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ABSTRACT
Ensemble learning combines multiple classifiers in the hope of

obtaining better predictive performance. Empirical studies have

shown that ensemble pruning, that is, choosing an appropriate

subset of the available classifiers, can lead to comparable or better

predictions than using all classifiers. In this paper, we consider a

binary classification problem and propose an integer programming

(IP) approach for selecting optimal classifier subsets. We propose

a flexible objective function to adapt to different datasets as well

as constraints to ensure minimum diversity levels in the ensemble.

We are able to quickly obtain good solutions for datasets with up to

60,000 data points. Our approach yields competitive results when

compared to some of the most used pruning methods in literature.

1 INTRODUCTION
Ensemble learning is a popular technique in the domain of machine

learning. An ensemble is defined as the aggregation of multiple

classifications into a single final decision. It is generally accepted in

literature that the precision of an ensemble tends to improve when

compared to the behaviour of individual classifiers [27].

Well-known approaches for efficiently generating ensembles

include Bagging (bootstrap aggregating) [3] and Boosting [13], in

which all classifiers are considered in the aggregation. There are,

however, theoretical and empirical studies which have shown that

pruning an ensemble by selecting a subset of the classifiers can lead

to comparable or better predictions [19, 27].

In this work we tackle the ensemble pruning problem by in-

troducing an integer programming (IP) approach for choosing an

optimal subset of binary classifiers. Our formulation optimises a

weighted function of the patterns in the binary confusion matrix.

This flexible approach allows us to customise the objective function

according to the properties of the underlying dataset. As our objec-

tive is based on performance we also introduce linear constraints

that ensure minimum diversity levels in the ensemble.

Despite the existence of consolidated techniques for ensemble

pruning, we believe that our approach contributes to the current

knowledge in the field due to the flexibility of the IP paradigm,

adaptable to particularities of different problems. One of its advan-

tages is being able to combine performance and diversity criteria.

Furthermore, our method is exact, while most algorithms in litera-

ture are suboptimal.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th 
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin, 
Ireland. ISBN 978-3-89318-096-7 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

In this paper we show that with current solver technology we

can find good solutions to relatively large problems in reasonable

computational times. We compare our formulation to a full en-

semble and six other well-known methods in literature. We report

competitive results for publicly available datasets ranging from 195

to 60,000 data points.

The remainder of this paper is organised as follows. In Section 2

we give a brief overview of existing methods in ensemble learning.

In Section 3 we present our optimisation approach and in Section

4 we amend it to enforce minimum diversity levels. Our compu-

tational experiments are shown in Section 5 and in Section 6 we

present our concluding remarks.

2 LITERATURE REVIEW
The first step in an ensemble process is to generate a set of distinct

classifiers that is precise and diverse. Highly correlated classifiers

may hinder the potential benefit of using an ensemble. Several

techniques for ensuring diversity in classifiers have been proposed

[8, 10], such as randomisation, distinct tuning of hyperparameters

and different classifiers. Other diversification techniques include

training classifiers with different distributions of the training set

and with distinct subsets of features.

The next step is selecting an appropriate classifier subset. This

selection can be dynamic [8], where different subsets are chosen for

different data points, or static, where a single subset is chosen. Static

selection policies are based on ranking, clusters and optimisation.

Ranking methods sort classifiers according to a fitness function.

In general they greedily increase the subset size. In Kappa pruning

[20], every pair of classifiers is sorted according to a statistical

measure of agreement. Reordering techniques [22] are used to

build sub-ensembles of increasing size. In [26] classifiers are ranked

according to a significance index.

Cluster methods first apply a clustering algorithm to separate

classifiers according to some similarity measure and then prune

each cluster separately to increase general diversity. Known clus-

tering algorithms include 𝑘-means [17], where similarity is based

on Euclidean distance, and hierarchical agglomerative clustering

[15], which employs probabilities.

Several optimisation methods for ensemble pruning have also

been proposed, with most offering approximate solutions. The most

popularmethod is hill climbing, which has been appliedwith several

different fitness functions. Some are based on performance [11] (e.g.

accuracy), others on diversity [20, 24]. Three examples of diversity-

based fitness functions are Complementariness [21], Concurrency

[1] and UncertaintyWeighted Accuracy [25]. In [23], reinforcement

learning was employed for a greedy method based on diversity. In
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[27] a semi-definite programming approach was proposed which

considers trade-offs between accuracy and diversity.

The last step in the procedure is combining classifiers into a

single prediction, which is usually done through majority voting.

For further details we refer the reader to [16].

3 FORMULATION
Consider a binary classification problem where data points belong

to classes 1 (positive) or 0 (negative). Let K = {1, . . . , 𝐾} be the set
of classifiers. LetN0 = {1, . . . , 𝑁0} andN1 = {1, . . . , 𝑁1} be the sets
of negative and positive data points respectively, with 𝑁 = 𝑁0 +𝑁1

being the total number of data points. Consider a 𝑁1 × 𝐾 matrix

𝐵 where 𝛽𝑖𝑘 = 1 if classifier 𝑘 ∈ K correctly classified data point

𝑖 ∈ N1 as positive, 𝛽𝑖𝑘 = 0 if it mistakenly classified 𝑖 as negative.

Accordingly consider a 𝑁0 × 𝐾 matrix 𝐴 where 𝛼 𝑗𝑘 = 0 if classifier

𝑘 ∈ K correctly classified data point 𝑗 ∈ N0 as negative, 𝛼 𝑗𝑘 = 1 if

𝑗 was mistakenly classified as positive.

Suppose S ⊆ K is a set of 𝑆 classifiers selected to compose a

given pruned ensemble. For any data point 𝑖 ∈ N1,
∑
𝑠∈S 𝛽𝑖𝑠 is the

number of correct positive classifications withinS. Accordingly, for
any data point 𝑗 ∈ N0,

∑
𝑠∈S 𝛼 𝑗𝑠 represents the number of (wrong)

positive classifications within S.
We define a threshold 0 ≤ 𝐿 ≤ 𝑆 such that for a given data

point 𝑖 ∈ N1,

∑
𝑠∈S 𝛽𝑖𝑠 > 𝐿 implies that the ensemble classifies 𝑖

as positive. If

∑
𝑠∈S 𝛽𝑖𝑠 ≤ 𝐿, then 𝑖 is classified by the ensemble

as negative. Similarly for 𝑗 ∈ N0,

∑
𝑠∈S 𝛼 𝑗𝑠 > 𝐿 implies a posi-

tive ensemble classification and

∑
𝑠∈S 𝛼 𝑗𝑠 ≤ 𝐿 implies a negative

ensemble classification. For instance, if 𝑆 = 10 and 𝐿 = 5, then

the ensemble classifies a data point as positive if at least 6 indi-

vidual classifications are positive. If 5 or less are positive, then the

ensemble classifies that data point as negative.

In our formulation we let the optimisation define both S and

𝐿. Hence we include 𝐿 as a general integer variable representing

the classification threshold and binary variables 𝑥𝑘 = 1 if classifier

𝑘 ∈ K is chosen to compose the ensemble (𝑥𝑘 = 0 otherwise).

Table 1: Binary classification confusion matrix

Predicted

1 0

A
c
t
u
a
l

1 𝑇 + 𝐹 −

0 𝐹 + 𝑇 −

Consider the binary confusion matrix shown in Table 1, where

𝑇 +, 𝐹−,𝑇 −
and 𝐹+ are the total number of classifications of each pos-

sible pattern. For each patternswe assignweights𝑊 +
𝑇
,𝑊 −
𝑇
,𝑊 +

𝐹
,𝑊 −

𝐹
∈

R, and the objective function is defined by theweighted sum𝑊 +
𝑇
𝑇 ++

𝑊 −
𝐹
𝐹− +𝑊 −

𝑇
𝑇 − +𝑊 +

𝐹
𝐹+.

For modelling this function we define binary variables 𝑡+
𝑖
, 𝑓 −
𝑖

if

the ensemble classification of 𝑖 ∈ N1 is respectively a true positive

or false negative. Similarly we define binary variables 𝑡−
𝑗
, 𝑓 +
𝑗
if the

ensemble classification of 𝑗 ∈ N0 is a true negative or false positive.

The IP formulation is given by:

max

𝑁1∑︁
𝑖=1

(𝑊 +
𝑇 𝑡

+
𝑖 +𝑊 −

𝐹 𝑓
−
𝑖 ) +

𝑁0∑︁
𝑗=1

(𝑊 −
𝑇 𝑡

−
𝑗 +𝑊 +

𝐹 𝑓
+
𝑗 ) (1)

subject to

(𝐿 + 1) −
𝐾∑︁
𝑘=1

𝑥𝑘 𝛽𝑖𝑘 ≤ (𝐾 + 1) (1 − 𝑡+𝑖 ), ∀𝑖 ∈ N1 (2)

𝐾∑︁
𝑘=1

𝑥𝑘 𝛽𝑖𝑘 − 𝐿 ≤ (𝐾 + 1)𝑡+𝑖 , ∀𝑖 ∈ N1 (3)

𝑡+𝑖 + 𝑓 −𝑖 = 1, ∀𝑖 ∈ N1 (4)

𝐾∑︁
𝑘=1

𝑥𝑘 𝛼 𝑗𝑘 − 𝐿 ≤ 𝐾 (1 − 𝑡−𝑗 ), ∀𝑗 ∈ N0 (5)

(𝐿 + 1) −
𝐾∑︁
𝑘=1

𝑥𝑘 𝛼 𝑗𝑘 ≤ 𝐾𝑡−𝑗 , ∀𝑗 ∈ N0 (6)

𝑓 +𝑗 + 𝑡−𝑗 = 1, ∀𝑗 ∈ N0 (7)

𝑥𝑘 ∈ B ∀𝑘 ∈ K (8)

𝑡+𝑖 , 𝑓
−
𝑖 ∈ B ∀𝑖 ∈ N1 (9)

𝑡−𝑗 , 𝑓
+
𝑗 ∈ B ∀𝑗 ∈ N0 (10)

0 ≤ 𝐿 ≤ 𝐾, (11)

𝐿 ∈ Z (12)

Constraints (2) ensure that a positive data point 𝑖 ∈ N1 has

𝑡+
𝑖
= 1 if the number of individual positive classifications exceeds

𝐿. Conversely, constraints (3) ensure that 𝑡+
𝑖
= 0 if the number of

individual positive classifications is no more than 𝐿. Constraints

(4) ensure that either 𝑡+
𝑖
= 1 or 𝑓 −

𝑖
= 1. Constraints (5) guarantee

that a negative data point 𝑗 ∈ N0 has 𝑡−
𝑗

= 0 if the number of

positive classifications exceeds 𝐿. Otherwise, constraints (6) make

sure that 𝑡−
𝑗
= 1. Constraints (7) ensure that either 𝑓 +

𝑗
= 1 or 𝑡−

𝑗
= 1.

Constraints (8)-(12) define variables bounds.

3.1 Objective function
For some classification problems, it may be desirable to optimise

some patterns instead of others. For instance, in an investment de-

cision, investing in the wrong project may cause bankruptcy while

not investing in a promising project may be seen as a regretful

but acceptable lost opportunity. In this case prioritising the min-

imisation of 𝐹+ is desirable. The weights in Equation (1) provide

flexibility for defining optimisation criteria depending on the char-

acteristics of the dataset at hand (such as being highly imbalanced).

A few examples are outlined below.

Accuracy is defined as
𝑇 ++𝑇 −
𝑁

. As 𝑁 is constant we can maximise

accuracy by defining weights𝑊 +
𝑇

=𝑊 −
𝑇

= 1 and𝑊 +
𝐹

=𝑊 −
𝐹

= 0.

Notice that if we choose this objective then constraints (3) and (6)

are redundant as maximising positive weights𝑊 +
𝑇

and𝑊 −
𝑇

ensure

that 𝑡+
𝑖
= 1 and 𝑡−

𝑖
= 1 if allowed by constraints (2) and (5). Similarly,

Recall is defined as
𝑇 +

𝑇 ++𝐹 − = 𝑇 +
𝑁1

and can be maximised by setting

𝑊 +
𝑇

= 1 and𝑊 −
𝑇

= 𝑊 +
𝐹

= 𝑊 −
𝐹

= 0 (with constraints (3) being

redundant).

Accuracymay not be the most appropriate metric for the selected

datasets since several are imbalanced. Let 𝜃 =
𝑁1

𝑁
be the dataset

imbalance level. If, for instance, 𝜃 ≥ 1−𝜖 for small 𝜖 , a high accuracy

can be achieved by simply classifying every data point as positive.

For imbalanced datasets a possibly useful configuration is setting

5
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weights𝑊 +
𝑇

= (1− 𝜃 ),𝑊 −
𝑇

= 𝜃 and𝑊 +
𝐹
=𝑊 −

𝐹
= 0. We refer to this

function as 𝜃 -weighted).

Balanced Accuracy (BA) is an alternative metric which weighs

equally the accuracy of positive data points and the accuracy of neg-

ative data points. BA is a more appropriate measure for imbalanced

datasets [4] and is given by:

BA =

𝑇 +
𝑇 ++𝐹 − + 𝑇 −

𝑇 −+𝐹+
2

=

𝑇 +
𝑁1

+ 𝑇 −
𝑁0

2

(13)

Theorem 1 shows that maximising BA is equivalent to maximis-

ing the 𝜃 -weighted function.

Theorem 1. Maximising the 𝜃 -weighted configuration is equiva-
lent to maximising balanced accuracy.

Proof. Following the definition of the 𝜃 -weighted function in

Section 3.1, objective function 𝑧 can be written as:

max𝑧 =

(
1 − 𝑁1

𝑁

)
𝑇 + + 𝑁1

𝑁
𝑇 −

where 𝑇 + =
∑𝑁1

𝑖=1
𝑡+
𝑖
, 𝑇 − =

∑𝑁0

𝑗=1
𝑡−
𝑗
and 𝜃 =

𝑁1

𝑁
. As 𝑁 = 𝑁0 + 𝑁1 it

follows that:

max 𝑧 =
𝑁0

𝑁
𝑇 + + 𝑁1

𝑁
𝑇 −

max𝑁𝑧 = 𝑁0𝑇
+ + 𝑁1𝑇

−

max 𝑐𝑧 =
𝑇 +

𝑁1

+ 𝑇
−

𝑁0

where 𝑐 = 𝑁
𝑁1𝑁0

> 0 is a scaling factor, and thus maximising the

𝜃 -weighted function is equivalent to maximising balanced accuracy.

□

4 DIVERSITY
Asmentioned before many ensemble pruning algorithms employ di-

versity criteria. Our proposed formulation optimises a performance

measure, and in this section we introduce a way to control diver-

sity with linear constraints. We consider a diversity measure called

Pairwise Failure Crediting (PFC), proposed originally by [5], cho-

sen due to well-known good performance in imbalanced datasets

[2, 12]. PFC measures how diverse an individual classifier is from

the remaining classifiers in the ensemble.

PFC is calculated as follows. For each classifier 𝑘 , we compute a

failure pattern (FP). A FP is a string of 0’s and 1’s with length𝑁 . A ‘0’

in the string means that the classifier failed to correctly predict the

corresponding data point and a ‘1’ means that it predicted the data

point correctly (irrespective of its real value). Once we have all fail-

ure patterns we take any two classifiers 𝑘 and 𝑙 and calculate their

Hamming distance. The Hamming distance between same-length

strings is the number of different characters in the same positions.

For example, if FP𝑘 = {0011011101} and FP𝑙 = {0110001110}, the
Hamming distance between 𝑘 and 𝑙 is 5 (characters 2, 4, 6, 9 and 10

differ). Next, we sum all failures by both classifiers - that is, we sum

the number of zeros in both strings which, in the example, is 9. The

failure credit (FC) between 𝑘 and 𝑙 is obtained by dividing the Ham-

ming distance by the sum of failures. In the example, FC𝑘𝑙 = 5/9.
For every pair 𝑘, 𝑙 ∈ K we compute FC𝑘𝑙 .

Consider againS as a set of 𝑆 ≤ 𝐾 classifiers selected to compose

an ensemble. We assume without loss of generality that classifiers

in S are indexed by 𝑘 = 1, . . . , 𝑆 . PFC is defined as:

PFC𝑘 =

∑𝑆
𝑙=1,𝑙≠𝑘

FC𝑘𝑙

𝑆 − 1

𝑘 ∈ S

A (maximum) value of 1 in PFC𝑘 means that 𝑘 classifies all data

points differently from every other classifier in the ensemble, and a

(minimum) value of 0 means that 𝑘 is identical to all other classifiers.

Both extreme cases imply that all other classifiers are identical

among themselves.

For ensuring minimum desired diversity levels, we propose two

approaches: (i) the minimum PFC of any individual classifier is at

least a certain threshold 0 ≤ 𝜏 ≤ 1 in order to prevent very similar

pairs of classifiers and (ii) the average PFC of the ensemble must

be at least a certain threshold 0 ≤ 𝛾 ≤ 1 to ensure an overall good

level of diversity. Clearly we must have 𝛾 ≥ 𝜏 .
We add the following new decision variables. Let 𝑦𝑘𝑙 = 1 if both

classifiers 𝑘 and 𝑙 have been selected to be part of the ensemble,

and 𝑦𝑘𝑙 = 0 if at most one of 𝑘 and 𝑙 is chosen to compose the

ensemble. This adds

(𝐾
2

)
extra variables (for every possible pair 𝑘, 𝑙 ).

For simplicity, both 𝑦𝑘𝑙 and 𝑦𝑙𝑘 denote the exact same variable. The

following constraints ensure that 𝑦𝑘𝑙 takes the correct values:

𝑦𝑘𝑙 ≥ 𝑥𝑘 + 𝑥𝑙 − 1 ∀𝑘, 𝑙 ∈ K, 𝑘 < 𝑙 (14)

𝑦𝑘𝑙 ≤ 𝑥𝑘 ∀𝑘, 𝑙 ∈ K, 𝑘 < 𝑙 (15)

𝑦𝑘𝑙 ≤ 𝑥𝑙 ∀𝑘, 𝑙 ∈ K, 𝑘 < 𝑙 (16)

𝑦𝑘𝑙 ≥ 0 ∀𝑘, 𝑙 ∈ K, 𝑘 < 𝑙 (17)

Notice that there is no need for the 𝑦𝑘𝑙 variables to be binary. Both

𝑥𝑘 and 𝑥𝑙 being binary ensure 𝑦𝑘𝑙 to be 0-1 in any integer solution.

We then rewrite the PFC equation using variables 𝑥𝑘 and 𝑦𝑘𝑙 :

PFC𝑘 =

∑𝐾
𝑙=1,𝑙≠𝑘

FC𝑘𝑙 𝑦𝑘𝑙∑𝐾
𝑚=1 𝑥𝑚 − 1

∀𝑘 ∈ K

The term

∑𝐾
𝑚=1 𝑥𝑚 is the cardinality of the ensemble and any non-

selected classifier 𝑘 (with 𝑥𝑘 = 0) has a PFC equal to zero (as all

𝑦𝑘𝑙 = 0, 𝑙 ≠ 𝑘).

The following linear constraints enforce that every classifier has

a minimum PFC of 𝜏 :

𝐾∑︁
𝑙=1
𝑙≠𝑘

FC𝑘𝑙 𝑦𝑘𝑙 ≥ 𝜏
( 𝐾∑︁
𝑚=1

𝑥𝑚 − 1

)
− 𝐾𝜏 (1 − 𝑥𝑘 ) ∀𝑘 ∈ K (18)

The term 𝐾𝜏 (1 − 𝑥𝑘 ) ensures that the constraints above are only
enforced if classifier 𝑘 is chosen to compose the ensemble.

The following nonlinear constraint ensures that the average PFC

of the ensemble is at least 𝛾 :

1∑𝐾
𝑚=1 𝑥𝑚

∑𝐾
𝑘=1

∑𝐾
𝑙=1,𝑙≠𝑘

FC𝑘𝑙 𝑦𝑘𝑙∑𝐾
𝑚=1 𝑥𝑚 − 1

≥ 𝛾 (19)

Observe that in Equation (19) the FCs of every pair are added twice.

We use this fact to linearise this expression. For a given subset S,

6
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the average PFC 𝜇PFC is given by:

𝜇PFC =
1

𝑆

𝑆∑︁
𝑘=1

∑𝑆
𝑙=1,𝑙≠𝑘

FC𝑘𝑙

𝑆 − 1

=
1

𝑆 (𝑆 − 1)

𝑆∑︁
𝑘=1

𝑆∑︁
𝑙=1
𝑙≠𝑘

FC𝑘𝑙

=
2

𝑆 (𝑆 − 1)

𝑆−1∑︁
𝑘=1

𝑆∑︁
𝑙=𝑘+1

FC𝑘𝑙

=
1(𝑆
2

) 𝑆−1∑︁
𝑘=1

𝑆∑︁
𝑙=𝑘+1

FC𝑘𝑙 = 𝜇FC

where 𝜇FC denotes the average FC of all pairs in the ensemble. We

have that the average PFC among all classifiers in the ensemble is

equal to the average FC among all pairs.

If 𝑆 classifiers are selected in the ensemble, then the number

of 𝑦𝑘𝑙 variables that take value 1 is exactly
(𝑆
2

)
. Therefore we can

ensure that the average PFC is at least 𝛾 with the following linear

constraint:

𝐾−1∑︁
𝑘=1

𝐾∑︁
𝑙=𝑘+1

FC𝑘𝑙 𝑦𝑘𝑙 ≥ 𝛾
𝐾−1∑︁
𝑘=1

𝐾∑︁
𝑙=𝑘+1

𝑦𝑘𝑙 (20)

The expanded formulation with minimum diversity levels is

given by maximising (1) subject to (2)-(18) and (20). It requires

(𝐾
2

)
extra variables and a similar number of extra constraints. Even so,

we observed empirically in Section 5.3 that the inclusion of such

constraints causes a negligible decrease in solution quality.

5 COMPUTATIONAL EXPERIMENTS
In this section we outline the computational experiments used to

evaluate the proposed formulation. We used 9 publicly available

datasets, outlined in Table 2
1
, ranging from 𝑁 = 195 to 𝑁 = 60,000.

Imbalance parameter 𝜃 is shown in the table.

5.1 Description of the experiments
We prepared 10 different heterogeneous classifier models. Each

model was instantiated a number of times with different random

seeds and parameters.We set𝐾 asmultiples of 10 in order to have an

equal number of instantiations of each classifier. For instance, if𝐾 =

60, we have 6 classifiers of each model. In our experiments, reported

below, we used 𝐾 = {40, 60, 80, 100}. Each classifier produces, as

output, a probability of a data point being positive. This probability

is rounded to define matrices 𝐴 and 𝐵.

For evaluating performance we used a stratified 10-fold cross-

validation procedure. The 𝑁 data points are initially shuffled ran-

domly and the dataset is split into 10 folds. At each iteration, one

of the folds is left out as an independent set. The results presented

below are based solely on this set. The other 9 folds, comprising

90% of the original dataset, are joined and split into two sets: a train-

ing set, containing 63% of the data points, is used to optimise the

individual classifiers. A validation set, comprising the remaining

27% data points, is used to optimise the ensemble algorithms.

The procedure above is repeated 10 times: in each we vary the

random seeds required to both shuffle the dataset and initialise

the individual classifiers. For each value of 𝐾 and for each instance

1
All datasets can be found at the UCI Machine Learning Repository [18]

shown in Table 2, we run 100 experiments: 10 random initialisations

× 10 folds. For ensuring reproducibility of our results, we have made

all necessary data publicly available. A link and a description of the

classifiers can be found in the supplementary material
2
.

Table 2: Selected datasets from the UCI Machine Learning
Repository [18]

Identifier Dataset Features 𝑁 𝑁0 𝑁1 𝜃

PRK Parkinsons 23 195 48 147 0.77

MSK Musk (Version 1) 168 476 269 207 0.44

BCW Breast Cancer Wisconsin 32 569 357 212 0.37

QSR QSAR biodegradation 41 1055 356 699 0.66

DRD Diabetic Retinopathy Debrecen 20 1151 540 611 0.53

SPA Spambase 57 4601 2788 1813 0.39

DEF Default of credit card clients 24 30000 23364 6636 0.22

BMK Bank Marketing 21 41188 36548 4640 0.11

APS APS Failure at Scania Trucks 171 60000 59000 1000 0.02

5.2 Benchmarks
We compare our formulation to seven other approaches: Full (non-

pruned) Ensemble (FE), Reduced-Error Pruning with Backfitting

[14] (hereby Backfitting or BFT), Kappa pruning [20] and four differ-

ent hill climbing based methods. Here we report here results for the

four approaches with the best overall out-of-sample performance.

The full results are available in the supplementary material accom-

panying this paper. All benchmarks classify data points based on

majority voting and are allowed to run for a maximum of 5 minutes.

Backfitting follows a greedy approach with revision. From an

empty subset 𝑆 , BFT iteratively adds to 𝑆 a classifier 𝑠 such that

the accuracy of 𝑆 ∪ 𝑠 is maximised. This process is repeated until

𝑀 classifiers are added to 𝑆 , with ties broken arbitrarily. When-

ever a classifier is added, the greedy choice is revised through a

local search procedure. Each classifier in the ensemble is iteratively

replaced by another previously left out. If the overall accuracy is

improved, the method starts again with the new subset 𝑆 . Kappa

pruning is similar, but does not revise the greedy choice and opti-

mises the 𝜅-statistic [6]. Both methods require𝑀 to be fixed. For a

fairer comparison, we varied𝑀 within 20% and 80% of 𝐾 . The best

in-sample results are used to evaluate the independent set.

The other benchmarks use the forward version of the hill climb-

ing search algorithm, differing in the selected fitness function. In

all four methods, the first iteration selects the individual classifier

with maximum accuracy. Then classifiers are greedily added so

as to maximise the selected fitness. This process is repeated until

all classifiers are added to 𝑆 . The chosen ensemble is the one with

best fitness over all the ensembles iteratively created. As opposed

to the other benchmarks, direct hill climbing does not define the

ensemble size a priori. The fitness functions chosen are the same as

tested by [25]: Accuracy, Complementariness [21], Concurrency [1]

(HC-CON) and Uncertainty Weighted Accuracy [25] (HC-UWA).

We compare our method to BFT, HC-CON, HC-UWA and FE.

5.3 Solving the formulation
Due to limited space, in this paper we refrain from evaluating our

proposed formulation with regards to the computational effort

2
The supplementary material is available here.
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required to solve it. We leave that for future work. We however

observed in practice that, with a 5-minutes time limit, we were

able to either optimally solve or terminate the algorithm with small

optimality gaps for all instances.

The average gaps for the results reported in Section 5.4 for

𝐾 = 100 are summarised in Table 3. The “No diversity” column

corresponds to F1 in that section, and only constraints (2)-(12) are

used. The “With diversity” column corresponds to F3, which uses

constraints (2)-(18) and (20). The largest instance, APS, had average

gaps of only 0.1% in both cases. The hardest instance was DEF (6.7%

and 6.9%). The only case where a difference was notable was for

the DRD instance (4.3% and 6.1%).

In our view, even the hardest instances were still relatively close

to optimality considering the short computational time. We used

CPLEX 12.8 [7] with default parameters as the IP solver and we ran

all experiments in an Intel Core(TM) I7-7700 @ 3.60GHz with 32GB

of RAM, using 8 cores and having Linux as the operating system.

Table 3: Avg. optimality gaps and standard deviations (in %).

Instance 27% of 𝑁
No diversity With diversity

Avg. Std. Avg. Std.

PRK 26 0.0 0.0 0.0 0.0

BCW 129 0.0 0.0 0.0 0.0

MSK 154 0.0 0.0 0.0 0.0

QSR 285 0.0 0.0 0.0 0.1

DRD 311 4.3 2.0 6.1 1.8

SPA 1242 0.0 0.0 0.2 0.2

DEF 8100 6.7 0.4 6.9 0.4

BMK 11121 5.4 0.3 5.5 0.2

APS 16200 0.1 0.0 0.1 0.0

5.4 Accuracy
In the results reported in this section, we seek to maximise accuracy

regardless of 𝜃 , by setting𝑊 +
𝑇

=𝑊 −
𝑇

= 1 and𝑊 +
𝐹

=𝑊 −
𝐹

= 0. We

evaluate three different configurations.

In the first, F1, we employ only constraints (2)-(12), without

enforcing diversity. The other two configurations, F2 and F3, en-
force minimum diversity levels in the hope of preventing possible

overfitting. In F2 we only constrain the overall average PFC by

setting 𝜏 = 0 and 𝛾 =
PFCmin+PFCavg

2
, where PFCmin and PFCavg are

the minimum individual PFCs among all classifiers and the average

PFC of the full ensemble. In F3 we also set 𝜏 = PFCmin.

Table 4 summarises the results with an average rank per value

of 𝐾 across all datasets. We use the ranking procedure of [9]. The

full results are shown in the supplementary material.

Table 4: Average ranks of accuracies

𝐾 F1 F2 F3 BFT HC-CON HC-UWA FE

40 3.82 3.74 3.79 4.04 3.71 3.66 5.25

60 3.82 3.70 3.76 4.03 3.66 3.66 5.39

80 3.82 3.80 3.75 4.09 3.54 3.58 5.42

100 3.91 3.72 3.72 4.07 3.55 3.56 5.48

Avg: 3.84 3.74 3.75 4.06 3.61 3.61 5.38

The results suggest that while our proposed formulation is over-

all competitive, it was slightly outperformed by HC-CON and HC-

UWA - both in terms of average accuracy (from the table in the

supplementary material) and average rank. Still, with the exception

of FE, the difference between BFT (worst performing) and HC-CON

(best performing) was 0.33% in terms of average overall accuracy

and 0.45 in terms of average rank. Adding diversity constraints to

our formulation also had a small beneficial impact in improving

average accuracy and reducing the average ranking. In 11 out of

the 36 cases, F2 outperformed all benchmarks.

Both HC benchmarks had a higher dispersion of accuracies than

our methods. Also, adding diversity in F2 and F3 helped reduce

dispersion. Further studies on either better enforcing these con-

straints or proposing new constraints based on alternative diversity

measures remain as future work. Since our proposed method is ex-

act in nature (although limited to 5 minutes), in the supplementary

material we discuss in more detail the effects of overfitting.

5.5 Balanced accuracy
In this section, we evaluate the out-of-sample performance accord-

ing to Balanced Accuracy (BA). We employ F1 as defined earlier and
a modified F1 where we maximise the 𝜃 -weighted configuration

suggested in Section 3.1. Tables 5 and 6 show the results. In Table

5, we show results for only 𝐾 = {80, 100} and for the five largest

datasets, but the full results are available in the supplementary ma-

terial. A bold value in theAvg. columns means that our formulation

obtained a higher average than all benchmarks. The averages in

the last row are for all results, not only those displayed in the table.

We did not rerun the experiments for the accuracy version of F1
nor for the benchmarks, rather we used the same ensemble subsets

to calculate the corresponding balanced accuracies.

Here both configurations of our formulation outperformed the

benchmarks. F1 (𝜃 -weighted) consistently outperformed F1 and

all benchmarks, with better ranks, overall average accuracies and

lower dispersion, especially for the larger (and more imbalanced)

datasets. F1 (𝜃 -weighted) outperformed all benchmarks in 22 out of

36 cases. It hadworse performance than the benchmarks inMSK and

DRD, which are the most balanced datasets. These results suggest

that being able to configure the objective function according to the

characteristics of the dataset at hand can be highly beneficial.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this work we proposed an IP approach for the problem of select-

ing a subset of classifiers in ensemble learning, with the goal of

maximising a weighted function of the patterns in the confusionma-

trix. In order to combine performance and diversity criteria, we also

proposed linear constraints to enforce minimum diversity levels.

We observed that state-of-the-art solvers can find good solutions in

reasonable computational times for relatively large datasets. The IP

approach is, in our view, able to provide a flexible exact algorithm

which can also be used as a heuristic if short computational time

limits are required. This approach has the additional advantage of

providing bounds on optimal values.

We compared our formulation to seven well-known benchmarks.

We used a stratified 10-fold cross validation procedure and evalu-

ated the effect of enforcing minimum diversity levels and varying
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Table 5: Balanced Accuracy averages and standard deviations

Dataset 𝐾
F1 F1 (𝜃 -weighted) BFT HC-CON HC-UWA FE

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

DRD 80 0.7457 0.0064 0.7468 0.0046 0.7503 0.0057 0.7525 0.0065 0.7525 0.0072 0.7126 0.0077

100 0.7404 0.0088 0.7466 0.0093 0.7479 0.0063 0.7506 0.0075 0.7551 0.0057 0.7148 0.0075

SPA 80 0.9504 0.0021 0.9521 0.0018 0.9488 0.0017 0.9512 0.0017 0.9493 0.0020 0.9403 0.0009

100 0.9500 0.0022 0.9517 0.0025 0.9485 0.0020 0.9515 0.0015 0.9493 0.0018 0.9402 0.0008

DEF 80 0.6662 0.0014 0.6985 0.0016 0.6484 0.0020 0.6553 0.0009 0.6557 0.0011 0.6484 0.0011

100 0.6661 0.0019 0.6992 0.0014 0.6482 0.0018 0.6542 0.0020 0.6560 0.0007 0.6473 0.0012

BMK 80 0.7765 0.0055 0.8684 0.0015 0.7322 0.0046 0.7477 0.0028 0.7469 0.0018 0.6822 0.0036

100 0.7794 0.0053 0.8694 0.0012 0.7363 0.0040 0.7478 0.0029 0.7479 0.0018 0.6762 0.0031

APS 80 0.8731 0.0039 0.9395 0.0038 0.8398 0.0045 0.8535 0.0033 0.8500 0.0040 0.8021 0.0037

100 0.8735 0.0053 0.9416 0.0041 0.8447 0.0064 0.8562 0.0040 0.8513 0.0032 0.8006 0.0032

Average: 0.8433 0.0080 0.8665 0.0063 0.8313 0.0069 0.8397 0.0075 0.8383 0.0076 0.8111 0.0057

Table 6: Average ranks of balanced accuracies

𝐾 F1 F1 BFT HC-CON HC-UWA FE

(𝜃 -weighted)

40 2.98 2.37 3.94 3.33 3.43 4.95

60 2.88 2.45 3.97 3.29 3.40 5.02

80 2.92 2.39 3.97 3.25 3.38 5.09

100 2.97 2.41 4.00 3.20 3.36 5.06

Avg: 2.94 2.40 3.97 3.27 3.39 5.03

the weights assignments of the objective function. The results sug-

gest that our approach is competitive and its flexibility can be

beneficial when dealing with different datasets. All data required to

reproduce our results is made available as supplementary material.

As future work we intend to experiment with different criteria

and larger datasets. We also plan to study alternative diversity

constraints and to research IP techniques/matheuristics for both

finding good solutions quickly and solving the formulation faster.
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