𝑙∈↑𝑘

𝑗

𝑎𝑘−1

𝑙
𝑊 𝑘−1

𝑙, 𝑗
+
∑︁
𝑖∉↑𝑘

𝑗

𝑎𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗 +
𝑛∑︁
𝑖=1

𝑒𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗

= 𝑎𝑘𝑗 +
1

𝑐
𝑎𝑘𝑗 +

𝑛∑︁
𝑖=1

𝑒𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗 =
𝑐 + 1

𝑐
𝑎𝑘𝑗 +

𝑛∑︁
𝑖=1

𝑒𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗

Let 𝐴 =
∑𝑛
𝑖=1

𝑒𝑘−1

𝑖
𝑊 𝑘−1

𝑖, 𝑗
. We have

𝑒𝑘−1

𝑖 = 𝑎𝑘−1

𝑖 − 𝑎𝑘−1

𝑖 = 𝑎𝑘−1

𝑖 − 𝑎𝑘−1

𝑖

( 𝑐

𝑐 + 1

)𝑘−1

= 𝑎𝑘−1

𝑖

(
1 −

( 𝑐

𝑐 + 1

)𝑘−1

)
.

Thus,

𝐴 =

𝑛∑︁
𝑖=1

𝑒𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗 =

𝑛∑︁
𝑖=1

𝑎𝑘−1

𝑖

(
1 −

( 𝑐

𝑐 + 1

)𝑘−1

)
𝑊 𝑘−1

𝑖, 𝑗

=

(
1 −

( 𝑐

𝑐 + 1

)𝑘−1

) 𝑛∑︁
𝑖=1

𝑎𝑘−1

𝑖 𝑊 𝑘−1

𝑖, 𝑗 =

(
1 −

( 𝑐

𝑐 + 1

)𝑘−1

)
𝑎𝑘𝑗 .

Now, plugging 𝐴 back into Equation 8, we get:

𝑎𝑘𝑗 =
𝑐 + 1

𝑐
𝑎𝑘𝑗 +𝐴 =

𝑐 + 1

𝑐
𝑎𝑘𝑗 +

(
1 −

( 𝑐

𝑐 + 1

)𝑘−1

)
𝑎𝑘𝑗

=⇒ 𝑎𝑘𝑗

(
1 −

(
1 −

( 𝑐

𝑐 + 1

)𝑘−1

))
=
𝑐 + 1

𝑐
𝑎𝑘𝑗 =⇒ 𝑎𝑘𝑗 = 𝑎

𝑘
𝑗

(𝑐 + 1

𝑐

)𝑘
□

Theorem 7.2 proves that the estimation error increases ex-

ponentially with the number of layers. As a result, due to the

sharp increase in the estimation error, ALSH-approx does not

scale to DNNs. To better observe this, suppose 𝑐 = 5 (i.e., the

weighted sum for the active nodes is five times that of the inactive

nodes). Then, using Theorem 7.2, the error-to-estimate ratios for

different numbers of layers are as follows.

k 1 2 3 4 5 6

ek
j /āk

j 0.2 0.44 0.72 1.07 1.48 1.98

From the above table, it is evident that as soon as the depth of the

network gets larger than 3, the estimation error dominates the

estimation value. This is consistent with our experiment results,

where ALSH-approx failed to scale with more than 3 hidden

layers.

8 EXPERIMENT SETUP

8.1 Hardware

This paper aims to evaluate sampling-based approaches for train-

ing DNNs on regularly available machines; thus, we ran all exper-

iments on a single-CPU machine (Intel Core i9-9920X machine

with 128 GB of memory) without a GPU.

8.2 Datasets

We used the following six benchmark datasets for our experi-

ments.

MNIST [14] 70,000 handwritten digits, each in the form of a

28 × 28 grayscale image, and 10 classes (digits zero to

nine).

Kuzushiji-MNIST [11] 70,000 cursive Japanese characters, each

in the form of a 28 × 28 grayscale image, and 10 classes.

Fashion-MNIST [59] 70,000 fashion products, each in the form

of a 28 × 28 grayscale image, and 10 classes.

EMNIST-Letters [12] 145,600 handwritten letters, each in the

form of a 28 × 28 grayscale image, and 26 classes.

NORB [34] 48,600 photographs of 50 toys from different angles,

each in the form of a 96×96 grayscale image, and 5 classes.

CIFAR-10 [31] 60,000 color images, each of dimensions 32× 32,

and 10 classes.

We randomly partition the datasets as shown below:

Dataset Train Test Validation

(Kuzushiji/Fashion-)MNIST 55000 10000 5000

EMNIST-Letters 104800 20800 20000

NORB 22300 24300 2000

CIFAR-10 45000 10000 5000
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Weobtained similar results across different datasets. For brevity,

we provide a detailed discussion only using the results on the

MNIST dataset, but extensive results for other datasets are pro-

vided in our technical report [17].

8.3 Methods Evaluated

We evaluated four sampling-based approaches for training DNNs

discussed in §5 and §6, namelyDropout [52],Adaptive-Dropout

[6], MC-approx [1], and ALSH-approx [50], on fully connected

DNNs. In addition, the regular training approach, referred to as

Standard, has been implemented for comparison purposes. All

implementations are in Python 3.9 using the PyTorch library.

ForMC-approx,
4
ALSH-approx,

5,6
Dropout,

7
and Adaptive-

Dropout
8
we used the publicly available code.

8.4 Default Values

To train our models, we use SGD. The activation function used for

hidden layers is ReLU due to its simplicity, ease of computation,

and the fact that it helps with the vanishing gradients problem

[22]. The output layer activation function is log softmax, and

the loss function used throughout experiments is the negative

log-likelihood. The learning rate is always either 10
−4

or 10
−3

de-

pending on the setting, and the models are trained for 50 epochs.

In particular, we set the learning rate to 10
−4

for MC-approxS.
9

The hyperparameters of our implementation are the best values

reported for each approach. For MC-approx the batch size is set

to 20 and 𝑘 = 10. For ALSH-approx, 𝐾 = 6, 𝐿 = 5, and𝑚 = 3

(Equation 2) as specified in [50]. In order to have a fair compari-

son with ALSH-approx, we set the probability of picking nodes

for Dropout and Adaptive-Dropout to 𝑝 = 0.05, and we use

a network with 3 hidden layers and 1000 hidden units per layer

across algorithms. The implementation of ALSH-approx pro-

vided in [51] performs better with the Adam optimizer [30] than

with Adagrad [16], which is used in the original implementation

in [50]. Hence, we use Adam in our experiments.

For the convolutional setting, we used ResNet-18 with two

fully-connected layers as a classifier to run our experiments. We

limit the approximation to the classifier and keep the convoluted

operations exact. Also, for CIFAR-10, we use pure SGD instead

of Adam.

8.5 Experiment Plan

We are mainly interested in evaluating the following.

Accuracy How do the algorithms perform when training net-

works with different depths?

Time How scalable are the evaluated algorithms (in particular,

ALSH-approx andMC-approx) w.r.t training time?

Hyperparameters Howdo hyper-parameter choices (e.g., batch

size) affect training time and accuracy?

Accuracy here refers to the percentage of correct predictions on

the entire dataset. Since we focus on multi-class classification,

we also provide confusion matrices.

4
github.com/acsl-technion/approx

5
github.com/rdspring1/LSH-Mutual-Information

6
github.com/rdspring1/LSH_DeepLearning

7
github.com/gngdb/adaptive-standout

8
see footnote 7.

9
Across all tables and plots we use the subscripts “S” and “M” to refer to the SGD

and mini-batch SGD (with default batch size 20) settings, respectively. When there

is no subscript, the default is MGD for MC-approx and SGD for all other methods.

9 EXPERIMENT RESULTS

9.1 Accuracy

We begin our experiments by addressing the first question in §8.5.

To do so, we generate models with different numbers of hidden

layers (1 to 7) and evaluate each method on all six datasets dis-

cussed in §8.2 for both stochastic
10

and mini-batch settings. The

confusion matrices for all algorithms are provided in Figure 3.

Every row in the figure shows the performance of an algorithm,

while different columns represent networks with different num-

bers of hidden layers. In all plots contained within the figure, the

x-axis shows the model prediction and the y-axis shows the true

labels. Consequently, the diagonal cells show correct predictions,

while all other cells are incorrect predictions. Ideally, the models

should have (near-)zero values on non-diagonal cells.

Baselines. Standard,
11

Dropout, andAdaptive-Dropout (the

first three rows in Figure 3) are our baselines for comparisons.

For Dropout, the nodes are sampled randomly with probability

𝑝 , and for Adaptive-Dropout, 𝑝 is updated w.r.t the Bayesian

posterior distribution of data input. In standard feedforward

training, we expect to observe a decrease in generalization error

over complex datasets as we add layers to the network and an

increase in the ability to learn nonlinear functions. Clearly, this

does not include the cases in which Standard overfits.

ALSH-approx. The experiment results on ALSH-approx (Row 4

in Figure 3) confirm a decrease in accuracy as the number of layers

increases. In particular, Figures 3o and 3p show a sharp decrease

in performance on 5 to 7 layers. This is confirmed in Figure 7,

where the accuracy of ALSH-approx drops from 70.07% to 25.14%

from 5 to 7 layers. Comparing ALSH-approx with StandardS in

Figure 3, though initially the two algorithms perform similarly

on a small number of layers (Columns 1 and 2), the performance

gap quickly increases with the number of layers — confirming

the lack of scalability of ALSH-approx for DNNs. This is also

observed in Figure 7. We can see from Table 2 that, compared

with DropoutS, ALSH-approx performs better, but it does not

outperform StandardS and Adaptive-DropoutS.

MC-approx. MC-approx is designed for use with mini-batch

SGD. As we shall further investigate in §9.3, even though MC-

approxS outperforms other methods evaluated (Table 2), the

runtime for large numbers of layers and datasets is so high that

it is infeasible for computation-limited systems. This is reflected

in Table 3. Therefore, as indicated in §8.4, we use mini-batch

SGD (with batch size 20) as the default setting in our experi-

ments. The experiment results on MC-approxM are provided

in the last row of Figure 3. MC-approxM shows equally good

performance across different numbers of layers, confirming its

scalability for DNNs. In particular, when varying the number

of hidden layers (Figure 7), the minimum accuracy obtained by

MC-approxM is 92.71% for one hidden layer. Comparing the con-

fusion matrices of MC-approx with Adaptive-Dropout and

Standard in Figure 3, we can see that performance is consistent

across the three algorithms. As shown in Figure 7, in most cases,

MC-approxM outperformed StandardM with 2–4% difference

in accuracy. This is also evident in Table 2, where MC-approxM

and MC-approxS outperformed other algorithms on the MNIST

and Fashion-MNIST datasets with 3 hidden layers. To further

assess the scalability of MC-approxM in deeper networks, we

10
when the batch size is equal to 1.

11
training the neural network without sampling.
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Figure 3: Confusion matrices of different algorithms for different numbers of hidden layers. In all plots, x-axis and y-axis

are the predicted and true labels (0 to 9), respectively.
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Figure 4: ALSH-approx: validation ac-

curacy for different numbers of layers.
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Figure 5:MC-approx: validation accu-

racy for different numbers of layers.
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Figure 6: Validation accuracies with 3

hidden layers.

1 2 3 4 5 6 7
Number of hidden layers

0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

%

MC APPROXM

StandardM

ALSH-APPROX
StandardS

Figure 7: Test accuracy for different

numbers of hidden layers.

1 2 3 4 5 6 7
Number of hidden layers

103

104

105

Ti
m

e 
(s

)

MC APPROXM

StandardM

ALSH-APPROX
StandardS

Figure 8: Training time for different

numbers of hidden layers.

90 91 92 93 94 95 96 97 98
Accuracy%

104

105

Ti
m

e 
(s

)

MC APPROXM

DropOutS

ALSH-APPROX
StandardS

Adaptive DropoutS

Figure 9: Accuracy vs. training time (3

hidden layers).

conducted additional experiments using 10- and 20-layer net-

works. The obtained accuracy rates of 97.32% for 10 layers and

95.71% for 20 layers validate our earlier findings. Finally, looking

at Figure 7, the only case in whichMC-approxM fails to obtain

the highest accuracy compared with ALSH-approx is when the

model has only 1 hidden layer. ALSH-approx performs (94.4%)

slightly better thanMC-approxM (92.71%).

9.2 Training Time

After studying the impact of network depth on accuracy, we

next turn our attention to efficiency (i.e., training time). The re-

sults from all five methods on three hidden layers, on one CPU

and without parallelization, are summarized in Table 3 and Ta-

ble 4. Even though from Table 4 it is evident thatMC-approxM

significantly outperforms other approaches with batch size 20,

MC-approxS is slower than Adaptive-DropoutS, StandardS,

and DropoutS. Similarly, Figure 8 shows the runtime compar-

ison of MC-approxM and ALSH-approx with StandardS and

StandardM (baseline) for different numbers of layers. The re-

sults confirm the superiority of MC-approxM over the other

algorithms up to 3 layers. Note that the observed increase in the

training time of Adaptive-Dropout per epoch in comparison

to Standard can be attributed to the additional computational

overhead of the construction of dropout masks and their sub-

sequent multiplication with the weight matrices in each layer

(Table 4).

ALSH-approx. Before discussing our efficiency results from

ALSH-approx, let us emphasize that ALSH-approx is a scal-

able algorithm that significantly benefits from parallelization [50].

During training, the hash table construction, computing hash

signature, querying hash tables, and updating weight vectors

by sparse weight gradients are parallelized, which makes the

algorithm fast with parallel processing using multiple processing

units. We refer interested readers to the details and results of

Spring and Shrivastava [50].

ALSH-approx needs to reconstruct the hash tables after a

set of weight updates. Following the original implementation

of ALSH-approx, in our experiments, for the first 10000 train-

ing data points, we reconstruct hash tables every 100 images.

Then gradually, we expand the set to avoid time-consuming table

reconstructions and update the tables every 1000 images. This

helps with directing the gradient and decreasing the redundancy

in the dataset. Table 3 shows that ALSH-approx exhibits slower

performance compared to all other methods in the statistic set-

ting.

Also, in models with additional hidden layers, we can see an

increase in training time as shown in Figure 8 that is larger than

other methods on the same network structure. This is consis-

tent with the results presented by Spring and Shrivastava [50],

where it is shown that the runtime significantly drops with par-

allelization. Evidently, as shown by Spring and Shrivastava [50],

parallelization has no impact on the accuracy of ALSH-approx.

In other words, the accuracy scalability results of ALSH-approx

discussed in the previous section are independent of paralleliza-

tion.

MC-approx. Due to the sampling ratio of MC-approx (𝑝 ≈ 0.1),

MC-approx performs more atomic scalar operations than ALSH-

approx with 5% of the nodes. However, based on the results from

Figure 8 and Table 3, MC-approxM and MC-approxS are around

20 and 2 times faster than ALSH-approx, respectively. This is
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Table 2: Test accuracy (%) for a network with 3 hidden layers.

Dataset ALSH-approx MC-approxM MC-approxS DropoutS Adaptive-DropoutS StandardS

MNIST 94.15 98.10 98.38 90.21 98.06 96.46

Kuzushiji-MNIST 72.87 91.78 96.50 9.84 90.73 83.86

Fashion-MNIST 78.11 87.85 88.58 76.28 86.12 73.64

EMNIST-Letters 64.97 89.84 90.75 4.96 89.50 85.34

NORB 78.57 92.05 97.52 32.73 96.60 51.61

CIFAR-10 10.31 73.26 62.11 67.85 75.55 93.02

Table 3: Training time per epoch (sec.) with 3 hidden layers and batch size 1 on MNIST.

Method ALSH-approx MC-approxS DropoutS Adaptive-DropoutS StandardS

Total 807.50 ± 22.92 422.23 ± 3.36 196.15 ± 0.55 225.85 ± 1.91 361.51 ± 5.13

Feedforward 168.02 ± 3.34 28.44 ± 0.076 32.32 ± 0.04 59.03 ± 0.10 28.976 ± 0.04

Backpropagation 356.16 ± 7.28 110.98 ± 0.69 131.02 ± 0.57 132.68 ± 1.89 61.88 ± 1.02

Table 4: Training time per epoch (sec.) with 3 hidden layers and batch size 20 on MNIST.

Method MC-approxM DropoutM Adaptive-DropoutM StandardM

Total 35.141 ± 0.385 42.818 ± 0.108 53.412 ± 0.301 39.310 ± 1.087

Feedforward 4.733 ± 0.054 4.789 ± 0.010 10.539 ± 0.024 4.213 ± 0.052

Backpropagation 11.323 ± 0.071 7.957 ± 0.029 8.493 ± 0.271 23.143 ± 1.080

because of the significantly lower overhead of MC-approx com-

pared to ALSH-approx. Figure 8 shows thatMC-approxM out-

performs other methods while maintaining a training time com-

parable to StandardM. Notably, despite the additional computa-

tional load in the backpropagation process with MC-approxM, it

achieves backpropagation times that are twice as fast as those

of Standard on the same architecture (Table 4). For networks

with fewer than 4 hidden layers,MC-approxM is slightly faster

than StandardM, and for deeper networks, the opposite is true.

Nevertheless, Figure 5 confirms the higher accuracy of theMC-

approxM for various numbers of layers on MNIST. From Table 3,

it is evident that StandardS is faster thanMC-approxS. The rea-

son is that, in order to estimate probabilities based on Equation 7

for each mini-batch, MC-approx makes a pass over the mini-

batch and the matrix𝑊 . As a result, in SGD, where mini-batch

size is one, the overhead time and the time to approximate the

matrix multiplication exceeds the required time for exact multi-

plication (StandardS). In §9.4, we provide a thorough analysis of

the runtime comparison betweenDropout,Adaptive-Dropout,

andMC-approxM.

Finally, Figure 9 shows that MC-approx performs better in

both speed and accuracy compared to other methods.

9.3 Hyperparameters

MC-approx is designed for mini-batch stochastic gradient de-

scent, as it uses the set of samples in the mini-batch for error

estimation in Equation 7 to identify which rows in𝑊 𝑘
to select.

In SGD, the estimations would be made using only one sample,

and hence are not reliable. As a result, while MC-approx per-

forms well for mini-batch SGD with a large-enough batch size

(20), its efficiency drops significantly for SGD. In the stochastic

setting, MC-approxS is slower than StandardS (Table 3) and is

prone to overfitting.

To evaluate this, we run experiments on stochastic setting

where batch size is set to 1 (MC-approxS) along with different

batch sizes. The results are provided in Figures 6, 10, 11, and 12

and Tables 3 and 4. The results in Figure 10 show the decrease in

accuracy for small mini-batches with the same learning rate: the

accuracy drops from 98% to 84%. The optimal learning rate to use

is smaller for smaller batch sizes [47], so to resolve the overfitting

inMC-approxS, we decreased the learning rate from 10
−3

to 10
−4

.

As shown in Table 2 and Figure 6, MC-approxS performs well

in terms of accuracy. Moreover, as the model gets more complex

by adding hidden layers (Figure 12) and the variance increases,

the model is unable to avoid overfitting even with decreasing

the learning rate. We discussed in §6.2 that MC-approx chooses

row-column pairs from matrices such that the columns are from

the first input matrix 𝑋 ∈ R𝑚×𝑛
and the corresponding rows are

sampled from the second matrix𝑊 ∈ R𝑛×𝑛 . Figure 12 provides
evidence of the lack of scalability of MC-approxS for deep net-

works. This can be attributed to the specific sampling procedure

employed by MC-approxS. In the stochastic setting, 𝑋:, 𝑗 is re-

duced to a singleton set. As a result, the time overhead increases,

while the reliability of probability estimation for row-column

selection decreases.

9.4 Memory Analysis

Our computing architecture is equipped with a hierarchical mem-

ory layout that includes a 384 KB Level 1 (L1) cache, 12 MB Level

2 (L2) cache, and a 19.3 MB Level 3 (L3) cache. We find that the

ALSH-approx algorithm initially requires 24 MB of memory for

table setup and subsequently expands by 3,731.9 MB by the end

of training. This substantial increase in memory usage indicates

that the data that is not cache resident contributes to significant

system overload. This plays a crucial role in the execution time

of the ALSH-approx algorithm, as it necessitates frequent data

retrieval from slower, non-cache memory sources.MC-approx

demonstrates a 45 MB increment in memory usage by the end of

training. Notably, memory usage decreases to 16.4 and 15.7 MB

for Dropout and Adaptive-Dropout, respectively. However,
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Figure 10: MC-approx: validation accu-

racy for different batch sizes (learning

rate = 0.001).
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Figure 11: MC-approx: training time

for different batch sizes (learning rate

= 0.001).
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Figure 12: Validation accuracies with 7

hidden layers.

the I/O traffic remains high, and the runtime still increases simi-

larly toMC-approx. This phenomenon is attributable to cache

misses during training with Dropout and Adaptive-Dropout.

As Mohan et al. [42] illustrate, minimizing storage I/O per epoch

is more critical than caching data. If data is evicted from the cache

before use or is never cached, accessing it frommemory increases

the I/O overhead. Cache profiling results indicate a roughly 24%

increase in cache misses with Dropout and a 27% increase with

Adaptive-Dropout compared to MC-approx, explaining the

rise in runtime.

10 LESSONS AND DISCUSSION

It is important to recognize that no single method serves as the

optimal solution for optimizing training across all architectures

and datasets. On the positive side though, our theoretical anal-

ysis and experimental evaluations confirm the effectiveness of

existing approaches under various settings. Specifically, our ex-

perimental findings discussed in §9 confirm the superiority of

MC-approx. When used on MLPs with an appropriately sized

mini-batch larger than one, it offers enhanced accuracy, speed

and memory efficiency.MC-approx effectively approximates the

inner product at each layer by sampling nodes from the previous

layer, and utilizing a batch of data point vectors significantly

improves the sampling quality. Another notable observation is

that MC-approx decreases the number of cache misses which

significantly contributes to its increased speed. Moreover, our

theoretical analysis in § 7 demonstrate a small estimation error

for ALSH-approx, when the number of hidden layers is small.

This was observed in our experiment in Figures 3m, Figure 3n,

and Table 2. This confirm the effectiveness of ALSH-approx,

especially with parallel computing [50].

10.1 Feedforward Approximation Scalability

A major takeaway in this paper is the negative impact of approx-

imation during the feedforward process. First, in §7, we theoreti-

cally analyzed the error propagation effect from layer to layer.

In particular, Theorem 7.2 highlights the exponential increase

of gradient estimation error in ALSH-approx as the number of

hidden layers increases. As a result, for neural networks with

more than 3 hidden layers, the error can become even larger

than the estimation value. Consequently, the gradient estimation

can become utterly arbitrary, resulting in completely inaccurate

weight updates during the backpropagation step, which leads

to an inaccurate model. ForMC-approx, Adelman et al. [1] did

not observe consistent behavior across different models in their

experiments. Interestingly, the authors provide the theoretical

result that (i) approximating both feedforward and backpropaga-

tion operations leads to biased estimates, and (ii) approximating

only feedforward operations is unbiased. However, their method

for feedforward approximation failed in experiments [1]. As a re-

sult,MC-approx (the algorithm evaluated in this paper) only adds

approximation during backpropagation. We observed similar re-

sults for ALSH-approx in §9. It is evident in Figures 3, 7, 12, and 4

that ALSH-approx failed to scale for DNNs, confirming our the-

oretical analysis in Theorem 7.2.

We observed that backpropagation generally took significantly

longer than the feedforward step (Tables 3 and 4). Fortunately,

backpropagation optimization can significantly improve train-

ing time [22, 53]; introducing approximation only during the

backpropagation step has the potential to significantly reduce

training time. Nevertheless, designing scalable sampling-based

algorithms that introduce approximation on both feedforward

and backpropagation in DNNs on CPU machines remains an

open research direction.

10.2 DNNs and Small Batch Size

As observed in our theoretical analysis and experiment results,

ALSH-approx does not scale to DNNs with more than a few hid-

den layers. MC-approx, on the other hand, scales for DNNs, but

it is designed based on mini-batch gradient descent and performs

well when the batch size is reasonably large (greater than 10).

However, the performance of MC-approx quickly drops for small

batch sizes under the same setting. In particular, we observed a

swift drop in time efficiency (Figure 11) under SGD. WhileMC-

approxS demonstrated a high accuracy in some cases (Table 2),

this comes at a cost of a significant increase in training time

(even compared to StandardS) and a high risk of overfitting,

especially for deep networks (Figure 12). Thus, designing scalable

sampling-based algorithms for SGD on CPU remains an open

research direction.

10.3 ALSH-approx Prediction in DNNs

We would like to conclude this section with an interesting obser-

vation on ALSH-approx. Let us consider the confusion matrices

of ALSH-approx in Figure 3 (Row 4) once again. From Figure 3m,

one can confirm that (i) there is no class imbalance in the test

set (approximately same number of samples in each class), and

(ii) having high accuracy, the model predictions are uniformly

distributed across different classes (approximately same number

of samples predicted to be in each class). On the other hand, in
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Figure 13:ALSH-approx: impact of network depth on label

prediction ratio distribution.

Figure 3p, it seems not only the model is inaccurate, but inter-

estingly only a few labels from the class labels are generated

in predictions (all samples are labeled as either 0, 1, or 7). We

repeated the experiment multiple times and observed consistent

behavior. Furthermore, comparing Row 2 (Dropout) with Row 4

(ALSH-approx) in Figure 3, we note that, while both methods

failed to scale with the number of hidden layers, Dropout main-

tains the label diversity in its prediction, which demonstrates

randomness. To better present this, in Figure 13, we provide the

ratio of test-set samples predicted for each label (column) for

networks with various numbers of hidden layers. It is clear that,

while initially the label prediction distribution is uniform, as the

number of layers increases, the predictions concentrate around a

few arbitrary classes. The reason is that, while training the model

using ALSH-approx, as the gradient estimation error increases

for deeper networks, a small subset of nodes remains active in

deeper layers, regardless of the input sample. As a result, the set

of edges for which the weights get updated remains almost the

same. Therefore, when predicting the label of an input sample,

the same set of nodes is “activated”, resulting in a small set of

predictions generated.

10.4 Optimal Choice of Training Method

Building on the insights and lessons from our study, we present a

decision tree to guide users in selecting the most effective method

for training DNNs on CPU machines:

Setting

# Layers

Parallel Computing

ALSH-approx ([50])

yes

Open Problem (Tab. 3)

no

Shallow (≤ 4)

Open Problem
12

(Fig. 3)

Deep (> 4)

SGD

MC-approx (§9.3, Tab. 4)

Mini-Batch SGD

Our primary objective is to identify methods that deliver per-

formance nearly comparable to standard training in terms of

accuracy while ensuring faster execution on our CPU system

across various settings. Our results, presented in Section 9.3 and

Table 4, indicate that MC-approx surpasses other methods in

mini-batch settings. In stochastic environments, the effective

method varies with the network depth. The experimental evalua-

12
“Open problem” refers to settings where existing sampling-based algorithms

failed; further research is needed to design algorithms for those settings.

tion by Spring and Shrivastava [50] confirms that ALSH-approx

scales effectively using parallel computing with multi-processors

up to 2
6
processors, for up to four layers. Therefore, we believe

ALSH-approx performs optimally up to four layers under such

conditions.

11 CONCLUSION

Many of the advanced technologies originally developed for ad-

dressing big data challenges have been extended to solve scala-

bility complexities across various domains. In this paper, we eval-

uated one of these settings, where sampling-based techniques

were proposed for training DNN on CPU machines with lim-

ited resources. To this end, we made connection between two

sampling-based research directions that can be viewed as matrix

multiplication approximations. We provided theoretical analyses,

followed by extensive empirical evaluations.

Our results demonstrate a correlation between the number of

hidden layers and approximation error in DNNs under hashing-

based methods. In addition, we provided insights into the perfor-

mance of fast training methods in different settings and highlight

areas for further research.

As a final note, energy consumption during DNN training

raises environmental concerns. Recent studies have explored the

significant carbon footprint associated with large-scale neural

networks, primarily due to their energy consumption [45, 56].

One interesting direction for future work is to study the impact

of sampling-based techniques on energy efficiency.
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