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ABSTRACT
The heterogeneous vehicle routing problem (HVRP), a variant of 
the classical vehicle routing problem (VRP), involves optimizing 
route planning for vehicles with different load capacities, each de-
signed for specific tasks or constraints. Improving the HVRP model 
not only enhances the solution quality and reduces solving time 
but could also be useful for related extended versions such as HVRP 
with time windows, pickup and delivery, multiple depots, stochas-
tic elements, and industry-specific constraints. In this paper, we 
present a novel formulation for HVRP that uses a single-commodity 
flow approach based on a 2-index formulation. In contrast to the 
conventional single-commodity flow formulation, our approach 
requires a significantly smaller number of variables. We performed 
a computational experiment to show the efficiency of our model by 
solving some HVRP instances and found a significant advantage.

1 INTRODUCTION
A classical vehicle routing problem (VRP) involves customers with 
specified item demands to be fulfilled by  a identical fleet of ve-
hicles. Here, all vehicles originate and conclude their routes at a 
common point, a depot. The primary aim is to minimize the com-
bined distance covered by all vehicles while meeting the customers’ 
demands. VRP has been extensively studied due to its direct eco-
nomic and environmental importance in logistic and supply chain 
operations. The transportation process constitutes 10% to 20% of 
the ultimate cost of goods. Also, international freight transport 
accounts for around one-third of the total CO2 emissions [21]. 
Due to this, research on VRPs has always been demanding and 
growing exponentially [5]. VRP was first presented by Dantzig and 
Ramser [8]. The initial stage of VRP works often focused on devel-
oping mathematical models and exact algorithms for homogeneous 
fleets, serving as a foundation for later extensions. We refer reader 
[7, 14, 18] for various exact and heuristics techniques under such 
VRPs.

The VRP with a heterogeneous vehicle fleet, called heteroge-
neous VRP (HVRP), is a popular VRP that allows organizations to 
deploy various vehicles with different capacities, each tailored to 
specific tasks or constraints.

HVRP is formally described as follows: Suppose 𝐺 = (𝑉 , 𝐸) is 
a complete graph where 𝑉 = {0, 1, . . . , 𝑛} is a set of nodes, and 
𝐸 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ! = 𝑗 } is the set of all possible edges between 
nodes. Here, 0 ∈ 𝑉 represents a central depot, where all the vehicles
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start and return by serving all the customers. 𝑁 = 𝑉 \{0} represents
the index set of customer location. The depot has 𝜏 number of
vehicles whose capacities are denoted by a set 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝜏 },
where 𝑡𝑖 denotes the maximum capacity 𝑖𝑡ℎ vehicle can carry. In the
case of VRP with a homogeneous fleet of vehicles, capacities will
be the same, 𝑡𝑖 = 𝑡 𝑗 ; otherwise, at least one vehicle will be different
by capacity. For each arc (𝑖, 𝑗) ∈ 𝐸, we have a transportation cost
𝑐𝑖, 𝑗 to travel from customer location 𝑖 to location 𝑗 . For simplicity,
we consider 𝑐𝑖, 𝑗 as the distance between location 𝑖 and 𝑗 . For each
𝑖 ∈ 𝑉 , we represent associated pickup quantities by 𝑝𝑖 ≥ 0. Our
objective is to determine the vehicle routes from the depot 0 to
customer points so that

• total cost be as minimum as possible
• total number of vehicles used as small as possible
• each customer is visited exactly once
• all the vehicles start from and end at the depot
• all customer demands must served by the vehicle

The pickup demand at each demand point is known before depar-
ture, and it can not be split. We assume that any vehicle can serve
any of the customers. It means the restriction that a specific sized
vehicle only serves a particular customer is not considered in our
problem. The objective is to determine the optimal vehicle routes
to pick up goods after reaching the demand point without violating
the vehicle’s maximum carrying capacities. We limit our focus to
the basic HVRP with a fixed number of vehicles, each with varying
capacity constraints.

HVRPs have received greater attention in the literature. It was
first studied in the seminal work of Golden, et al. [13] and has since
developed into an extensive field of research. Detailed surveys of
HVRP are conducted by [16] and cover the 30 years of development
since HVRP was developed by Golden, et al.. There are works by
[1, 2] that cover the solution strategy of HVRP. The model studied
in the rich-VRP literature can be found in [6].

The HVRP is NP-hard as it is a natural generalization of the trav-
elling salesman problem (TSP). Many heuristics and exact methods
have been proposed in the literature. Classical heuristics lever-
age extensions from well-established heuristics for classical VRPs
[12, 22, 23]. Tabu search-based heuristics, extensively tested and
studied, have proven effective for HVRPs [10, 25]. For branch-and-
cut and branch-price-and-cut are the main approaches that depend
on the modeling of the HVRP. We can find the work of lower bound-
ing and its variants for HVRP in [2]. [20] studies exact solving
procedures using branch-and-price-and-cut for VRP.

For exact branch-and-bound algorithms, [17, 19] have made sig-
nificant contributions; however, these algorithms tend to work
optimally only on relatively small instances. In contrast, Baldacci
and Mingozzi [4] present an exact algorithm for the HVRP, which
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generalizes bounding procedures and exact methods described for
the CVRP. They introduce novel bounding methods demonstrating
particular effectiveness when the vehicle’s fixed cost contribution
to the total cost is significant. Various valid inequalities and delayed
constraints specific to the problem are employed to speed up the
solving procedure, such as capacity cuts, comb cuts, etc. [3, 26].

Researchers have proposed various mathematical models for
the HVRP. Broadly, three variants of formulation for HVRPs are
studied.

The first is based on single-commodity flow formulation [2]. In
this, the entire vehicle fleet is considered as a single commodity. This
formulation is based on the flow of the commodity from the depot
to the customers and back to the depot. The objective is to minimize
the total cost, often a combination of travel distances, vehicle fixed
costs, and other relevant factors. The second type is the two-flow
formulation of [3]. In this formulation, it is assumed that the vehicle
types do not dominate and are ordered. The network of customers
and depots is considered symmetric. In addition, a dummy depot is
included in the modeling. Another type of formulation is the set
partitioning-based formulation. In the set partitioning formulation
of [4], given an undirected graph𝐺 (𝑉 , 𝐸), each route is assumed to
be a subset of the customer set V associated with cost, and the goal
is to select the set of routes such that the union of all routes is V,
subject to the associated VRP constraints. In this paper, we focus
on the single-flow formulation.

Two-index vehicle flow models have found application in repre-
senting basic versions of classical symmetric and asymmetric-VRP
(AVRP), including variants like the VRP with backhauls [24]. How-
ever, as the complexity of VRPs increases, these models may prove
insufficient. To solve this problem, we explicitly specify the vehicle
traveling through an arc so that more complex constraints can be
imposed on the routes. This explicit representation allows the im-
position of complicated constraints on the routes and provides a
more flexible and robust solution for solving complex VRPs.

This paper contributes a novel formulation, a 2-index commodity
flow model, which has fewer variables and constraints than the
existing formulations of VRPSPDs, which are generally modeled
as a 3-index commodity flow formulation. We discuss the existing
model for VRPSPD in Section 2. Our new model is discussed in
Section 3. In Section 4, we show computational results that highlight
the advantages of our model. Finally, we summarize our work in
Section 5 and give an outlook on future work.

2 EXISTING SINGLE-COMMODITY FLOW
MODEL FOR HVRP

We follow the model of F. Gheysens et al.. [11]. It is a 3-index
commodity flow formulation, the most widely used model, and is
also suitable for modeling other complex classes of VRP.

The parameters and sets used in the model are the same as
discussed above. For heterogeneity of vehicles, the capacity of some
vehicles is non-identical. So, for some 𝑡𝑖 , 𝑡 𝑗 ∈ 𝑇 , 𝑡𝑖 ≠ 𝑡 𝑗 . Broadly,
two categories of decision variables for the model are as follows:

• 𝑥𝑘,𝑖 𝑗 = 1 if vehicle 𝑘 moves from customer 𝑖 to 𝑗 . Otherwise,
it takes a 0 value.

• 𝑝𝑣𝑖, 𝑗 is the decision variable that indicates the total load a
vehicle carries while traversing from customer 𝑖 to customer
𝑗 for pickup of the items.

The problem is modeled as follows:

3-HVRP :=min
𝜏∑︁

𝑘=1

𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑥𝑘,𝑖 𝑗 𝑐𝑜𝑠𝑡𝑖, 𝑗

s.t.
𝜏∑︁

𝑘=1

∑︁
𝑖∈𝑉 ,𝑗≠𝑖

𝑥𝑘,𝑖 𝑗 = 1 ∀𝑗 ∈ 𝑁, (1)∑︁
𝑗∈𝑉

𝑥𝑘,𝑖 𝑗 −
∑︁
𝑗∈𝑉

𝑥𝑘,𝑗𝑖 = 0 ∀𝑖 ∈ 𝑉 , ∀𝑘 ∈ {1 . . . , 𝜏}, (2)∑︁
𝑖∈𝑉

𝑝𝑣𝑖, 𝑗 + 𝑝 𝑗 =
∑︁
𝑖∈𝑉

𝑝𝑣 𝑗,𝑖 ∀𝑗 ∈ 𝑁, (3)∑︁
𝑗∈𝑁

𝑥𝑘,0𝑗 ≤ 1 ∀𝑘 ∈ {1, . . . , 𝜏}, (4)∑︁
𝑖∈𝑁

𝑥𝑘,𝑖0 ≤ 1 ∀𝑘 ∈ {1, . . . , 𝜏}, (5)

𝑝𝑣𝑖, 𝑗 ≤
𝜏∑︁

𝑘=1
𝑡𝑘𝑥𝑘,𝑖 𝑗 ∀𝑖 ∈ 𝑉 , ∀𝑗 ∈ 𝑉 , (6)

𝑥𝑘,𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑉 , ∀𝑗 ∈ 𝑉 , ∀𝑘 ∈ {1, . . . , 𝜏}, (7)
𝑝𝑣𝑖, 𝑗 ≥ 0,∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝑉 ,

The model’s objective function is to minimize the cost associated
with the edges covered by vehicles. Constraint (1) ensures that each
customer is served exactly once by one of the vehicles. Constraint
(2) guarantees that the same vehicle enters and leaves the customer
point. Flow conservation restrictions for pickup are mentioned
in constraint (3). Constraints 4 and 5 represent flow-in and flow-
out vehicles at the depot, which limits each vehicle to be used
for a maximum of one route. Constraint (6) imposes the capacity
constraint. It is a Miller-Tucker-Zemlin constraint [9] that handles
the problem of subtour in the solution. Trivial constraints on binary
and continuous variables are imposed in (7).

The model consists of variables having three indices. Clearly,
such model requires O(𝑛2 · 𝜏) variables.

3 IMPROVED FORMULATION
3.1 Motivation
The existing model mentioned in the previous section explicitly
tracks the vehicle type to serve a given customer. So, if 𝑥𝑘,𝑖 𝑗 = 1. It
makes it very clear that the vehicle 𝑘 served (reached) the customer
(depot) 𝑗 after serving (starting) from 𝑖 .

Consider we have at least one feasible solution for a given HVRP
problem. Without loss of generality, we can consider 0 − 1 − 2 −
3 . . . , 𝑛 − 0 as a feasible path. The consequent solution obtained
from the model 3-HVRP is 𝑥1,01 = 𝑥1,12 = 𝑥1,23 = . . . = 𝑥1,𝑛0 . It
implies that vehicle 1 serves all the customers in the lexicographical
order. For other vehicle, the variables 𝑥𝑡,𝑛0,∀𝑡 ∈ {2, . . . , 𝜏}, take the
value 0. If we replace 𝑥𝑘,𝑖 𝑗 with a binary decision variable 𝑥𝑖, 𝑗 , for
the given feasible path, 𝑥0,1 = 𝑥1,2 = 𝑥2,3 = . . . = 𝑥𝑛,0. However, we
needed the information about the vehicle type which served all the
customers. If 𝑥𝑛,0 = 1 and vehicle 𝑘 serves customer 𝑛 associated
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to the feasible path, then it will serve all the remaining customers
𝑗 = {1, . . . , 𝑛 − 1} to this path.

We can generalize this idea by introducing a new binary decision
variable 𝑦 𝑗,𝑘 that represents whether the vehicle 𝑘 serves the feasi-
ble paths such that the last visited customer is 𝑗 . Clearly, 𝑦 𝑗,𝑘 = 1
if 𝑥 𝑗,0 is 1 and vehicle number 𝑘 is used to carry the load associ-
ated at customer points 𝑗 ∈ 𝐽 . Where 𝐽 is the set of all last visited
customer point by any vehicles. That is, 𝐽 = { 𝑗 ∈ 𝑁 | 𝑥 𝑗,0 = 1}. So,∑𝜏
𝑘=1 𝑦 𝑗,𝑘 = 1, 𝑗 ∈ 𝐽 . Since we do not have any information about

𝐽 before computing the model, we can rewrite it as -

𝜏∑︁
𝑘=1

𝑦 𝑗,𝑘 = 𝑥 𝑗,0, ∀𝑗 ∈ 𝑁 . (8)

Equation 8 ensures that if the last visited customer is not 𝑗 then
𝑦 𝑗,𝑘 = 1 for any 𝑘 ∈ {1, . . . , 𝜏}. One important condition related to
𝑦 𝑗,𝑘 is the following:

∑︁
𝑗∈𝑁

𝑦 𝑗,𝑘 ≤ 1, ∀𝑘 ∈ {1, . . . , 𝜏}. (9)

This ensures that a vehicle 𝑘 ∈ {1, . . . , 𝜏} can not be connected to
more than one feasible path.

Now we can associate the variables 𝑦 𝑗,𝑘 and 𝑝𝑣 𝑗,0 that form the
maximum carrying capacity of vehicle 𝑘 ,

𝑝𝑣𝑎𝑟𝑖,0 𝑦𝑖,𝑘 ≤ 𝑡𝑘 , ∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ {1, . . . , 𝜏}. (10)

Equation (10) consists nonlinear terms. We can linearlize the
product of binary and continuous variables 𝑧 = 𝑝𝑣𝑎𝑟𝑖,0 𝑦𝑖,𝑘 ≤ 𝑡𝑘 as
follows:

𝑧 ≤ 𝑦𝑖,𝑘𝑀,

𝑧 ≤ 𝑝𝑣𝑎𝑟𝑖,0 ,

𝑧 ≥ 𝑝𝑣𝑎𝑟𝑖,0 + (1 − 𝑦𝑖,𝑘 )𝑀,

0 ≤ 𝑧 ≤ 𝑡𝑘 . (11)

Here𝑀 is a suitable large number. Since most of the optimization
solvers also handle logical constraints, an alternative to the systems
of Equations (11), we can have the following constraints:

𝑦𝑖,𝑘 = 1 =⇒ 𝑝𝑣𝑎𝑟𝑖,0 ≤ 𝑡𝑘 . (12)

3.2 Model
Using the above constraints and other HVRP constraints, we form
the 2-index formulation as follows:

2-HVRP :=min
𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑥𝑖, 𝑗 𝑐𝑜𝑠𝑡𝑖, 𝑗

s.t.
∑︁

𝑖∈𝑉 ,𝑗≠𝑖

𝑥𝑖, 𝑗 = 1 ∀𝑗 ∈ 𝑁, (13)∑︁
𝑗∈𝑉 ,𝑖≠𝑗

𝑥𝑖, 𝑗 = 1 ∀𝑖 ∈ 𝑁, (14)∑︁
𝑖∈𝑉

𝑝𝑣𝑖, 𝑗 + 𝑝 𝑗 =
∑︁
𝐼 ∈𝑉

𝑝𝑣 𝑗,𝑖 ∀𝑗 ∈ 𝑁, (15)∑︁
𝑖∈𝑁

𝑝𝑣0,𝑖 = 0, (16)∑︁
𝑖∈𝑁

𝑝𝑣𝑖,0 =
∑︁
𝑗∈𝑁

𝑝 𝑗 , (17)

𝜏∑︁
𝑘=1

𝑦 𝑗,𝑘 = 𝑥 𝑗,0, ∀𝑗 ∈ 𝑁 (18)∑︁
𝑗∈𝑁

𝑦 𝑗,𝑘 ≤ 1, ∀𝑘 ∈ {1, . . . , 𝜏}, (19)

𝑦𝑖,𝑘 = 1 =⇒ 𝑝𝑣𝑎𝑟𝑖,0 ≤ 𝑡𝑘 , ∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ {1, . . . , 𝜏},
(20)

𝑥𝑖, 𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑉 , ∀𝑗 ∈ 𝑉 , (21)
𝑝𝑣𝑖, 𝑗 ≥ 0,∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝑉 ,

𝑦𝑖,𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑁,∀𝑘 ∈ {1, . . . , 𝜏}.

Here, similar to the model 3-HVRP , the objective function in
the model is to minimize the cost associated with the edges cov-
ered by vehicles. The indegree and outdegree constraints (13) and
(14) ensure that exactly one entry and exit is allowed at each cus-
tomer. Constraint (15) guarantees flow conservation restrictions
for pickup. Equation (16) and (17) make sure that vehicles start
empty from the depot and return with all the picked-up items to
the depot. The details of constraints (18), (19) and (20) are provided
in Section 3.1. Trivial constraints on binary and continuous vari-
ables are imposed in (21). Note that the model consists of variables
having only two indices - such a model requires O(𝑛2) variables
and O(𝑛2) constraints.

The model can be helpful to other classes of VRP problems with
more added constraints - we can have a similar formulation for
HVRP with pickup and load. Since time-window-based restrictions
in HVRPs do not require any variable related to the vehicle’s capac-
ity, our model can adapt to such time-window-based problems.

4 COMPUTATIONAL EXPERIMENTS
In this section, we give empirical evidence of the effectiveness of
our 2-index-based model (2-HVRP ) in some HVRP instances and
provide computational details of them. We compare the perfor-
mance of our model with that of the 3-HVRP by solving it with the
22.1.1.0 version of CPLEX, one of the fastest optimization solvers.
Both models are coded in Python (version 3.8), utilizing the CPLEX
Python API. This Python package within CPLEX facilitates access
to the Callable Library from the Python programming language.

The hardware used for the computation is a Mac OS M2 chip,
an 8-core CPU supporting a 10-core GPU with a 3.49 GHz CPU. To
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avoid multiple processes sharing common resources, we run one
job at a time with the default settings of CPLEX API.

We generate 18 test instances for our experiment, each with
different customers and vehicles. The locations of the vehicles and
customers are two-dimensional coordinate points (𝑥,𝑦) that are
randomly generated, where x and y are from a uniform distribution
such that 𝑥∼𝑈 [𝑎1, 𝑎2] and 𝑦∼𝑈 [𝑏1, 𝑏2].

It should be noted that there are HVRP instances that have
already been well studied and tested [15]. Our experiments focused
on smaller data sets. This was a deliberate choice, as our current
work does not focus on refining solution strategies, but aims to
motivate readers for the effectiveness of using an improved model.
Consequently, we applied our model to the optimization solver
avoiding delving into developing an exact method for its solution.

The vehicle’s capacity is chosen randomly and is uniformly dis-
tributed between 𝑞1 to 𝑞2. The value of items to be picked up by
vehicle at the customer location is also randomly generated, uni-
formly distributed between 𝑝1 to 𝑝2. Selection of the number of
vehicles should ensure sufficient supply to serve all the customers.
The simple approach to estimate this value is always to keep the
number of vehicles more than the sum of total items to be picked
divided by the average capacity of a vehicle.

Our data set is generated with the following suitable values:
𝑎1 = 𝑏1 = 0, 𝑎2 = 200, 𝑏2 = 100, 𝑝1 = 1, 𝑝2 = 5, 𝑞1 = 5 and 𝑞2 = 10.
Out of 18 test instances, we show the detailed specification of the
first 4 instances in Tables 1 and 2. In Table 1, for each instances,
we list 𝑛, number of customers, 𝜏 , maximum number of vehicles
available, 𝑝𝑖 , 𝑖 = 1, . . . , 𝑛, pickup items at each customer locations
, and 𝑡 𝑗 , 𝑗 = 1, . . . , 𝜏 , the maximum carrying capacities of each
vehicle. Note that the capacity of vehicles and items to be picked
at the customer ends have the same units. Each 𝑛𝑖 , 𝑖 = 1, . . . , 𝑛 in
Table 2 is the 𝑥−𝑦 coordinate that represents customer locations. For
our experiments, we consider 𝑐𝑜𝑠𝑡𝑖, 𝑗 =

𝑛𝑖 − 𝑛 𝑗

2, the Euclidean

distance between customers 𝑖 and 𝑗 . The remaining test instances
consist of the following number of customer 𝑛 and the number of
vehicles 𝜏 :

(𝑛, 𝜏) =


(8, 4), if 𝐼 = 𝐼5, 𝐼6, 𝐼7, 𝐼8,
(10, 6), if 𝐼 = 𝐼9, 𝐼10, 𝐼11, 𝐼12,
(15, 8), if 𝐼 = 𝐼13, 𝐼14, 𝐼15, 𝐼16,
(40, 20), if 𝐼 = 𝐼17, 𝐼18.

All test instances (in CSV)and models (in .LP format) are available
on https://github.com/devanandR/HVRP.git.

Table 3 compares the performance of our 2-HVRP to the existing
3-HVRP . For both the models, we report optimal objective value,
deterministic solving (wall) time taken by Cplex, and the number
of vehicles used by the obtained optimal route, denoted by ‘objval’,
‘time’, and ‘v-used’, respectively. The unit for the time used is in
seconds. We set the time limit of 600 seconds. The last column,
‘improvement’, compares the solving times. The first comparison,
‘%’, reports the solving time benefit of using our method in terms of
percentages. The second performance, ‘times’, measures how often
our models are faster than the existing method. Compared to a
3-index-based model, our approach takes almost negligible time for
small-sized instances. For a better picture of the effectiveness of our
method, we refer to Figure 1. We use a log scale to show the solving

time to illustrate the comparison. The blue column represents our
model and the red column represents the existing model. The av-
erage time CPLEX takes to solve all the first 16 instances modeled
as 2-HVRP is 0.56 seconds, much less than that of 3-HVRP , which
takes 58 seconds.

The last two problem instances, I17 and I18, are chosen to be
a difficult problem. Both the models hit the maximum time limit
for I17 and I18. Interestingly, our model for such instances found
a feasible integer solution with less than a 10 % optimality gap.
However, the existing model could not find a feasible solution for
such instances.

Table 1: Vehicles Capacities & Customer Demands

𝐼 𝑛 𝜏 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑡1 𝑡2 𝑡3
𝐼1 5 3 1 1 2 2 1 6 9 7
𝐼2 5 3 2 2 4 4 3 5 7 7
𝐼3 5 3 4 1 2 1 3 8 9 9
𝐼4 5 3 1 2 2 3 3 9 6 8

Table 2: Customer Locations (the x-y-coordinate) for the In-
stances in Table 1

I depot n1 n2 n3 n4 n5

I1 x 7.946 199.811 122.772 24.721 125.448 167.456
y 76.594 45.897 97.952 99.052 3.214 13.750

I2 x 192.64 140.37 170.73 82.36 114.75 59.00
y 93.47 33.29 35.20 19.75 90.67 0.16

I3 x 88.51 134.67 148.54 126.48 180.12 94.98
y 60.07 71.64 51.23 74.93 82.48 78.19

I4 x 62.95 141.06 15.64 113.02 64.45 17.54
y 76.35 82.10 79.78 49.71 85.23 35.42

Table 3: Computational Summary of the Performance of our
Model, 2-HVRP Compared to 3-HVRP

I 3-indexModel 2-index improvement
objval time v-used objval time v-used % times

I1 446.51 0.18 1 446.51 0.016 1 91.11 11.3
I2 654.37 0.023 3 654.37 0.02 3 13.04 1.2
I3 239.91 0.05 2 239.91 0.017 2 66.00 2.9
I4 327.52 0.1 2 327.52 0.022 2 78.00 4.5
I5 632.91 0.19 3 632.91 0.04 3 78.95 4.8
I6 353.16 0.31 3 353.16 0.076 3 75.48 4.1
I7 489.84 0.13 3 489.84 0.036 3 72.31 3.6
I8 431.13 0.15 3 431.13 0.06 3 60.00 2.5
I9 693.81 0.62 4 693.81 0.33 4 46.77 1.9
I10 665.15 1.32 4 665.15 0.3 4 77.27 4.4
I11 692.5 0.26 3 692.5 0.04 3 84.62 6.5
I12 618.5 0.66 3 618.52 0.12 3 81.82 5.5
I13 987.065 392.43 5 987.065 3.72 5 99.05 105.5
I14 818.7 45.5 5 818.7 0.31 5 99.32 146.8
I15 1319.46 6.46 5 1319.46 0.47 5 92.72 13.7
I16 1168.76 493.16 5 1168.76 3.45 5 99.30 142.9
I17 unsolved timeout 2659.48 (9.88%) timeout 15 - -
I18 unsolved timeout 2988(8.7%) timeout 14 - -
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5 CONCLUSION AND FUTUREWORK
In this paper, we have presented a 2-index-based single-commodity
flow model for the heterogeneous vehicle routing problem (HVRP).
Our model has been shown to be a compelling alternative to the
existing 3-index-based single-commodity flow model, as it requires
significantly fewer variables. This reduction in complexity con-
tributes to a computationally more efficient technique for solving
the problem.When solving themodels with CPLEX, an optimization
solver, we saw remarkable speedups for smaller problem instances
with up to 15 customers. In addition, for two larger instances with
40 customers, our model also showed impressive result by pro-
viding feasible integer solutions with a gap of less than 10% for
instances where the existing model struggled to reach even a sin-
gle integer feasible solution. Notably, our model can be extended
to other classes of problems, including HVRP with time window
constraints, pickup and delivery considerations, and other related
HVRP extensions.

We have only tried to model the problem and focus on the basic
version of the HVRP. Other complex constraints, such as HVRPwith
multiple depots, HVRP where some customers are only allowed
to use certain types of vehicles, and related complex HVRP, are
something that we are working towards.

The current work focuses only on modeling the problem. Our
immediate research direction is to perform extensive computational
experiments by exploiting valid inequalities and delayed constraints
to solve large instances.

Figure 1: A Column Chart Comparing the Solving Time
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