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ABSTRACT
We study a prospective transportation system where vehicles pro-
vide dial-a-ride services to fulfill a very large scale of passenger
requests (around 300,000). The system operates dynamically, with
newly submitted requests needing immediate processing. A crucial
aspect of this system’s viability in real-time situations is there-
fore the implementation of an efficient routing algorithm that can
deliver high-quality solutions. We address a dynamic large-scale
dial-a-ride problem through a best-fit greedy insertion algorithm.
Furthermore, large-scale requests are assumed to be dominated by
daily commuting needs and thus should be similar and repetitive
from one day to another. Therefore, there might exist recurring and
similar patterns in vehicle trajectories if similar requests can be
served in the samemanner. We introduce a Guided InsertionMecha-
nism that relies on a representative reference resolution and guides
the insertion of dynamic requests while maintaining high-quality
solutions.

1 INTRODUCTION
In recent years, we have witnessed the emergence of novel trans-
portation systems, offering efficient and sustainable alternatives to
traditional modes of transportation. Among these, vehicle-sharing
and ride-sharing systems are two predominant categories. In vehicle-
sharing systems, vehicles positioned at stations are left for access
by users. Related problems can be about the design of the systems,
such as where to position the stations and how to relocalize vehicles
[8]. Ride-sharing services allow users to share common journeys
in the same vehicle. The most common problems are about the
effective routing and scheduling of vehicles that take advantage of
the mutualization of different services [1, 7]. Both systems promote
reduced congestion and emissions while maximizing vehicular uti-
lization. Dail-A-Ride (DAR) system can be regarded as a hybrid of
the above two categories, where vehicles are owned by operators
and provide demand-responsive transportation services to fulfill
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the diverse needs of various communities and enhance accessibility
across urban transit systems.

In this paper, we consider a prospective transportation system
where a mid-capacity vehicle fleet offers Dial-A-Ride (DAR) ser-
vices to a very large volume of passengers (around 300, 000 per day),
catering to the transportation needs of a vast user base. The system
operates in a dynamic context, where user requests are submitted
and processed on-the-fly. Therefore, to ensure the viability of the
system, we need to implement a routing algorithm that is both
efficient and capable of delivering high-quality solutions. For that,
we address a dynamic large-scale dial-a-ride problem. Due to the
large-scale aspect, it is difficult to solve the problem through exact
methods(e.g., branch and bound, branch and cut, etc.) or local search
approaches (e.g., Large Neighborhood Search, Build and Destroy,
etc). We rely on the classic greedy insertion heuristic for its sim-
plicity and effectiveness. Furthermore, we consider that large-scale
requests should be dominated by daily commute needs which ex-
hibit recurring characteristics. Therefore, daily requests should be
globally similar and repetitive. Under this assumption, we should be
able to recreate similar travel patterns in vehicle trajectories. Based
on this idea, as our main contribution to this work, we propose a
Guided Insertion Mechanism (GIM) which utilizes the travel patterns
constructed from a representative reference resolution to efficiently
insert dynamic requests while maintaining the high quality of the
routing solution.

The remainder of this paper is organized as follows: In Section 2
we introduce some related works in the literature. Section 3 for-
mally defines our problem and introduces some important notation.
Section 4 introduces the notion of insertion of a request. In Section 5,
the solution scheme is outlined. Then, in Section 6, we detail the
GIM. Experimental results are presented and discussed in Section 7
and we conclude in Section 8.

2 RELATEDWORKS
On-demand DAR transportation systems provide personalized and
efficient transportation services to customers. These systems utilize
digital platforms and shared mobility concepts, offering convenient,
flexible, and cost-effective travel choices. As the need for efficient
urban transportation increases, there is a rising prevalence of stud-
ies focusing on large-scale systems. Studies are actively studying
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various system characteristics, encompassing the management of
congestion issues resulting from the substantial vehicle fleet size
[13], addressing recharging challenges in scenarios involving elec-
tric vehicles [2], and exploring the potential advantages of introduc-
ing ride-sharing into these systems [6]. In customer-facing systems
like these, the rapid processing of user demands during dynamic
scenarios is crucial. Hence, expediting the routing and scheduling
process holds vital significance. The authors in [16] study a large-
scale taxi system that serves at least 330, 000 requests per day. To
provide instant feedback in response to dynamic requests, they
introduce a filtering algorithm dual-side taxi searching that rapidly
retrieves some interesting (nearest) vehicles to be candidates to
service the given request. Similarly, in [14], the authors propose
a filtering system that not only provides candidate vehicles but
corresponding candidate insertion positions within the routes as
well.

Within the context of DAR transportation systems, we naturally
rely on the Dial-A-Ride Problem (DARP) to formulate the problem.
Designing a fleet of vehicles’ routes and schedules to accommodate
a set of passenger requests—typically defined by a pickup location, a
drop-off location, pickup and/or drop-off time windows, and a max-
imum ride time—is the basis of DARP. Objectives like maximizing
customer service quality or reducing vehicle operating costs guide
decisions [10]. DARP is NP-hard as it admits the Vehicle Routing
Problem (VRP) as a special case. Very few studies seek to solve
the DARP using exact optimization methods, unless for solving
small-sized static problems [4, 15]. More studies tend to propose
approximate methods capable of solving larger instances, such as
tabu search meta-heuristics [5], Large Neighborhood Search (LNS)
[9]. For example, [3] proposes a two-phase scheduling heuristic
that first builds an auxiliary graph and then solves an assignment
problem on this graph.

Furthermore, in a very large-scale context, daily travel requests
are supposed to obey a certain repetitive pattern because they
should be dominated by regular commuting needs. This makes
capturing the daily mobility patterns of requests a hot topic in the
literature. If sufficient historical daily instances are available, this
task can be achieved through some machine learning or deep learn-
ing approaches [18, 19]. On the other hand, due to the similarity in
passengers’ travel requests, the trajectories of vehicles supporting
these requests should also exhibit some regular travel patterns. In
[12], the authors propose a graph-based analysis framework that
characterizes spatial and temporal patterns of network-wide traffic
flows. In [11], a trajectory clustering method is presented to dis-
cover spatial and temporal travel patterns in a traffic network. In
this paper, we do not take care of extracting travel patterns from
historical events and assume that a sufficiently representative refer-
ence request instance in our DAR system is available. We introduce
a Guided Insertion Mechanism (GIM) that uses a set of simplified
routes that we call vehicle travel patterns established by solving
the related reference problem to help solve a large-scale dynamic
DARP more quickly. To the best of our knowledge, we are the first
to consider the correlation between vehicle travel patterns and the
resolution of DARP. Additionally, we offer a formal representation
of these vehicle travel patterns, providing a framework applicable
in resolving DARP.

3 PROBLEM STATEMENT
In this section, we define our Large-Scale Dial-A-Ride Problem
(LSDARP).

We consider a transit network G = (N ,A), where N contains
all the intersections, andA contains all the arcs in the network. We
only consider one depot, denoted by 𝑛0 ∈ N in G. The travel time
of an arc (𝑖, 𝑗) ∈ A, 𝑖, 𝑗 ∈ N2, is denoted by 𝑡 (𝑖, 𝑗). By extension,
we use 𝑡 (𝑢, 𝑣) to denote the shortest travel time from any node 𝑢
to any node 𝑣 in the network.

A request 𝑟 ∈ R is submitted at time 𝑡𝑟
𝑠𝑢𝑏

with the following
information: a pickup service requirement 𝑂𝑟 , a drop-off service
requirement 𝐷𝑟 and the number of involved passengers 𝑞𝑟 . The
pickup service𝑂𝑟 includes an origin 𝑜𝑟 ∈ N and a pickup time win-
dow [𝑒𝑂𝑟 , 𝑙𝑂𝑟 ]. And the drop-off service 𝐷𝑟 includes a destination
𝑑𝑟 ∈ N and a maximum ride time 𝑇 𝑟 . We note that service times
are not considered, and all requests are supposed to be feasible and
non-preemptive, which means that each request must be fulfilled
exactly once by exactly one vehicle.

Passengers are serviced by a fleetV of vehicles of capacity 𝑄 . A
route 𝜃 𝑣 ∈ Θ followed by a vehicle 𝑣 is a list of key points 𝐾 that
aggregates services happening at the same location at the same
time. Typically, a key point 𝐾 contains: 𝑛𝐾 ∈ N , the location of
the service; 𝑞𝐾 , the load of 𝑣 before departing from 𝑛𝐾 ; 𝑅+𝐾 , the list
of requests scheduled to get onboard at 𝐾 ; 𝑅−

𝐾
, the list of requests

scheduled to get off at 𝐾 ; [𝑒𝑎
𝐾
, 𝑙𝑎
𝐾
], the arrival time window at 𝑛𝐾 ;

and [𝑒𝑑
𝐾
, 𝑙𝑑
𝐾
], the departure time window from 𝑛𝐾 . Let 𝑠𝑢𝑐𝑐 (𝐾)

denote the successive key point of 𝐾 . For any request 𝑟 assigned to
𝑣 , we use 𝐾 (𝑂𝑟 ) ∈ 𝜃 𝑣 (resp. 𝐾 (𝐷𝑟 )) to denote the key point where
𝑂𝑟 (resp. 𝐷𝑟 ) is inserted.

When providing services, 𝑣 follows the earliest arrival time 𝑒𝑎
𝐾

and earliest departure time 𝑒𝑑
𝐾
. Vehicle routes must start, end at

the depot 𝑛0, and have a load that never exceeds vehicle capacity.
And for every request 𝑟 assigned to the vehicle, 𝑂𝑟 precedes 𝐷𝑟 ,
and the schedule must not violate the pickup time window and the
maximum ride time constraints.

We consider a lexicographic objective function. We assume that
the number of vehicles is unlimited, so minimizing the fleet size is
the primary objective. The total drive time of vehicles is considered
the second criterion.

4 INSERTION OF A REQUEST
Given a triplet of insertion parameters (𝜃 𝑣, 𝐾𝑜 , 𝐾𝑑 ), we introduce
the procedure INSERTION (𝑟, 𝜃 𝑣, 𝐾𝑜 , 𝐾𝑑 ) that inserts 𝑟 into the route
𝜃 𝑣 at positions 𝐾𝑜 and 𝐾𝑑 .

We first insert the pickup service𝑂𝑟 . If 𝑛𝑂𝑟 = 𝑛𝐾𝑜 , we aggregate
𝑂𝑟 to 𝐾𝑜 and 𝐾 (𝑂𝑟 ) = 𝐾𝑜 ; otherwise, a new key point 𝐾 (𝑂𝑟 )
supporting 𝑂𝑟 will be inserted between 𝐾𝑜 and 𝑠𝑢𝑐𝑐 (𝐾𝑜 ). In both
cases, the load 𝑞𝐾 (𝑂𝑟 ) , in inbound request list 𝑅+

𝐾 (𝑂𝑟 ) , and the
pickup and drop-off time windows on 𝐾 (𝑂𝑟 ) should be updated
while considering the constraints about the vehicle and requests
mentioned previously. Same rules applied for the insertion of the
drop-off service 𝐷𝑟 at 𝐾𝑑 . We note that when updating the arrival
time windows of𝐾 (𝐷𝑟 ), we need to take into account the maximum
ride time 𝑇 𝑟 of 𝑟 .
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Once 𝑂𝑟 and 𝐷𝑟 are inserted, we increase the load of key points
between 𝐾 (𝑂𝑟 ) and𝐾 (𝐷𝑟 ) by 𝑞𝑟 while ensuring that the new loads
never exceed the vehicle capacity 𝑄 . We should also update the
time windows of the key points along 𝜃 𝑣 and checking that these
time windows are never empty. For that, we implement a classic
constraint propagation procedure ([17]) considering the above time
constraints. The procedure has a complexity of 𝑂 ( |𝜃 𝑣 |2), where
𝑂 ( |𝜃 𝑣 |2) is the number of key points in 𝜃 𝑣 .

5 ALGORITHM FRAMEWORK
We define a set of decision epochs E = {𝐸0, 𝐸1, . . . , 𝐸𝑖 , . . . , 𝐸 |𝐸 |−1}.
Each decision epoch lasts 𝐼𝑒 (for example, 𝐼𝑒 = 10 min) time units.
The starting time of 𝐸𝑖 is 𝑡𝐸𝑖 = 𝑖 × 𝐼𝑒 . For each decision epoch
𝐸𝑖 ∈ E,

(1) during the time slot [𝑡𝐸𝑖 , 𝑡𝐸𝑖 + 𝜏], where 𝜏 defines the maxi-
mum decision duration, the system makes the routing deci-
sions for requests submitted during the previous epoch 𝐸𝑖−1,
denoted by R𝐸𝑖−1 ;

(2) at time 𝑡 = 𝑡𝐸𝑖 + 𝜏 , the system updates the vehicles’ sched-
ules, and informs unserved passengers whose requests have
already been inserted about the updated information about
their pickup (the vehicle’s passage time);

(3) following the update, vehicles start implementing the new
routes until reaching 𝑡 = 𝑡𝐸𝑖+1 + 𝜏 .

Regarding the very large size of the problem and the need to
make decisions on-the-fly, we address the problem to be solved
for each decision epoch 𝐸 based on the classic best-fit insertion
heuristic. During epoch 𝐸, requests R𝐸 are inserted one by one
following a specific order, and for each request 𝑟 , we try to insert
it according to the best-fitted insertion parameters that minimize
the insertion cost measured by the detour to service 𝑟 . Depending
on the implementation, searching for insertion parameters among
the whole search space Θ would generally require a computational
effort of 𝑂 ( |𝜃 𝑣 |2). In addition, testing the insertion feasibility and
the INSERTION process are also computationally expensive, as
mentioned in Section 4. Due to the large-scale effect, the search
space would contain thousands of vehicles along with hundreds of
thousands of insertion positions to explore, which can be too large
to fit the dynamic need. For that, we introduce a guided insertion
mechanism upstream of the best-fit insertion that rapidly and wisely
selects well-fitted insertion parameters and tries several valuable
insertions.

Then, given a request 𝑟 ∈ R and the current route collection
Θ = {𝜃 𝑣, 𝑣 ∈ V}:

• We first invoke the Guided Insertion Mechanism (GIM) which
uses knowledge learned from representative historical in-
stances and solutions to guide the insertion of 𝑟 . If a feasible
insertion is found, we keep it.

• If GIM fails, we invoke a best-fit insertion heuristic over the
entire search space Θ, and try to insert 𝑟 into the best-fitted
vehicle route at the insertion positions (i.e., key points) that
minimize the insertion cost.

• Finally, if both of the above steps fail, we activate a new
vehicle 𝑣 to serve 𝑟 and add 𝜃 𝑣 to the current route set Θ.

6 THE GUIDED INSERTION MECHANISM
In this section, we introduce the Guided Insertion Mechanism (GIM).
Let us use LSDARP(R) to denote the problem with an input in-
stance R. Consider two similar request sets R1 and R2 in a way
that for most of the requests in R1, we can find a similar request
in R2. Then we believe that the optimal routing solution Θ1 to the
problem LSDARP(R1) should be similar toΘ2, the optimal solution
to the problem LSDARP(R2). Because if 𝑟1 ∈ R1 and 𝑟2 ∈ R2 are
similar, they should be able to be inserted in a similar manner.

GIM is conceived based on the above idea. Thanks to the large-
scale aspect and the fact that requests should be dominated by
recurring daily commute requests, we assume that requests to be
processed in the DAR systems are similar from one day to another.
Therefore, the travel patterns of vehicles should also be similar
from one day to another. Assuming that we have a representative
reference set R̄ which captures the basic distribution (origin and
destination and pickup times) of requests, then the static (i.e., off-
line) optimal solution Θ̄ to the problem LSDARP(R̄) should be able
to guide any dynamic (i.e., on-line) resolution of any real problem
LSDARP(R), where R is the set of real dynamic requests to be
processed in the service period.

Extracting the daily mobility patterns of requests in an under-
lined system and solving the associated static problem to optimal
are two independent problems. As mentioned previously, in this
paper, we do not take care of either of the above-mentioned prob-
lems and assume that a representative reference set R̄ generated
based on the daily request distribution is in our possession, along
with its off-line (near) optimal solution Θ̄. We are interested in how
the references (R̄, Θ̄) can be informative and guide the insertion
when solving a similar real dynamic problem LSDARP(R).

6.1 Preprocessing: Obtain Vehicle Travel
Patterns

For each reference route 𝜃 ∈ Θ̄, we compute a specific travel pattern
𝛾 (𝜃 ) ∈ Γ during the preprocessing phase. A travel pattern 𝛾 (𝜃 ) is
a simplified route defined as a list of pattern points, where each
pattern point 𝑃 represents a cluster of key points in 𝜃 . The notion
of key point cluster is defined as follows:

Definition 6.1 (key point cluster). Given a route𝜃 = {𝐾0, . . . , 𝐾𝑖 , . . . ,
𝐾𝑀−1} with𝑀 key points, {𝐾𝑖 , 𝐾𝑖+1, . . . , 𝐾𝑖+𝑚} is a key point cluster
if and only if:

𝑡 (𝐾𝑖+𝑗 − 𝐾𝑖+𝑗−1) ⩽ 𝛿𝐾 , for 1 ⩽ 𝑖 ⩽ 𝑚,

𝑡 (𝐾𝑖−1, 𝐾𝑖 ) > 𝛿𝐾 , for 𝑖 > 0,
and

𝑡 (𝐾𝑖+𝑚, 𝐾𝑖+𝑚+1) > 𝛿𝐾 , for 𝑖 < 𝑀 − 1 −𝑚,
where 𝛿𝐾 is the clustering threshold indicating the maximum travel
time from a key point to its successor that are in the same cluster.

For example, in Figure 1 where three partial routes are shown,
we see that 𝐾2, 𝐾3 and 𝐾4 represent a key point cluster, so in the
travel pattern 𝛾 (𝜃 ), they are represented by a pattern point 𝑃2.

The travel patterns are used in the guided insertion process. In
GIM, each pattern guides the construction of at most one real route
𝜃 ∈ Θ. Specifically, if a real key point 𝐾 ∈ 𝜃 is created via GIM
under the guidance of a pattern point 𝑃 ∈ 𝛾 , then we call 𝐾 a child
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Figure 1: Illustration of the relationships between the refer-
ence route, the travel pattern, and the real route

of 𝑃 . Any point 𝑃 ∈ 𝛾 may project to several children in 𝜃 . For each
point 𝑃 ∈ 𝛾 , we define two pointers 𝑙𝑐𝑃 and 𝑟𝑐𝑃 , where 𝑙𝑐𝑃 points
at the preceding key point of the left-most child of 𝑃 , and 𝑟𝑐𝑃 points
at the right-most child of 𝑃 . For example, in Figure 1, 𝑙𝑐𝑃2

points at
𝐾1, and 𝑙𝑐𝑃2

points at 𝐾3. For any 𝑃 , both 𝑙𝑐𝑃 and 𝑟𝑐𝑃 are initialized
as null pointers during the preprocessing process.

6.2 Guided Insertion Process
Given a real request 𝑟 , GIM operates according to the following
steps.

6.2.1 Step 1: Retrieve similar reference requests. We first identify
from R̄ all the reference requests 𝑟 that are similar to 𝑟 . The simi-
larity between requests is defined as follows:

Definition 6.2 (similarity between requests). Two requests 𝑟1 and
𝑟2 are similar if and only if 𝑡 (𝑜𝑟1 , 𝑜𝑟2 ) ⩽ 𝛿𝑠 , 𝑡 (𝑑𝑟1 , 𝑑𝑟2 ) ⩽ 𝛿𝑠 , and
|𝑒𝑂𝑟1 −𝑒𝑂𝑟2 | ⩽ 𝛿𝑡 , where 𝛿𝑠 is a threshold indicating the maximum
travel time between two locations, and the threshold 𝛿𝑡 indicates
the maximum difference in the earliest pickup time between 𝑟1 and
𝑟2.

If 𝑟1 and 𝑟2 satisfy the above conditions, we use |𝑒𝑂𝑟1 − 𝑒𝑂𝑟2 | to
define their similarity measure. Let R̄𝑟 denote the set of retrieved
similar reference requests. The set R̄𝑟 is sorted according to the
descending order of their value of similarity measure with 𝑟 .

6.2.2 Step 2: Construct guide object set. Next, we construct a set of
guide objects, denoted by 𝐺𝑂𝑟 . A guide object is a triplet (𝛾, 𝑃𝑜 , 𝑃𝑑 )
used to guide the guided insertion of 𝑟 , where 𝑃𝑜 and 𝑃𝑑 are two
pattern points in the travel pattern 𝛾 . For example, as illustrated in
Figure 1, a reference request 𝑟 inserted in 𝜃 at𝐾 (𝑂𝑟 ) and𝐾 (𝐷𝑟 ) cor-
responds to the guide object (𝛾 (𝜃 ), 𝑃𝑜 , 𝑃𝑑 ). Then,𝐺𝑂𝑟 is constructed
by sequentially capturing and organizing the corresponding guide
objects of all the reference requests 𝑟 in alignment with the order
specified in R̄𝑟 . We note that it is possible that several reference
requests may correspond to the same guide object. In 𝐺𝑂𝑟 , we only
keep one occurrence of the same guide objects.

6.2.3 Step 3: Insert 𝑟 according to the guide object. As mentioned
before, the concept of guided insertion is that similar requests
should be able to be inserted in the same manner. Given a target
request 𝑟 and the set 𝐺𝑂𝑟 , we try to insert 𝑟 under the guidance of
elements in 𝐺𝑂𝑟 .

Given (𝛾, 𝑃𝑜 , 𝑃𝑑 ) ∈ 𝐺𝑂𝑟 , we use 𝑃𝑜 to guide the insertion of 𝑂𝑟 ,
and 𝑃𝑑 to guide the insertion of 𝐷𝑟 .

If 𝛾 has not been related to any real route inΘ, then we activate a
new vehicle 𝑣 to service 𝑟 . Its route 𝜃 𝑣 is initialized as two key points

𝐾1, the initial depot, and 𝐾2, the final depot. Next, two key points
𝐾 (𝑂𝑟 ) and 𝐾 (𝐷𝑟 ) supporting the pickup and drop-off services are
inserted between 𝐾1 and 𝐾2. Then we relate 𝜃 𝑣 to 𝛾 by correctly
setting the pointers 𝑙𝑐𝑃 and 𝑟𝑐𝑃 for all 𝑃 ∈ 𝛾 (see Figure 2).

Figure 2: Illustration of the creation of the new route via GIM

If 𝛾 is already related to a real route 𝜃 ∈ Θ, then we utilize 𝑃𝑜
to construct a list of candidate insertion positions for the pickup
service. Specifically, in case 𝑟𝑐𝑃𝑜 is a null pointer (which means that
𝑃 has no related child yet), the candidate list only contains the key
point pointed by 𝑙𝑐𝑃𝑜 ; otherwise, the list contains all the key points
between the two key points pointed by 𝑙𝑐𝑃𝑜 and 𝑟𝑐𝑃𝑜 . We obtain a
candidate list for the drop-off services in the same way. Then, we
proceed with a best-fit scheme while trying the insertion feasibility
of 𝑟 at the selected candidate key points for the pickup and drop-off
services. This means that if at least one feasible insertion is found,
we keep the candidates that minimize the insertion cost.

Finally, every time 𝑟 is inserted in 𝜃 at𝐾 (𝑂𝑟 ) and𝐾 (𝐷𝑟 ) via GIM
with the guide object (𝛾, 𝑃𝑜 , 𝑃𝑑 ), we need to update the pointers
𝑙𝑐𝑃 and 𝑟𝑐𝑃 of pattern points 𝑃 along 𝛾 .

We note that the goal of GIM when inserting 𝑟 is to replicate
the insertion mode of the most similar reference request. We know
that the further forward positioned the guide object𝐺𝑂𝑟 , the more
similar the corresponding reference request is to 𝑟 . Therefore, we
implement a first-fit scheme to explore 𝐺𝑂𝑟 . If 𝑟 can be inserted
under the guidance of (𝛾, 𝑃𝑜 , 𝑃𝑑 ), we proceed with the insertion,
stop the exploration of𝐺𝑂𝑟 , and continue to insert the next request.
Otherwise, we explore the next guide object in 𝐺𝑂𝑟 .

7 NUMERICAL EXPERIMENTS
We programmed the algorithms in C++ language and solved the
problem on a 512 GB RAM machine with an AMD EPYC 7452
32-Core Processor.

7.1 Input Data
We take the transit network of the city of Clermont-Ferrand, France,
and its peri-areas. The underlined area contains 13, 839 nodes and
31, 357 arcs. Among all nodes, 1, 469 are selected to be valid pickup
and drop-off locations.

The system we study in this paper is still prospective, so there
are no available real-life request instances. The instances tested in
this paper are self-generated and simulate the intended use cases of
the system: providing services to all kinds of travel requests, which
are in addition dominated by daily commute demands.

The service period lasts 𝑇 = 24 hours, from 00 : 00 to 24 : 00.
We divide the entire period into five time slots: MS (Morning Slack,
00:00 ∼ 06:00), MP (Morning Peak, 06:00 ∼ 10:00), NH (Normal
Hours, 10:00 ∼ 15:00), EP (Evening Peak, 15:00 ∼ 19:00) and ES
(Evening Slack, 19:00 ∼ 24:00). We assume requests to be processed
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in one day generally obey the following basic distribution: During
MP, arond 50% are typical that travel from a residential location
to a working location. Reversely, EP requests follow a symmetric
pattern, with half of the requests being typical that move from a
working position to a residential position. For the requests of MS,
NH and ES, their origin and destination are randomly distributed
over the network.

To guarantee the representative property of the reference request
set R̄ used in GIM, we randomly construct it according to the above-
introduced basic distribution.

Real requests should globally obey the basic distribution and be
“similar” from one day to another while exhibiting some random
variations. To simulate such a phenomenon, real request instances
are decomposed into two parts: the “random” part and the “similar”
part. Requests in the “random" part are randomly generated using
the above-defined basic distribution. The “similar” part simulates
the stable and recurring pattern of daily requests. We rely on R̄ to
generate the corresponding requests. Typically, when generating
a request 𝑟 in this part, we randomly select a reference 𝑟 . Then 𝑜𝑟
(resp. 𝑑𝑟 ) is randomly selected among the nodes that are reachable
within 3 arcs from 𝑜𝑟 (resp. 𝑑𝑟 ). And the earliest pickup time 𝑒𝑂𝑟 is
a random value selected between 𝑒𝑂𝑟 − 7.5 minutes and 𝑒𝑂𝑟 + 7.5
minutes. In terms of the daily recurring pattern, we consider two
scenarios: (high): “similar” part accounts for 90% of the requests;
and (moderate): “similar” part accounts for 50% of the requests.

For each instance, we generate 300, 000 requests. The time length
of the pickup window is set at 15 minutes for all requests. The
maximum ride time 𝑇 𝑟 is twice the shortest travel time from 𝑜𝑟 to
𝑑𝑟 . The load for each request is 1. And as real requests are supposed
to be dynamic, we randomly set the submission time 𝑡𝑟

𝑠𝑢𝑏
of 𝑟

between 0 and 𝑒𝑂𝑟 . Requests are submitted on average one hour
before 𝑒𝑂𝑟 . And in line with the no-rejection assumption, values of
𝑡𝑟
𝑠𝑢𝑏

also satisfy that when processing 𝑟 at epoch 𝐸, we can always
activate a vehicle 𝑣 currently parking at the depot to serve 𝑟 .

7.2 Analyses of the Effectiveness of GIM
In this work, the static reference problem LSDARP(R̄) is solved
by a best-fit insertion heuristic. The resulting solution Θ̄ contains
routes of 1, 621 vehicles. It is worth noting that there are other
approximation algorithms (Large Neighborhood Search, Adaptive
Large Neighborhood Search, etc.) capable of offering more opti-
mal solutions, but at the expense of significantly increasing the
processing time.

The length of each decision epoch 𝑒 lasts 𝐼𝑒 = 10 minutes, and for
the reason of comparing the efficiency of different approaches, the
maximum decision duration 𝜏 is not explicitly fixed, and we count
the CPU time spent required for each decision epoch. The GIM
parameters 𝛿𝐾 (key point cluster threshold), 𝛿𝑠 and 𝛿𝑡 (request
similarity thresholds) are fixed at 2 minutes, 2 minutes, and 15
minutes, respectively.

In order to test the performance of the GIM , we consider three
sets of baseline algorithms: BF (Best-Fit insertion heuristic), PFS
(Partial Filtering System), and FS (Filtering System). PFS and FS
are two approaches proposed in [14], in which a best-fit insertion
heuristic is implemented over the candidate vehicles and insertion
positions selected by a filtering system. Specifically, given a request

𝑟 , inPFS, the search space contains all the filtered candidate vehicles
and insertion positions; while in FS, the search space is further
reduced to a subset of selected candidate vehicles along with their
candidate insertion positions. The FS implemented in this study
involves keeping the top 10% best vehicles from the candidate pool.
The number of selected vehicles is also bounded between 40 and
140. Then, we can integrate the GIM on the upstream side of these
three baseline algorithms. Accordingly, we propose three methods:
GIM-BF, GIM-PFS and GIM-FS.

Table 1 shows the results of the final fleet size, the total drive
time of vehicles, and passengers’ average in-vehicle time. The varia-
tions represented in percentage are calculated based on the baseline
approach BF. First, in terms of fleet size, we see that in both sce-
narios, all the approaches integrated with GIM outperform their
corresponding baseline approaches. In addition, GIM-BF and GIM-
PFS further reduce the fleet size established by BF by almost 6%.
Furthermore, thanks to the reduction in the number of used vehicles
and the fact that GIM helps better organize the routes by following
the pre-defined travel patterns, the total drive times of vehicles are
also improved. Meanwhile, passenger travel comfort remains the
same because better organized routes decrease detours and increase
the ride-sharing. All evidence indicates that, by learning from the
well-resolved reference solution, GIM has the potential to promote
vehicle utilization and alleviate emissions. Finally, we also notice
that GIM is not sensible to similarity scenarios high and moderate.
A possible reason is that, due to the large-scale aspect, we have a
great chance of finding a similar reference request, even though it
was not deliberately generated as such.

Let us now focus on the scenario high to analyze the CPU times
spent to process the requests during each decision epoch (see Fig-
ure3). First of all, we observe two peaks in the processing time for
almost all approaches, corresponding to the high ratio of request
submissions during the two peak periods MP and EP. During most
of the epochs corresponding to the time slots MS, MP, NH and ES,
all approaches using GIM outperforms their baseline methods. This
advantage is especially pronounced during peak hours. During the
first few epochs (corresponding to MS), methods with GIM tend to
be less efficient. This is because GIM activates numerous vehicles
at the beginning of the process, resulting in a larger search space
compared to other baseline approaches.

Figure 3: The execution time during each decision epoch

Generally speaking, compared to their baseline approaches, meth-
ods integrated with GIM showcase the advantages of reducing the
execution times during peak hours while providing better routing
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Table 1: Results with different approaches under different similarity scenarios with 300k requests

scenario approach fleet size total drive time average in-vehicle time
(h) (min)

high

BF 2,183 25,717.5 16.9
PFS 2,183 (-0.0%) -0.0% 16.9
FS 2,583 (+18.3%) +22.7% 16.7

GIM-BF 2,061 (-5.6%) -4.9% 16.9
GIM-PFS 2,053 (-6.0%) -4.9% 16.9
GIM-FS 2,326 (+6.6%) +15.8% 16.7

moderate

BF 2,191 25,641.0 17.0
PFS 2,176 (-0.7%) +0.1% 17.0
FS 2,548 (+16.3%) +23.0% 16.8

GIM-BF 2,063 (-5.8%) -4.7% 17.0
GIM-PFS 2,066 (-5.7%) -4.7% 17.0
GIM-FS 2,347 (+7.1%) +16.8% 16.8

solutions in terms of the fleet size, total drive time and passenger
comfort. This highlights the potential of the utilization of GIM in
solving the dynamic LSDARP.

8 CONCLUSION
We introduce a GIM upstream of the classic best-fit insertion heuris-
tic. The experiment results show that by learning and imitating
a reference static solution, GIM stands out in dynamic scenarios
by encouraging the fleet to follow optimal vehicle travel patterns.
Moreover, its integration with state-of-the-art accelerating algo-
rithms such as the filtering system substantially reduces processing
time without compromising solution quality. We firmly believe that
with a more representative reference problem and a more optimal
reference solution, GIM should emerge as a highly effective algo-
rithm that is very suitable for addressing dynamic online problems.
GIM is currently in its early stages as an emerging technology. Our
upcoming focus aims to enhance its performance by maximizing
the proportion of successful guided insertions within each epoch.
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