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ABSTRACT
Recent advances in Deep Learning and Computer Vision have

enabled sophisticated image and video understanding. Dealing

with real video streams however, posses various challenges such

as coping with factors that change the video data distributions

such as varying camera angles. When the video stream distri-

bution changes, models that we have been using to process the

video stream may no longer be applicable.

In this paper we present algorithms to monitor a video stream

and detect when the underlying data distribution has changed in

a light weight manner. The basis of our proposal are conformal

martingales that can efficiently construct an understanding of the

current video stream and detect changes in it very efficiently. We

present the Drift Inspector Algorithm (DI) that encompasses such

martingales to detect changes in the video distribution efficiently.

We then propose two algorithms, namely Model Selection Based

on Output (MSBO) and Model Selection Based on Input (MSBI)

to efficiently select new models to continue processing the video

stream when the distribution has changed.

We present the results of our evaluation involving various

real video streams and analyze the trade-offs and the relative

merits of our approach. Compared with other applicable state

of the art approaches our proposals achieve up to an order of

magnitude performance savings while being superior in their

resulting accuracy in practical query scenarios.

1 INTRODUCTION
Recent advances in Deep Learning (DL), have revolutionized

many computer vision and natural language processing applica-

tions. Several state-of-the-art computer vision algorithms have

been proposed in the areas of image classification, object de-

tection, and tracking [20, 38, 62]. This rapid progress has in-

fluenced the development of several video analytics systems

[4, 15, 29, 32, 33, 37]. The basic premise of these systems is to en-

able a declarative query framework on top of videos (streaming or

offline) making video content fully accessible to SQL-style query

processing. As a result video objects, their relationships, actions

and spatio-temporal constraints are fully available for query-

ing. In addition, these systems reduce the per-frame processing

time cost and achieve solid accuracy on par with state-of-the-art

computer vision algorithms.

One fundamental drawback of state-of-the-art deep learning

video analytics algorithms is the assumption that the distribu-

tion of data they operate on (serving data) is the same as the

distribution of the data they have been trained on (training data).

When serving data diverges from training data, the accuracy and

effectiveness of video analytics algorithms degrade substantially

[64].
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Such divergence between serving and training data is known

in the literature as data drift (or data shift) [56] and it has nu-

merous manifestations (e.g., Covariate Shift, Concept Shift [44]).

In video analytics, it occurs naturally and it is very common.

Consider for example a surveillance application consuming data

from a fixed camera to detect certain objects (e.g., cars on a

highway). The underlying detection model [25] for cars has been

trained utilizing repositories of car data or videos. In a production

environment, the natural conditions will inevitably drift away

from those in training data. For example, the models will have to

operate under night conditions, fog, snow, rain etc. Likely, the

underlying model has not been trained on data under all those

adverse conditions (signifying data drift) and as a result, perfor-

mance will deteriorate [64]. In video processing, drifts can be

attributed to other factors. For example, changes in the camera

angle as well as whether the camera is static or moving may im-

pact model accuracy significantly depending on how substantial

the changes in angle and movement speed are.

Data drift is a real challenge for video analytics as it is difficult

to anticipate all possible conditions under which drift may occur.

As such themain focus is on detecting data drift and when needed

adjusting the underlying models to correct their performance in

light of the new operational conditions.

The work closest to ours is ODIN [64]. It initiates work in drift

detection and recovery in video analytics. ODIN consists of 3

modules; ODIN-Detect (detects whether a drift has occurred),

ODIN-Select (selects models to process input frames), and ODIN-

Specialize (trains a new model). As frames arrive, ODIN clusters

them to an existing cluster or creates a temporary one. The pro-

cess of making a temporary cluster permanent (signifying drift

detection) is slow (Section 6.1). Furthermore, ODIN clusters each

frame and selects the model associated with the cluster, slowing

down the overall model selection process. This process is driven

by a distance metric, resulting in poor selection performance

(Section 6.2). To improve it, ODIN allows frames to fall into mul-

tiple clusters creating ensemble models for a frame. This affects

the end-to-end time performance (more models are invoked for

a frame), and the query accuracy (the ensemble model is inferior

to the single best model (Section 6.3)).

We design a general architecture for operational video analyt-

ics coping with data drift. We focus on an operational environ-

ment where data drift may occur. To design a general solution,

it is natural to assume that some adverse operational conditions

are anticipated (e.g., detecting objects at night, under rain or

snow) and suitable models have been provisioned and trained

with data corresponding to such conditions. However, the op-

erational environment has to cope with unknown conditions

with no applicable models at our disposal. As such any general

solution has to be equipped with the ability to detect data drift.
Once a data drift is detected, to cope with the data distribution

changes a best-performing model suitable for the new data has

to be selected among a set of already provisioned models. If no

such model can be identified, this will signify that the data has
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drifted away from previously identified distributions. As such, a

suitable model has to be provisioned for the new data.

In this paper, we propose algorithms to detect data drift by

monitoring the video stream in a lightweight manner. Our pro-

posed algorithm, called Drift Inspector (DI) is able to incremen-

tally monitor the video stream and assess whether the underlying

video frame distribution signifies a substantial change. We utilize

principles of conformal theory [69–71] for this purpose and we

demonstrate that our approach offers state of the art drift detec-

tion compared to other approaches with substantial performance

benefits.

Once a drift is identified, we examine a set of available models

in our disposal to identify whether one of the models is suitable

to process the new data with high accuracy. We propose two

algorithms for this purpose. The first, called Model Selection

Based on Input (MSBI), examines the new incoming data after

the data drift and compares them in a formal manner to the

training data of existing models, to determine whether any of

the existing models is suitable to process the new input stream.

The second, called Model Selection Based on Output (MSBO)
organizes the models in a suitable pre-processing step to quantify

the uncertainty in a formal manner [40, 68] of the model output

(its predictions) given a new input. The algorithms will promote

a model they determine is applicable to continue processing the

video without disruptions as a result of the drift. If no such model

can be identified from the set of applicable models, the algorithms

signify that a novel input has been identified for which a new

model has to be constructed. An overview of the architecture is

presented in Figure 1. Video frames are routed to algorithm DI

and processed by the deployed model when no drift is detected.

Once a drift is detected, a new model is selected, either from the

list of existing models or by building a new model. In either case,

a new model is deployed for further processing. Specifically, we

make the following contributions:

• We present the DI algorithm, which is based on conformal

prediction theory. The algorithm, using conformal martin-
gales [70], formally and efficiently detects changes in the

underlying frame distribution of a video stream, pinpoint-

ing the exact frame where the drift occurs. While con-

formal martingales have been utilized before for change

point detection in other domains [34, 47, 67], we apply

them in video streams for the first time. To achieve that,

we make the following contributions. We develop a varia-

tional autoencoder to generate i.i.d samples (Section 4.2.2).

Next, we design a custom betting function (Section 4.2.3)

as well as a statistical test to pinpoint drift in video streams

(Section 4.2.5).

• We present 2 algorithms, namely MSBI and MSBO, to

recover from drift in video streams. MSBI algorithm is

grounded on conformal martingales to evaluate new data

arriving as part of the data drift against training data on

our existing models. MSBO quantifies the predictive un-

certainty of the existing models given the new data. We

evaluate the relative tradeoffs between these algorithms

and analyze the conditions under which they perform best.

• We present the results of a comprehensive performance

evaluation using real data sets analyzing each proposed

algorithm in isolation for its suitability and effectiveness

for the associated task compared to state-of-the-art ap-

proaches. We also benchmark the performance of our end-

to-end solution combining all of our proposals into a single

system, comparing it to alternative solutions. Our results

indicate that our techniques constitute a robust offering

demonstrating significant drift detection and model selec-

tion performance benefits. Our combined proposals are 3

times faster and achieve 20% higher query accuracy than

the state-of-the-art.

This paper is organized as follows: In Section 2 we review the

related work. Section 3 presents the problem statement of this

work, Section 4 presents the drift detection algorithm, followed

by Section 5 which demonstrates the process of selecting a new

model to process video frames captured after the change point

detection. Section 6 presents our experimental evaluation. Section

7 concludes the paper discussing avenues to future work in this

area.

2 RELATEDWORK
Acknowledging the significance of query processing on stream-

ing video, several recent works focus on declarative query pro-

cessing over video stream [11, 13, 32, 33, 37, 39, 48, 59, 76, 77]. No-

scope [33] focuses on fast query processing, on binary frame clas-

sification, by identifying queried object classes in video frames.

SVQ [37, 74] presents a declarative query processing framework

that supports query predicates involving spatial and aggregate

constraints among objects on video streams while BlazeIt [32]

supports aggregate queries. Haynes et. al [23, 24] present a visual

data management system and discuss storage aspects of video

query processing. Bastani et. al [4, 5] use object tracking to an-

swer count and spatial-constrained queries. Several systems have

proposed [29, 45] query processing on video streams while dis-

cussing scalability, resource utilization, and storage aspects. Sev-

eral systems propose declarative query processing frameworks

that support human-object interaction predicates [10, 12, 75].

Chen et. al [14–16] discuss aspects of temporal query processing

on video streams.

Data drift in Machine Learning and its implications for learn-

ing algorithms have been studied in the past [6, 56, 57]. Various

forms for changes in the underlying data distribution to learning

have been studied and these include concept shift, covariate shift,
and prior probability shift. The techniques we present apply both

to problems related to concept shift and covariate shift. For a

recent survey of various notions of distribution change and the

relationship to learning algorithms, see [44]. Overall approaches

in the literature can be classified as follows. First, in the con-

text of drift detection, traditional approaches include control

charts [53, 60] which require full knowledge of the distribution.

Although they provide a formal framework they are not appli-

cable in practice as we do not have parametric models of real

video streams. In statistics [3] there are numerous parametric

tests to quantify distribution change but again require knowledge

of distributions in analytic closed forms. Non-parametric tests

from statistics [9] such as Kolmogorov-Smirnoff (KS) [31] are

robust statistical tests that can be applied for distribution change

as well. In particular, two-sample KS tests can decide whether

two samples come from the same distribution or not. However,

although very efficient in one dimension, multidimensional KS

tests are not efficient to compute [31] and closed-form results

are not available. Other works have used unsupervised methods,

such as clustering, to detect drift [64],[63] with ODIN [42] being

the state of the art for which we present a detailed evaluation of

our proposal against. Ekya [1] recovers from data drift in stream-

ing videos by regularly retraining the deployed models on edge
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Figure 1: Example of the overall architecture

servers while Nagar et. al [50] utilize drift detection to solve the

problem of temporal video segmentation of daylong egocentric

video streams.

Martingales is a well-known concept in statistics [70] with

numerous applications in statistical analysis. Conformal Martin-

gales have been proposed in the context of conformal predictions

[69–71]. Optimal stopping rules for drift detection using martin-

gales have been studied in the past [49] however these results

are of theoretical interest as full knowledge of all distributions

and their parametric forms is assumed. Various methods, such

as Transcend [30], employ martingales to detect drift in security

domains [34, 47, 67].

Traditionally, Bayesian neural networks provide ways to mea-

sure the predictive uncertainty of a model [2, 19]. Despite the

advances of Bayesian neural networks, they require significant

assumptions, alterations in the training procedure, and their

computational requirements make them unrealistic. A variety of

Bayesian approximations have been proposed including Markov

chain Monte Carlo [51] and their variations [36], variational

Bayesian methods [43, 73] and Monte-Carlo Dropout [18]. Ap-

proaches for uncertainty quantification for predictive models,

utilizing deep networks [2, 19, 27, 40] have been demonstrated

to be more effective in practice [52]. Although ensembles of deep

models have been utilized for uncertainty quantification [2, 40],

we are not aware of any work utilizing deep ensembles for model

selection.

3 PROBLEM STATEMENT
Avideo stream is an unbounded sequence of frames 𝑆 = {𝑓1, 𝑓2, 𝑓3 . . .},
where each 𝑓𝑖 is amultidimensional vector. Assume that 𝑓1, 𝑓2, . . . , 𝑓𝜃 ∼
F𝑘 , where F𝑘 represents the underlying data distribution from

which frames 𝑓1 . . . 𝑓𝜃 are drawn. From a practical point of view,

F𝑘 represents the distribution of the frames of a segment in the

video stream for which a provisioned deep model𝑀𝑘 is utilized

delivering satisfactory accuracy (e.g., detecting a collection of

object classes). Let 𝑓𝜃+1, 𝑓𝜃+2, . . . ∼ F𝑘+1 express the new under-

lying data distribution occurring at 𝜃 > 1 as a result of a data drift

in the video stream. Both F𝑘 , F𝑘+1 are unknown distributions

and we can only sample from them.

The first problem of interest in our work is to detect the data
drift at time 𝜃 and declare that the distribution has changed, in a

lightweight manner by monitoring (sampling) the video stream.

We will propose the Drift Inspector algorithm in Section 4 for

this purpose. Once a data drift is detected we wish to identify

whether a model at our disposal in a collection of𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑚

models can be utilized to process the new data. We will propose

the Model Selector algorithm (MS) in Section 5. It is possible that

none of the𝑚 models is applicable to process the new data and

as a result, the MS algorithm will flag the necessity to create a

new model.

In Section 6, we evaluate the effectiveness of our proposals

and compare them against ODIN [64], a state-of-the-art drift

detection and recovery system in video analytics. In evaluating

drift detection performance, we introduce a metric quantifying

the number of frames processed before detecting a drift. Both

Drift Inspector and ODIN-Detect exhibit the ability to accurately

identify drifts while avoiding false positive detections. Hence, our

assessment focuses on their efficacy in promptly identifying drifts

from the moment the distribution changes, providing insights

into their responsiveness to evolving video stream dynamics.

The Model Selector (MS) algorithm, chooses a single model

to process all frames following a drift, contrasting with ODIN-

Select’s approach of selecting a model (or ensemble) for each

frame. The MS algorithm always selects the single best model to

process incoming frames. To assess MS against ODIN-Select, we

introduce a metric called, "model invocations per frame". This

metric indicates the number of models invoked to process a

single frame. MS always selects one model per frame, resulting in

model invocations equal to processed frames. Conversely, ODIN-

Select often forms an ensemble, yielding more than one model

invocation per frame. This metric is crucial for evaluating end-

to-end time performance and accuracy. More model invocations

increase processing time, while ensembles reduce query accuracy

compared to selecting the single best model. Finally, we assess the

time overhead introduced by our proposed algorithms relative to

ODIN during video processing.

4 DRIFT INSPECTOR
We will utilize principles from conformal theory [69–71] to de-

sign the Drift Inspector algorithm. Let 𝑆 = 𝑓1, . . . 𝑓𝑛−1 a frame

sequence. We are interested to develop measures that quantify

how "strange" 𝑓𝑛 is with respect to 𝑆 . We will use the conformal

prediction framework [70] for this purpose. We define a non-
conformity measure as a function mapping (𝑓𝑛, 𝑆) → 𝐶 (𝑓𝑛, 𝑆),
where𝐶 (𝑓𝑛, 𝑆) is a real number with the following semantics: the

greater the value is the stranger 𝑓𝑛 is with respect to 𝑆 . Numerous

measures can be utilized to define this mapping. For example,

we can consider the nearest neighbor conformity measure and

quantify 𝐶 as the average distance of 𝑓𝑛 to the members of 𝑆 .
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Table 1: Notation table

T𝑖 Training data for distribution 𝑖

𝐴T𝑖 The variational autoencoder for distribution 𝑖

ΣT𝑖 The i.i.d samples generated by 𝐴T𝑖 from T𝑖
𝑀𝑖 A model that processes frames coming from distribution 𝑖

𝐴𝑖 The non-conformity score of each element in ΣT𝑖
f A single video frame

𝑓1, . . . 𝑓𝑛 A sequence of video frames

𝑎𝑓 The non-conformity score of frame 𝑓

g A betting function

S The conformal martingale scores of W-1 past observations

K The number of nearest neighbours

W A window of observations

r The significance level

Table 1 presents a summary of the notation we use in Sections 4

and 5.

Having established a non-conformity measure, the next step

in conformal predictions is to define the 𝑝-value for a new obser-

vation 𝑓𝑛 as 𝑝𝑛 = 𝑝 (𝑓1, . . . , 𝑓𝑛) =

|{𝑖 = 1, . . . 𝑛 : 𝛼𝑖 > 𝛼𝑛}| +𝑈 |{𝑖 = 1, . . . , 𝑛 : 𝛼𝑖 = 𝛼𝑛}|
𝑛

(1)

where𝑈 is a uniformnumber in [0, 1] and𝑎𝑖 the non-conformity

measure defined as:

𝑎𝑖 = 𝐶 (𝑓𝑖 , {𝑓1 . . . 𝑓𝑖−1, 𝑓𝑖+1, . . . 𝑓𝑛}) (2)

Thus, the 𝑝-value of 𝑓𝑖 is defined as the fraction of frames that

have a non-conformity score greater than or equal to the non-

conformity score of 𝛼𝑖 . Intuitively the smaller 𝑝-value is for a

frame the stranger it is with respect to frames 𝑆 . A fundamental

theorem in conformal predictions [70] is the following:

Theorem 4.1. [71] If 𝑓1, . . . 𝑓𝑛 are independent and identically
distributed (i.i.d), then the 𝑝-values 𝑝1, 𝑝2, . . . are independent and
uniformly distributed in [0,1]

As a corollary, if 𝑓1, . . . 𝑓𝜃 are indeed i.i.d according to F𝑘 and

the distribution changes at 𝑓𝜃+1, . . . to F𝑘+1, the corresponding
𝑝-values will not be i.i.d uniform in [0,1]. We will use this insight

in the sequel to anchor our approach.

4.1 Exchangeable Martingales
Let 𝑥1, 𝑥2, . . . be a sequence of random variables in 𝑅𝑑 . The joint

probability distribution of 𝑥1, . . . 𝑥𝑁 for a finite𝑁 is exchangeable

if it is invariant for any permutation of these random vectors.

Every exchangeable distribution is a mixture of i.i.d distributions

[69].

An exchangeability martingale is a sequence of non-negative

random variables S1,S2, . . . such that

E(S𝑛+1 |S𝑛, . . .S1) = S𝑛, 𝑛 = 1, 2, 3, . . . (3)

where E is the expectation with respect to any exchangeable

distribution. According to Vovk et. al [70] in this case:

P(∃𝑛 : S𝑛 > 𝑐) ≤ 1

𝑐
, 𝑐 ∈ R and 𝑐 ≥ 1 (4)

for any exchangeable distribution. Equation 4 provides a way to

test for i.i.d (equivalently exchangeability). If the final value ofS𝑛
is large, we can reject the i.i.d (or exchangeability) assumption

with the corresponding probability. We will use this observation

with 𝑝-values.

Given a sequence of 𝑝-values, consider the martingale:

S𝑛 =

𝑛∏
𝑖=1

𝑔𝑖 (𝑝𝑖 ), 𝑛 = 1, 2, . . . (5)

where each 𝑔𝑖 (𝑝𝑖 ) = 𝑔𝑖 (𝑝𝑖 |𝑝1, . . . , 𝑝𝑖−1) is a function (also called

betting function [69]) satisfying

∫
1

0
𝑔𝑖 (𝑝)𝑑𝑝 = 1. The intuition

behind a betting function is that for small 𝑝-values, namely when

the corresponding new observation is not strange compared

to the existing values, we want the 𝑔𝑖 to return a small value.

For larger values of 𝑝𝑖 however, which signifies that the new

observation is strange compared to the existing values, we like

to penalize it for having the corresponding 𝑔𝑖 return high values

and consequently detect that the 𝑝 values are not uniformly

distributed. We can verify the martingale property under an

exchangeable distribution:

E(S𝑛+1 |S𝑛, . . .S1) =
∫

1

0

(
𝑛∏
𝑖=1

𝑔𝑖 (𝑝𝑖 ))𝑔𝑛+1 (𝑝)𝑑𝑝 =

(
𝑛∏
𝑖=1

𝑔𝑖 (𝑝𝑖 ))
∫

1

0

𝑔𝑛+1 (𝑝)𝑑𝑝 =

𝑛∏
𝑖=1

𝑔𝑖 (𝑝𝑖 ) = S𝑛 (6)

There are multiple betting functions with desirable properties in

the literature [69] that can be adopted for this purpose.

4.2 Martingales for Drift Detection
In order to develop a workable solution using martingales for

drift detection we need to a) overcome the limitation that video

frames in a frame sequence are not independent as we expect

correlations from one frame to the next in a stream b) specify

efficient ways to compute 𝑝-values on video frames.

4.2.1 Independent Video Frames. A video frame sequence is

expected to exhibit correlations across frames. However, a funda-

mental requirement in computing 𝑝-values in a way to guaran-

tee their properties is that the observed values are independent

and identically distributed. In our setting, we assume that 𝑚

models have been provisioned and are available to process the

video stream. Thus, we also assume that along with each model

𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑚 we also have access to the associated training

data T𝑖 . We use each T𝑖 to construct a VAE 𝐴T𝑖 [35, 58]. The VAE
provides a way to sample in an i.i.d manner from the underlying

distribution of T𝑖 . Once 𝐴T𝑖 is constructed, we can generate any

number of samples from the distribution T𝑖 was generated from.

We will use ΣT𝑖 to designate the set of samples generated from

T𝑖 using 𝐴T𝑖 .

4.2.2 Variational Autoencoder (VAE). To generate i.i.d samples

ΣT𝑖 , we construct a VAE. The VAE does not require re-training

once it is trained for some distribution 𝑖 . Although we train the

VAE on the input frames which exhibit correlations, in practise

this does not affect our results. More elaborate VAE models that

take correlations into account are available if desired [66]. We

present its architecture in Figure 2. The encoder consists of 3

convolutional layers and 2 fully connected (FC) layers to optimize

frame processing time. Extensive experimentation has revealed

that this architecture is sufficient for generating latent represen-

tations that capture essential information from the input frames.

Both FC layers take as input the output of the convolutional lay-

ers. One FC layer computes the standard deviation vector, while

the other estimates the mean vector. The mean and standard de-

viation are learned during the training of the VAE on the training

data T𝑖 . At the end of the encoder stage, we randomly sample the
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Figure 2: Autoencoder Architecture

Normal distribution using the learned mean and standard devia-

tion to obtain i.i.d samples to form ΣT𝑖 . The decoder consists of a
single FC layer that takes the computed latent representation of

the input frame as input, followed by 3 convolutional layers. The

convolutional layers are responsible for reconstructing the input

frame. To optimize the VAE, we employ a loss function that con-

sists of two parts; the reconstruction error which maximizes the

similarity of the reconstructed image, and the KL divergence to

avoid overfitting. For the reconstruction error, we use the binary

cross-entropy loss function which estimates the pixel-to-pixel

difference between the input and the output.

4.2.3 Computing 𝑝-values. For a specific ΣT𝑖 , upon a new

observation 𝑓 we compute 𝛼 𝑓 = 𝐶 (𝑓 , ΣT𝑖 ). The 𝑎𝑖 value for each
element of ΣT𝑖 is precomputed as all elements are available in

advance. In terms of non-conformity measure, any score that

measures the distance between two images [46] can be used to

compute the non-conformity score of an incoming frame. We

adopt the average Euclidean distance between 𝑓 and elements

of ΣT𝑖 . That way, each 𝑝-value for every incoming frame 𝑓 is

computed incrementally using equations 1,2 requiring only the

computation of the value 𝛼 𝑓 .

A potential drawback of using martingales of 𝑝-values in equa-

tion 5 in practice is that when the 𝑝-values are indeed i.i.d, the

corresponding martingale being a product of betting functions

will assume very small values. Thus when observations with

larger 𝑝-values appear, signifying non i.i.d observations, the prod-

uct may take time to increase in order to detect the drift at the

suitable significance level (as per equation 4).

4.2.4 Constructing a custom betting function. To address this

issue, we design a betting function to accelerate the drift detection

[69]. Specifically, we take the logarithm on both sides of equation

5:

log(S𝑛) =
𝑛∑︁
𝑖=1

log(𝑔𝑖 (𝑝𝑖 )), 𝑛 = 1, 2, 3 . . . (7)

We would like log(S𝑛)∞𝑛=1 to be a martingale sequence:∫
1

0

log(𝑔𝑖 (𝑝))𝑑𝑝 = 0, 𝑖 = 1, 2, 3, . . . (8)

It is easy to see that if we adopt the betting function properties in

the case of multiplicative martingales (as in equation 5) namely∫
1

0
𝑔𝑖 (𝑝)𝑑𝑝 = 1, since the log() function is concave:∫

1

0

log(𝑔𝑖 (𝑝))𝑑𝑝 ≤ 𝑙𝑜𝑔
∫

1

0

𝑔𝑖 (𝑝)𝑑𝑝 = 1 ≠ 0 (9)

which does not imply the desired equation 8. To resolve this issue

and obtain a valid martingale, we enforce the betting functions

to integrate to zero. Thus:

S𝑛 =

𝑛∑︁
𝑖=1

𝑔𝑖 (𝑝𝑖 ) 𝑤𝑖𝑡ℎ
∫

1

0

𝑔𝑖 (𝑝)𝑑𝑝 = 0 (10)

In this case, we have:

E(S𝑛+1 |S𝑛, . . .S1) =
∫

1

0

(
𝑛∑︁
𝑖=1

𝑔𝑖 (𝑝𝑖 ) + 𝑔𝑛+1 (𝑝𝑛+1))𝑑𝑝𝑛+1 =

𝑛∑︁
𝑖=1

𝑔𝑖 (𝑝𝑖 ) +
∫

1

0

𝑔𝑛+1 (𝑝)𝑑𝑝 = S𝑛 (11)

thus we get a valid martingale in the additive case as well. In

terms of betting functions that satisfy this property, one has

numerous choices. For example an odd function 𝑓 (𝑝): [-1/2,1/2]
→ R satisfies:∫

1/2

−1/2
𝑓 (𝑝)𝑑𝑝 = 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

∫
1

0

𝑓 (𝑝 − 1/2)𝑑𝑝 = 0 (12)

Thus, 𝑔(𝑝) = 𝑓 (𝑝 − 1/2) is a valid betting function for any odd

𝑓 (𝑝) (for example, 𝑓 (𝑝) = −𝑝).

4.2.5 Testing for Drift Detection. Having designed proper ad-

ditive martingales, we will create a statistical test that allows

us with a certain probability to declare the drift, by monitoring

the values of the martingale. The idea is that when the 𝑝-values

are small and no drift exists, the values of the martingale will be

bounded in a certain region with a high probability. Once the

values exit this region a drift has occurred.

From the Hoeffding-Azuma [28] inequality, we know that for

i.i.d random variables 𝑦1, . . . 𝑦𝑙 with 𝑎𝑖 ≤ 𝑌𝑖 ≤ 𝑏𝑖 , for any 𝑡 ≥ 0,

𝑃 ( |
𝑙∑︁
𝑖=1

𝑌𝑖 | ≥ 𝑡) ≤ 2𝑒𝑥𝑝 (− 𝑡2∑𝑙
𝑖=1 (𝑏𝑖 − 𝑎𝑖 )2

) (13)

In the additive martingale case, when the betting function is a

shifted odd function with |𝑞(𝑝) | ≤ 1, equation 13 becomes:

𝑃 ( |S𝑙 | ≥ 𝑡) ≤ 2𝑒𝑥𝑝 (− 𝑡
2

2𝑙
) (14)

where S𝑙 = 𝑔(𝑝1) + . . . 𝑔(𝑝𝑙 ). This can readily be used to design

a statistical test for the drift. More specifically for a significance

level r when |S𝑙 | >
√︃
2𝑙 ( 2r ) we can reject the hypothesis that

𝑝-values follow a uniform distribution in [0,1] and declare a drift.

To make this test even more efficient, we can impose window

semantics. More specifically for a window of observations𝑊 , at

significance level r a drift is declared when:

|S𝑙 − S𝑙−𝑊 | >
√︂
2𝑊 ( 2

r
) (15)

In the observation window𝑊 , we assess the rate of change of

the martingale score, not drift occurrences within𝑊 .

4.3 Drift Inspector Algorithm
We present theDrift Inspector algorithm. The algorithm accepts as

input 𝑓 which is a new frame observation taken from the video

stream at time 𝑡 , an iterator 𝑖𝑡𝑒𝑟 , ΣT𝑖 that represents samples

taken from the variational autoencoder trained on training data

T𝑖 corresponding to model𝑀𝑖 1 ≤ 𝑖 ≤ 𝑚. 𝐴𝑖 is a list containing

the pre-computed non-conformity score of each element in ΣT𝑖 .
S is a list that contains the conformal martingale scores of the

past𝑊 −1 observations, where 𝑆 [0] = 0.𝑊 and r are parameters

as per Section 4.2.𝐾 is the number of nearest neighbors we use to

measure the non-conformity score. Finally, the algorithm outputs

the updated list 𝑆 and variable 𝑑𝑟𝑖 𝑓 𝑡 determining if a drift has

occurred while processing frames coming from a video stream.

The algorithm is capable of detecting a drift when the distribution
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Table 2: Train data

ΣT𝑖 [[2, 3], [3, 1], [-1, 0], [4,4], [2,2]]

𝐴𝑖 [1.8, 2.3, 4, 2.71, 1.72]

of the incoming frames is sufficiently different than the known

distribution.

The variable 𝑠𝑐𝑜𝑟𝑒 is initialized in line 2, which is used to

measure the p-value score of the input observation. In line 3,

we calculate the non-conformity score of frame 𝑓 identifying

the 𝐾 closest observations between 𝑓 and ΣT𝑖 . In lines 4 to 8 we

iterate through 𝐴𝑖 to access the non-conformity score of each

element in ΣT𝑖 . We increase the variable 𝑠𝑐𝑜𝑟𝑒 by one when the

non-conformity score of an element in ΣT𝑖 is higher than 𝑎𝑓 .
When the two non-conformity scores are equal, a random value,

which ranges from 0 to 1, increases the 𝑠𝑐𝑜𝑟𝑒 variable. In line

10, we insert the score for the conformal martingale for frame

𝑓 in 𝑆 , utilizing the betting function 𝑔(𝑝) on p-value 𝑝 as per

Section 4.2. Finally, the list 𝑆 (the conformal martingale score of

the past𝑊 − 1 observations) and the 𝑑𝑟𝑖 𝑓 𝑡 (a boolean value that

determines if a data drift is detected) are returned by the Drift
Inspector algorithm.

Algorithm 1 Drift Inspector algorithm

1 def DI
(
iter, f, ΣT𝑖 , 𝐴𝑖, S, W, r, K

)
:

2 score = 0
3 𝑎𝑓 = C(f, ΣT𝑖 , K)
4 for j in range(0, len(𝐴𝑖)):
5 if 𝐴𝑖 [ 𝑗] > 𝑎𝑓 :
6 score += 1
7 elif 𝐴𝑖 [ 𝑗] == 𝑎𝑓 :
8 score += random(0,1)
9 𝑝 = score/len(𝐴𝑖)
10 S.append(max(0, S[-1] + 𝑙𝑜𝑔(𝑔(p))))
11 drift = False
12 window = iter if W > iter else W

13 if |S[𝑖𝑡𝑒𝑟 ] − S[𝑖𝑡𝑒𝑟 −𝑤𝑖𝑛𝑑𝑜𝑤] | >
√︃
2𝑊 ( 2𝑟 ):

14 drift = True
15 return S, drift

4.3.1 Example. In Table 2, we show 5 samples from the train-

ing data ΣT𝑖 , and we measure their non-conformity score in 𝐴𝑖 .

The two lists are provided as input in every invocation of Al-

gorithm 1. Table 3 contains 4 input observations captured from

an unknown distribution, and provided to the algorithm one at

a time. The values of the rest of the input parameters are W=2,

r=0.5, and k=3. Table 4 presents the variable values of algorithm

DI. Column 𝑎𝑓 shows the non-conformity score and 𝑝 shows the

p-value scores of each observation 𝑓 . Finally, under S[𝑖𝑡𝑒𝑟 ], we
observe the martingale score of a frame, while column 𝑑𝑟𝑖 𝑓 𝑡 de-

termines if a drift has occurred. We only include two-dimensional

feature matrices for simplicity.

In Table 2 the elements in ΣT𝑖 , have similar non-conformity

scores 𝐴𝑖 since all come from the same distribution. The frames

under column 𝑓 come from the same distribution but differ from

those of ΣT𝑖 . In Algorithm 1, line 3, we measure the distance of

an observation 𝑓 from its 𝐾 nearest neighbors in the ΣT𝑖 . Since
the 𝑓 and the elements of ΣT𝑖 are from different distributions, we

expect a high non-conformity score 𝑎𝑓 . In lines 4-8, we compare

Table 3: Input frames

iter f

1 [8, 6]

2 [9, 8]

3 [10, 7]

4 [6, 7]

Table 4: DI variables & outputs

iter 𝑎𝑓 𝑝 S[𝑖𝑡𝑒𝑟 ] drift

1 6.1 0 1.5 False

2 7.6 0 2.5 False

3 8.3 0 5.4 False

4 5.2 0 8.5 True

the non-conformity scores of the elements of𝐴𝑖 and𝑎𝑓 to identify

cases where the score of an element of ΣT𝑖 is higher than 𝑎𝑓 .
As we observe in Table 4, none of the frames has a non-

conformity score 𝑎𝑓 lower than any element of 𝐴𝑖 list (Table

2). Thus, all frames 𝑓 attain a p-value score of 0 (line 9). In line

10, we measure the conformal martingale score of each observa-

tion, while S[0]=0. Since the p-values of the frames are zero, the

conformal martingale score increases after each iteration. Given

a window of observations W=2 and a significance level r = 0.5,
the right part of the inequality becomes 4. We observe that, when

iter=4, we declare drift since 𝑆 [4] − 𝑆 [4 − 2] = 6.5 > 4.

5 MODEL SELECTOR
Upon detecting a drift, we would like to continue processing the

incoming data by selecting a suitable model, among a collection

of 𝑚 available pre-trained models. If we determine that none

of the available models is suitable we would like to alert that a

new model needs to be constructed to process the incoming data

which represents a totally new distribution we never experienced

before.

In this section, we will propose two approaches for model

selection. The first approach called Model Selector Based on Input
(MSBI) aims to identify a suitable model by comparing new data

(arriving after the drift is detected) with the i.i.d sample of the

training data ΣT𝑖 we have in our disposal for each model𝑀𝑖 , 1 ≤
𝑖 ≤ 𝑚. The main idea is to use the proposed Drift Inspector (𝐷𝐼 )

algorithm to test at the same significance level whether the new

data are sufficiently different from each of the ΣT𝑖 , 1 ≤ 𝑖 ≤ 𝑚.

The second approach Model Selector Based on Output (MSBO)

uses suitable pre-processed versions of all existing models 𝑀𝑖
and observes their output, on the new data. It uses the output to

reason about how confident each model is to classify its input.

5.1 The MSBI Algorithm
The MSBI algorithm utilizes the DI algorithm for all available

models𝑀𝑖 . It is depicted as algorithm 2. Given a sequence of𝑊𝑁

of frames coming after the drift, MSBI uses 𝐷𝐼 for each ΣT𝑖 at
a specified significance level 𝑟 . If the new data are sufficiently

different from all i.i.d samples existing models are trained on, we

are confident that the new data come from a previously unseen

distribution and a new model should be constructed. On the

contrary, if the hypothesis cannot be rejected for a distribution 𝑖 ,

we adopt model𝑀𝑖 to process the new data. If multiple models are

suitable, we break ties arbitrarily or progressively by increasing
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the significance level and repeating the test until only a model

remains.

5.1.1 MSBI algorithm. We present the MSBI algorithm which

selects a new model to process frames appearing after the drift,

from a collection of models. First, the algorithm’s input includes

the window𝑊𝑁 with the collected video frames, and𝑀 which

depicts the available models we utilize to select a model to process

the video stream after the data drift.𝑊 and r are parameters as

per Section 4.2 and 𝐾 includes the number of nearest neighbors

we use to measure the non-conformity score.

Algorithm 2MSBI algorithm

1 def MSBI
(
𝑊𝑁 , 𝑀, W, r, K

)
:

2 driftModel = dict()
3 for ΣT𝑖 , 𝐴𝑖, 𝑀𝑖 in 𝑀:
4 S = list()
5 for iter, f in enumerate(𝑊𝑁 ):
6 s, drift = DI

(
iter, f, ΣT𝑖 , 𝐴𝑖, S, W, a, K

)
7 S.append(s)
8 driftModel[𝑀𝑖] = drift
9 if all(driftModel.values()):
10 trainNewModel()
11 𝑀 = driftModel.values().index(False)
12 if len(𝑀) == 1:
13 return 𝑀

14 MSBI
(
𝑊𝑁 , 𝑀, W, r+0.1, K

)
In line 2, we initialize the variable 𝑑𝑟𝑖 𝑓 𝑡𝑀𝑜𝑑𝑒𝑙 , which is a

dictionary that stores a boolean value that determines if drift

occurred during the processing of the frames𝑊𝑁 for each model.

In line 3, we iterate through all available models 𝑀 , accessing

ΣT𝑖 , the 𝐴𝑖 which is a list containing the pre-computed non-

conformity score of each element in ΣT𝑖 and the model𝑀𝑖 . Next,

we initialize the list 𝑆 which stores the conformal martingale

score of the𝑊 most recent frames. In line 5, we use the𝑊𝑁

frames as input to trigger the DI algorithm. Algorithm DI returns

the conformal martingale score as well as the variable 𝑑𝑟𝑖 𝑓 𝑡

which determines if a drift occurred. In line 8, we assign a boolean

value for each model𝑀𝑖 , to determine if a drift occurred while

using this model. After processing the frames for all models, in

lines 9-10, we determine if a drift is detected for all the models

in𝑀 . In this case, we construct a new model trained on the new

data distribution. Alternatively, we determine the model with the

value False, and we select it to process the video frames. When

more than one model is assigned the value False, we trigger the

MSBI algorithm. The MSBI algorithm takes as input a new set of

models while the significance level r is increased.

5.2 The MSBO Algorithm
The MSBO algorithm adopts an approach complementary to

that of MSBI. Instead of examining how similar the new data

𝑊𝑁 are with the data utilized to train our models, it utilizes the

model predictions to base its decision. Simply observing the score

distribution of each model𝑀𝑖 on the data in𝑊𝑁 and computing

various statistical moments [55] to conduct a comparison is not

a viable approach. The reason is that it is well-known [22, 26, 41]

that deep models appear overconfident (yield high sigmoid scores

in their output) for out of distribution samples [26] which is

exactly the scenario we wish to capture.

5.2.1 Proper scoring rules. We seek to preprocess the training

data T𝑖 each model𝑀𝑖 has been trained on, to be able to derive a

measure of confidence of a model on its predictions. The basis of

our approach is to train networks using proper scoring rules [21]

for measuring the predictive uncertainty of eachmodel. A scoring

rule assigns a numerical score to a predictive distribution 𝑝𝜃 (𝑦 |𝑥),
rewarding better predictions over worse. We focus on rules that a

higher numerical score is better. Let 𝐹 (𝑝𝜃 , (𝑦, 𝑥)) be a scoring rule
that evaluates the quality of 𝑝𝜃 (𝑦 |𝑥) compared to 𝑦 |𝑥 ∼ 𝑞(𝑦, 𝑥),
where𝑞 is the true distribution of (𝑦, 𝑥). The expected scoring rule
is then 𝐹 (𝑝𝜃 , 𝑞) =

∫
𝑞(𝑦, 𝑥)𝐹 (𝑝𝜃 , (𝑦, 𝑥))𝑑𝑦𝑑𝑥 . A proper scoring

rule is one where 𝐹 (𝑝𝜃 , 𝑞) ≤ 𝐹 (𝑞, 𝑞) with equality if and only if

𝑝𝜃 (𝑦 |𝑥) = 𝑞(𝑦 |𝑥), for all 𝑝𝜃 and 𝑞. The function 𝐹 (𝑝𝜃 , 𝑞(𝑦, 𝑥)) =
− log𝑝𝜃 (𝑦 |𝑥), which when maximized with fixed parameter 𝑦

is the negative log-likelihood loss function that deep networks

are typically trained on, is a proper scoring rule. In the case

of multi-class K-way classification, the popular softmax cross

entropy loss is equivalent to the log-likelihood and is a proper

scoring rule. Also
1

𝐾

∑𝐾
𝑖=1 (𝛿𝑖=𝑦 − 𝑝𝜃 (𝑦 = 𝑖 |𝑥))2 which is known

as the Brier score [8], minimizing the squared error between

the predictive probability of a label and the one-hot encoding of

the correct label, is a proper scoring rule as well. A Brier score

of zero indicates that the network has complete certainty in its

predictive probability; the higher the score is the more uncertain

the predictions are.

5.2.2 Model uncertainty estimation. Our goal is to derive an

estimate of the predictive uncertainty of each model of new in-

put. We will estimate it using a bootstrap approach (the members

of the ensemble model are trained on different samples of the

original train set) [17]. We build an ensemble of 𝐿 models (typical

values of L are between 3 and 10 [40]) for each𝑀𝑖 using the train-

ing data T𝑖 [27]. The ensemble model does not require re-training,

once it is trained for a distribution 𝑖 . Each ensemble model𝑀𝑖,𝑙 ,

1 ≤ 𝑙 ≤ 𝐿 and each model is trained end to end minimizing the

softmax cross-entropy loss, over a randomized shuffle of the en-

tire T𝑖 . It has been previously observed [40] that using the entire

training data for ensembles of deep networks provides greater

accuracy, than following typical bagging techniques [7] as in the

case of more traditional (non-deep) models. The parameters 𝜃𝑖,𝑙
for each ensemble model𝑀𝑖,𝑙 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝐿 are initialized

randomly.

We treat the ensemble as a uniformly-weighted mixture model.

Thus, we essentially estimate the predictive uncertainty of the

corresponding model using a bootstrap approach [17]. For the

ensemble corresponding to model𝑀𝑖 we combine the predictions

as 𝑝𝜃𝑖 (𝑦 |𝑥) =
1

𝐿

∑𝐿
𝑖=1 𝑝𝜃𝑖,𝑙 (𝑦 |𝑥, 𝜃𝑖,𝑙 ), where 𝑝𝜃𝑖,𝑙 is the prediction

of𝑀𝑖,𝑙 (the 𝑙-th ensemble model of𝑀𝑖 ). If desired, we can obtain

confidence intervals for the predictive uncertainty of the model

using the bootstrap as well [17] at the desired confidence level.

Upon drift detection, we accumulate a window𝑊𝑇 of frames,

past the point of drift, to evaluate the predictive uncertainty

utilizing the ensemble model of each 𝑀𝑖 . We compute the av-

erage value of 𝑝𝜃𝑖 (𝑦 |𝑥),∀𝑥 ∈𝑊𝑇 which quantifies the average

predictive uncertainty of model𝑀𝑖 on the new input. We use the

Brier score to estimate the predictive uncertainty of each model

𝑀𝑖 . Alternatively, we could estimate the uncertainty using the

log-likelihood. However, the models are trained by minimizing

the cross-entropy loss, which is equivalent to the log-likelihood.

Hence, we use the Brier score for an unbiased estimation of the

uncertainty. We return the model 𝑖 with the lowest predictive

uncertainty which is below a threshold ℎ. If no such model exists
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this signifies that the input is sufficiently different from what we

have encountered before and we build a new model.

To calibrate the threshold ℎ we use the existing models and

their associated training data T𝑖 to establish a baseline for uncer-

tainty ℎ. Let 𝑆T𝑖 represent a random sample of T𝑖 of fixed size.

We utilize 𝑆T𝑖 to obtain the predictive uncertainty 𝑝𝑐𝑖
𝑗
using the

ensembles for all 𝑗 ≠ 𝑖, 1 ≤ 𝑗 ≤ 𝑚. We then compute 𝑝𝑐𝑖𝑎𝑣𝑔 which

is the average uncertainty for predicting 𝑆T𝑖 using the ensembles

for models𝑀𝑗≠𝑖 . We setℎ one standard deviation below the mean

of 𝑝𝑐𝑖𝑎𝑣𝑔, 1 ≤ 𝐼 ≤ 𝑚. Arguably ℎ establishes a baseline for the

predictive certainty to infer a model’s suitability to process the

new data.

5.2.3 MSBO algorithm. We present Algorithm 3, which se-

lects a suitable model to process frames appearing after a data

drift. The algorithm accepts as input the𝑊𝑇 which is the window

of the collected video frames and the available models𝑀 that we

utilize to select a model to process the video stream after the data

drift. 𝑝𝑐𝑎𝑣𝑔 is a dictionary containing the average uncertainty of

all the models𝑀 , 𝜎 is the standard deviation and 𝐿 is the number

of models that each ensemble model𝑀𝑖,𝑙 consists of.

Algorithm 3MSBO algorithm

1 def MSBO
(
𝑊𝑇 , M, 𝑝𝑐𝑎𝑣𝑔, 𝜎, L

)
:

2 brier = dict()
3 for i in range(1, len(M)):
4 brierScore = 0
5 for frame, label in 𝑊𝑇 :
6 vote = 0
7 for l in range(1, L):
8 prediction = 𝑀𝑖,𝑙(frame)
9 vote += prediction
10 totalVote = vote/L
11 brierScore += (totalVote - label)^2
12 brier[model] = brierScore/len(frames)
13 best = min(brier)
14 k = best.keys()
15 if best.values() <= 𝑝𝑐𝑎𝑣𝑔 [𝑘] − 𝜎[k]:
16 return k
17 trainNewModel()

In line 2, we initialize the variable 𝑏𝑟𝑖𝑒𝑟 , which is a dictionary

that stores the Brier score of eachmodel. Next, in line 3, we iterate

through all the available models𝑀 , and for each model we are

accessing the selected frames and their associated ground truth,

to identify a model to process the video stream after the data

drift. In lines 8 and 9, we evaluate a frame using a single model

𝑀𝑖 for 𝐿 times, since we have trained each model 𝐿 times, and

we average each network’s output to make a final prediction for

the frame, in line 11. Then, we calculate the Brier score using the

ensemble’s prediction of a frame and its associated label. Finally,

when we have processed all the frames for a single model we add

the model’s average Brier score in the 𝑏𝑟𝑖𝑒𝑟 dictionary. We follow

the same process for all the models 𝑀 . In line 14, we find the

model with the lowest predictive uncertainty, by selecting the

one with the lowest Brier score. In lines 15 to 17, we determine if

the uncertainty of the model is below the 𝑝𝑐𝑎𝑣𝑔 [𝑘] which is the

average uncertainty of the selected model𝑀𝑘 , 1 ≤ 𝑘 ≤ 𝑚. If the

score of the model is below the threshold, the model is deployed,

otherwise, we trigger the module that is responsible for training

a new model.

5.3 MSBO-MSBI Trade-off
Algorithms MSBO and MSBI achieve the same model selection

accuracy, with MSBO being 4 times faster than MSBI, making

it the preferred choice for model selection. However, MSBO re-

quires training an ensemble model for each distribution found in

the stream, along with annotations generated by Mask R-CNN

for the training samples. In contrast, MSBI is fully unsupervised,

only requiring the invocation of the variational autoencoder and

the estimation of the conformal martingale score, which do not

require labeled samples. While annotations generated by Mask

R-CNN are suitable for some applications (e.g., traffic monitor-

ing), MSBI is preferred to MSBO when obtaining high-fidelity

annotations for incoming frames is impossible (e.g., autonomous

driving guidance).

5.4 Model Training
In previous sections, we presented two algorithms for selecting

a model, from a pool of available models, to process incoming

frames following a drift. When Algorithms MSBI and MSBO in-

voke the 𝑡𝑟𝑎𝑖𝑛𝑁𝑒𝑤𝑀𝑜𝑑𝑒𝑙 (), signifying that a novel distribution
has caused the drift, a new model is constructed. In this sce-

nario, we first collect a sufficient number of frames following the

drift (typically 5K frames, which amounts to 3 minutes worth of

video at 30 fps) and annotate them using Mask R-CNN [25]. We

then proceed by training all necessary models required for sup-

porting drift detection and recovery as well as query processing.

Specifically, we train a VAE for Algorithms DI and MSBI, and

classification models (according to the user-defined queries) for

query processing and Algorithm MSBO. When no models are

provided, we immediately collect the incoming frames and train

the necessary models as explained above.

6 EXPERIMENTAL EVALUATION
In this Section, we present the results of a thorough experimen-

tal evaluation of our proposals. We use 3 different real datasets

namely, Berkeley Deep Drive (BDD) [78], Detrac [72] and

Tokyo [4]. The Tokyo dataset is created from 3 different video

streams on the same road intersection in Tokyo. BDD is a road-

driving dataset that consists of 100,000 frames captured under

various conditions, namely, different time of the day (day and

night), and different weather conditions (rain, snow, etc) from

dashboard cameras.Detrac is a traffic dataset that consists of 100

distinct fixed-angle video sequences captured at different loca-

tions in China. Initially, the BDD dataset (1280x720) had different

image dimensions than Detrac and Tokyo datasets (960x540).

We pre-processed the BDD dataset to match the image dimension

of Detrac and Tokyo. In Table 5, we present a description and key

parameters of each dataset. We use Mask R-CNN [25] to annotate

the datasets. The datasets contain inherent data drifts. BDD pro-

vides labels to separate frames under different conditions (night,

rain etc). For the Detrac and Tokyo datasets, we identify drifts by

splitting the frames according to the camera angles they belong

to. In the BDD dataset 4 drifts occur (switching to Night, Rain,

Snow, and Day sequences), in Tokyo there are 3 drifts (switching

to Angle 1, Angle 2, Angle 3), while the Detrac dataset contains

5 drifts (switching to Angle 1, Angle 2, . . . , Angle 5).

We use Python 3.8 and the PyTorch framework [54] to im-

plement our proposals on an HP workstation using 2 Nvidia

Titan XP GPUs. We use 5K frames (i.e. 3 minutes worth of video

frames at 30 fps) to train a VAE for each distribution 𝑖 , for all

datasets. We use horizontal flipping and random cropping [61]
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Table 5: Datasets and their characteristics

Dataset #Sequences Stream Size Obj/Frame std

BDD 4 80,000 9.2 6.4

Detrac 5 30,000 17.2 7.1

Tokyo 3 45,000 19.2 4.7

to increase the training size to 20k frames. We train our models

with a batch size of 16 images per GPU using the Adam opti-

mizer. The VAE employs binary cross-entropy, while the image

classifiers use negative log-likelihood loss. For algorithms, Drift

Inspector (DI) and Model Selection Based on Input (MSBI), the

only component that requires training is the VAE. The VAE is

trained once when a new distribution is detected. The training of

the VAE takes approximately 1 hour. For Model Selection Based

on Output (MSBO), we train an ensemble of L models once a new

distribution is discovered. The training takes 5 hours on a single

GPU. We use Mask R-CNN to annotate the training samples since

the ensemble model consists of image classifiers. Mask R-CNN

takes approximately 30 minutes to generate labels on a single

GPU. In the following Sections, we present a series of experi-

ments to quantify the performance of the DI, MSBO, and MSBI

algorithms and compare them against ODIN [64]. Additionally,

we evaluate the end-to-end performance of our system against

ODIN as well as two state-of-the-art object detectors; YOLOv7

[46] and Mask R-CNN [25].

We briefly review ODIN below; full details are available else-

where [64]. While processing a video stream, ODIN-Detect main-

tains a collection of clusters, each encompassing a collection of

frames. Additionally, each cluster maintains an upper and a lower

distance from the centroid, defining a density band. A band en-

closes a fraction Δ = 0.5 [65] of the frames in the cluster. When

a frame is assigned to a cluster, ODIN-Detect measures the dis-

tance between the frame and the centroid. When it falls between

the upper/lower boundaries, the frame is also assigned to the

cluster density band, and the boundaries are updated. If a frame

cannot be assigned to an existing cluster, ODIN-Detect creates

a temporary cluster for the frame. When the KL divergence of

the temporary cluster, before and after adding a frame, is close to

zero (specifically 0.007 [65]), the cluster becomes permanent and

the ODIN-Specialize trains a model for this cluster. As frames ar-

rive, ODIN assigns new observations, to one or more permanent

clusters based on the frame distance from the cluster centroid. If

the frame falls to a single cluster, the model associated with the

cluster is used. Alternatively, ODIN creates an ensemble using

the models of each cluster, assigning equal weight to all partici-

pating models. We use the implementation of ODIN as available

online [65] in our evaluation.

6.1 Data Drift Detection Evaluation
In this Section, we present the evaluation of theDrift Inspector (DI)
algorithm of Section 4 and compare it to ODIN-Detect. Note that

AlgorithmDI proclaims a drift when the distribution of the stream

changes to either a known distribution (one for which we have

already available models at hand) or an unknown distribution

(one that we have not encountered before and for which no

model is available). Conversely, ODIN-Detect declares a drift

only when a novel distribution appears in the stream and follows

a different processing strategy when frames from a previously

seen distribution are encountered. Thus, we utilize video frame

Table 6: Drift detection time performance (in seconds)

Dataset Drift Inspector ODIN-Detect

BDD 293.4 636.2

Detrac 97.3 235.8

Tokyo 194.8 294

sequences of unknown distributions to compare all applicable

approaches. In the following experiments, we assess the precise

frame that each algorithm declares a drift, compared to ground

truth as well as the overall time required by each algorithm to

detect the drift. Figure 3 presents the precise frame in which

DI and ODIN-Detect declare the drift (ground truth drift takes

place at frame 0) for the BDD, Detrac, and Tokyo datasets. For

DI, we set W=3 and the significance level r = 0.5 as empirically

we determined that even a very small𝑊 is sufficient to attain

excellent accuracy. The algorithm demonstrates extremely low

dependency on the value of𝑊 . We set K=5, which determines the

number of nearest neighbors in the training set. The algorithm

performance shows nominal dependency on the value of 𝐾 , as

the training data originate from the same distribution, resulting

in similar distances to incoming frames. We optimize parameters

in ODIN-Detect to minimize both the processing time before

detecting a drift and the number of false positive drift detections.

6.1.1 Drift Detection performance. Figure 3(a) presents the
results for the BDD dataset. BDD contains sequences under dif-

ferent times of day and weather conditions. We observe that

algorithm DI processes consistently fewer frames than ODIN-

Detect before it declares a drift. On average, across the different

sequences of frames, DI declares drift after processing 28 frames,

versus 38 required by ODIN-Detect. Figures 3(b) and 3(c), present

the corresponding results on Detrac and Tokyo datasets, where

a drift occurs when the camera angle changes. The results are

consistent; on average, for Detrac and Tokyo, DI requires 29
frames in comparison to 36 frames of ODIN-Detect. While DI

outperforms ODIN-Detect in BDD and Detrac datasets, ODIN-

Detect is detecting a drift faster in Tokyo dataset, on Angle 2.

In the Tokyo dataset, Angles 1 and 3 share part of their field of

view, while Angle 2 does not. Since ODIN-Detect uses clustering

for detecting data drift, the clusters created for Angles 1 and 3

are much closer together compared to the cluster for Angle 2. As

such, ODIN-Detect detects drift faster in this case. The results

above confirm that DI is on par or slightly better than ODIN-

Detect in terms of how many frames need to be processed to

identify the drift. Its advantages are evident when the processing

time to detect the drift is considered.

6.1.2 Time performance. Table 6 presents the required time

to process incoming frames and detect a drift, for DI and ODIN-

Detect [64] on 3 datasets. As it is evident, the performance advan-

tages of DI are extremely large. We observe DI requires at least

50% less time than ODIN-Detect to process a video stream while

monitoring for potential data drifts. Specifically, ODIN-Detect

requires around 6 ms per frame to execute. The execution of

the VAE requires around 1 ms while the process to estimate the

centroid and the delta bands of the temporary cluster requires on

average 4 ms. Finally, ODIN-Detect measures the KL-divergence

between the state of the cluster before and after adding a new

frame to assess the data drift. In contrast, DI algorithm requires

around 3 ms per frame as well as 1 ms to process the frame using

the VAE.
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(a) BDD data set (b) Detrac data set (c) Tokyo data set

Figure 3: Data drift detection on BDD, Detrac, and Tokyo data sets

6.1.3 Slow Drift Setting. In this section, we compare the per-

formance of the DI algorithm against ODIN-Detect on a slow drift

setting, by gathering frames from a live camera in Tokyo for a

single day. Additionally, we captured frames from a previous day

to train two VAE; one for day frames and one for frames captured

during the night. We determine the point where the distribu-

tion is changing, based on the actual time of sunrise/sundown in

Tokyo for the specific date the video stream was captured. For

ODIN-Detect, we conducted extensive hyperparameter tuning

for this experiment.

Figure 4: Data drift detection on slow drift setting

Figure 4 demonstrates that DI detects a drift with 3 times fewer

processed frames than ODIN-Detect, on average, during a natu-

ral transition to a different distribution. ODIN-Detect employs

a clustering-based algorithm to determine whether a drift has

occurred. Frames captured post-drift remain visually similar to

those pre-drift. Thus, ODIN-Detect assigns them to the cluster

created for pre-drift frames. The time performance of DI and

ODIN-Detect matches the analysis in Table 6. Model selection

analysis is omitted, as it parallels the evaluation in Section 6.2.

6.2 Model Selection Evaluation
We present an evaluation of our model selection algorithms MSBI

and MSBO of Section 5 and compare them to ODIN-Select [64].

We use the BDD, Detrac, and Tokyo datasets as before. Fig-

ure 6 shows the results for all datasets. Figure 6(a) consists of

4 sequences, where each sequence contains 20K frames (corre-

sponding to different weather conditions), and Figure 6(b) and

Figure 6(c) contains 5 (6K frames per sequence) and 3 sequences

(15K frames per sequence), respectively, each captured by a dif-

ferent camera angle.

MSBO uses a window of frames𝑊𝑇 from the new distribution

to evaluate the predictive uncertainty of the models. We experi-

mentally determine that even a very small set of frames is enough

to attain superior accuracy for the algorithm; we use𝑊𝑇 =10 in

our experiments. MSBI uses𝑊𝑁 =10 frames to evaluate upon,

the window of observations𝑊 =3 for the martingales, the signifi-

cance level r=0.5. We set the number of nearest neighbors 𝐾=5,

to measure the non-conformity score of an input observation.

To compare the various approaches, we measure the model

invocations each algorithm incurs. Notice that for MBSO and

MBSI, only one model is selected to process frames coming after

a drift. ODIN-Select processes each new observation on demand

by assigning the observation to available clusters. As such, it can

assign a single model to process the frame, or an ensemble of

models if the frame has been assigned to more than one cluster.

In the 𝑁𝑖𝑔ℎ𝑡 sequence of the BDD dataset, ODIN-Select identifies

the night model for 96.3% of the frames while for the rest of the

frames generates an ensemble that consists of models 𝑁𝑖𝑔ℎ𝑡 and

𝐷𝑎𝑦 with equal weights [(𝑁𝑖𝑔ℎ𝑡 , 0.5), (𝐷𝑎𝑦, 0.5)]. As such, for

the remaining 3.7% of the frames, two models are used. When a

frame cannot be assigned to any of the permanent clusters, the

frame is added to a temporary cluster which may subsequently

become permanent [65].

6.2.1 Model Selection performance. As we observe in Figure

6, MSBO and MSBI outperform ODIN-Select in terms of the

actual number of model inferences required to process the stream.

ODIN-Select uses clusters to drive the model selection process,

driven by the proximity of incoming frames to cluster centroids.

When the input frame is substantially different from all clusters

except one (e.g., as in the case of𝐷𝑎𝑦/𝑁𝑖𝑔ℎ𝑡 clusters), the number

of models involved in processing a frame is comparable to that

of MSBO and MSBI. In contrast, when a frame is close to many

clusters substantially more models are used. For example, for

the 𝑅𝑎𝑖𝑛 sequence, ODIN-Select processes frames belonging to

the 𝑅𝑎𝑖𝑛 sequence using the 𝑁𝑖𝑔ℎ𝑡 model. Both MSBO and MSBI

process the video streamswith a single model inference per frame

as depicted in Figure 6.

6.2.2 Time performance. Table 8 presents a time performance

comparison betweenMSBO,MSBI, and ODIN-Select. Wemeasure

the time the algorithm requires to select a suitable model, from a

collection of available models, when a drift is detected. Specifi-

cally, we observe that MSBO and MSBI algorithms outperform

ODIN-Select by one order of magnitude for the time required to

select a new model. ODIN-Select assigns each incoming observa-

tion to a cluster based on the distance of the observation from

the cluster centroid.

For the Detrac dataset, ODIN-Select requires 17.8 ms per frame,

as we observe in Table 7. First, ODIN-Select considers all clusters,

and if a frame distance from the cluster centroid is within its
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Table 7: Per frame model selection time performance

Algorithms MSBO MSBI ODIN-Select

Time (ms) 830 640 17.8

Table 8: Model selection time performance (in seconds)

Dataset Availab. Models MSBO MSBI ODIN-Select

BDD 4 5.015 22.36 764.4

Detrac 5 8.34 19.57 446.8

Tokyo 3 4.63 13.44 656.1

delta band the model associated with the cluster is selected to

process the frame. This operation requires for each cluster 3.2

ms (including the delta band boundaries adjustment, the com-

putation of the frame’s distance from the cluster’s centroid, and

the frame assignment to one or more clusters). Since Detrac has

5 clusters, the total is 16 ms. An additional 1.8 ms is required

to process the frame using the VAE. MSBO requires 8.3 seconds

to select a suitable model after a drift on the Detrac dataset, by

inspecting only 10 frames, while MSBI requires 19.6 seconds, by

examining 30 frames. Thus, MSBO requires 830 ms per frame,

while MSBI requires 640 ms.

As observed, ODIN-Select outperformsMSBO andMSBI in per-

frame processing cost. However, ODIN-Select performs model

selection on each incoming frame, while MSBO and MSBI pro-

cess only a subset of frames before selecting a suitable model.

Our proposals result in one order of magnitude faster model

selection, compared to ODIN-Select for real video streams with

thousands of frames. To further showcase our proposals superi-

ority, we modified ODIN-Select to select a model within a frame

window, similar to MSBO and MSBI. The modified ODIN-Select

exhibits better model selection time performance than MSBO

and MSBI when compared in isolation. However, the modified

version significantly hurts the model invocations, end-to-end

time performance, and query accuracy.

6.2.3 Accuracy vs Brier Score. Since MSBO achieves better

model selection accuracy compared to ODIN-Select, we con-

ducted one more experiment to highlight the advantages of Brier

score versus classification accuracy. Due to space constraints, we

present the experiment for the BDD dataset. In this experiment,

we use the BDD dataset, thus, we trained 4 models for Night, Day,

Rain, and Snow sequences. In Figure 5, we depict the Brier score

and the image classification accuracy of each model for each se-

quence of the BDD dataset. For each sequence, we use the model

associated with the sequence, for example, the 𝑁𝑖𝑔ℎ𝑡 model is

deployed when we process the Night sequence. The left y-axis

depicts the accuracy while the right y-axis the Brier score. We

observe that the classification accuracy in all cases differs only by

10% from the model with the highest accuracy. Conversely, the

Brier score of the most accurate model is 2 times lower compared

to the rest of the models. Selecting a model based on accuracy

may lead to wrong selections due to potential classification noise

(differences in accuracy are marginally different). The Brier score

provides a better separation of the resulting values and yields

more robust decisions.

6.3 End-to-End Performance Evaluation
In this Section, we present the end-to-end performance evalua-

tion of our proposals. In particular, we benchmark the algorithms

Figure 5: Brier score/Accuracy comparison on BDD dataset

DI (drift detection) utilizing MSBO (DI, MSBO) and MSBI (DI,

MSBI) (model selection). For ODIN, we use ODIN-Detect (drift

detection), and ODIN-Select (model selection). We also compare

against two state-of-the-art object detection frameworks obliv-

ious to drift, namely, YOLOv7 [46] and Mask R-CNN [25]. We

perform experiments measuring the end-to-end time required

to detect a drift and select a model. To evaluate the practical

significance of a superior drift detection and model selection

framework, we measure the accuracy of count and spatial con-

strained queries over a video stream embodying diverse drifts.

The count query measures the number of cars appearing in the

video stream for each frame, while the spatial-constrained query

determines the position of cars and buses in the video stream. If

the drift detection andmodel selection framework do not perform

well, query accuracy will be compromised.

6.3.1 Count Query. For the count query, we use VGG-19 [62]
to train classifiers for all the datasets as per Table 8. For the

BDD dataset, we train 4 models, namely, 𝑁𝑖𝑔ℎ𝑡 , 𝐷𝑎𝑦, 𝑅𝑎𝑖𝑛, and

𝑆𝑛𝑜𝑤 , on data captured from the respective sequences (i.e. a

Night model is trained on frames captured during the night). We

follow the same approach for Detrac and Tokyo datasets. We

use the same classifiers for (DI, MSBO), (DI, MSBI), and (ODIN-

Detect, ODIN-Select). When a drift is declared, MSBI, MSBO,

and ODIN-Select, choose a model (or an ensemble of models for

ODIN-Select) to process frames after the drift. Then, the selected

models are deployed. For YOLOv7 and Mask R-CNN, we perform

object detections for all frames of the dataset. Finally, we use

Mask R-CNN to generate labels that consist of the number of

cars appearing in each frame.

Table 9 presents the end-to-end time performance of (DI,

MSBO), (DI, MSBI), and (ODIN-Detect, ODIN-Select); wemeasure

the time required to detect a drift and the time to select a suitable

model after the drift. In Table 9 we also present the time YOLOv7

and Mask R-CNN take to perform object detections on all frames

of the dataset. We observe that the time required by (DI, MSBO)

is much smaller than (ODIN-Detect, ODIN-Select) and slightly

faster than (DI, MSBI). (DI, MSBO) require 278.4 seconds to pro-

cess the entire BDD dataset, while (ODIN-Detect, ODIN-Select)

require 1400.6 seconds, 3 times more than (DI, MSBO). Similarly

(DI, MSBO) achieve the best time for Detrac and Tokyo datasets.

ODIN requires 4-6 times more time for the same task, similar to

YOLOv7, while Mask R-CNN is one order of magnitude slower

than our proposals.

Next, we investigate the query accuracy 𝐴𝑞 of count queries

on all datasets. The accuracy 𝐴𝑞 measures the fraction of the

frames where the classifier prediction matches the ground truth.

Specifically, we predict the number of cars appearing in a frame,

where the ground truth consists of the true number of cars in
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(a) BDD data set (b) Detrac data set (c) Tokyo data set

Figure 6: Model invocation per frame on BDD, Detrac, and Tokyo data sets

(a) BDD data set (b) Detrac data set (c) Tokyo data set

Figure 7: Count query accuracy on BDD, Detrac, and Tokyo data set

Figure 8: Spatial constrained query accuracy on BDD
dataset

each frame. Figure 7 presents 𝐴𝑞 on all datasets. We observe that

(DI, MSBO), and (DI, MSBI) outperform (ODIN-Detect, ODIN-

Select) by 40% on query accuracy in all cases, and 50% compared

to YOLOv7. Mask R-CNN achieves perfect accuracy because it

was used as the baseline to annotate the datasets. The superior

model selection capabilities of Algorithm MSBO lead to higher

𝐴𝑞 compared to ODIN since MSBO always deploys the most

accurate model to process incoming frames.

6.3.2 Spatial Constrained Query. For the spatial constrained
query, we use the OD-CLF filter [37], to train models for all

datasets as per Table 8. We follow the same approach as with the

count query. The same models are used to evaluate (DI, MSBO),

(DI, MSBI), and (ODIN-Detect, ODIN-Select). The time perfor-

mance of this query is the same as for the count query (Table 9).

We use Mask R-CNN to extract the positions of cars and buses

appearing in the video frames. Query accuracy 𝐴𝑞 measures the

fraction of frames where the OD-CLF filter prediction matches

the ground truth. The query predicate is formed as "bus is on the

left side of a car", while the ground truth consists of frames that

Table 9: End-to-end performance results (in seconds)

Dataset (DI, MSBO) (DI, MSBI)

(ODIN-Detect,

ODIN-Select)

YOLO Mask RCNN

BDD 278.4 295.8 1400.6 1231 10680

Detrac 105.6 116.8 682.6 462 4005

Tokyo 169.2 178 950.1 692 6007.5

match the condition. Due to space constraints, we only show the

results of the BDD dataset, in Figure 8. The results are consistent

with the count query; (DI, MSBO) outperforms (ODIN-Detect,

ODIN-Select) in all sequences by achieving 20% higher 𝐴𝑞 , while

it is 3 times faster.

7 CONCLUSIONS
We considered the problem of detecting and mitigating data

drifts occurring during the processing of real video streams. We

presented the Drift Inspector along with MSBO and MSBI algo-

rithms and demonstrated that together constitute a robust set

of approaches for dealing with data drift in video streams. Our

experimental results demonstrated vast performance advantages

compared with state-of-the-art proposals while attaining supe-

rior accuracy.

Our work raises avenues for further work in this area. First,

incorporating our proposals in a video analytics system is already

underway. Second, although we have demonstrated the efficacy

of conformal martingales, further exploration and tuning will

provide further insight on how much we can push the boundary

of efficiency in video stream change detection. Finally, the state

of the art in video stream querying is under rapid evolution,

incorporating other semantics such as object interactions [75]. It

would be interesting to explore change detection in the presence

of activity querying.
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