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ABSTRACT
We present a heuristic solution approach for the rolling stock rota-
tion problem with predictive maintenance (RSRP-PdM). The task of 
this problem is to assign a sequence of trips to each of the vehicles 
and to schedule their maintenance such that all trips can be oper-
ated. Here, the health states of the vehicles are considered to be 
random variables distributed by a family of probability distribution 
functions, and the maintenance services should be scheduled based 
on the failure probability of the vehicles. The proposed algorithm 
first generates a solution by solving an integer linear program and 
then heuristically improves this solution by applying a local search 
procedure. For this purpose, the trips assigned to the vehicles are 
split up and recombined, whereby additional deadhead trips can 
be inserted between the partial assignments. Subsequently, the 
maintenance is scheduled by solving a shortest path problem in 
a state-expanded version of a space-time graph restricted to the 
trips of the individual vehicles. The solution approach is tested and 
evaluated on a set of test instances based on real-world timetables.
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1 INTRODUCTION
Planning rolling stock rotations is essential for the operation of rail 
transportation and has been studied in the literature for quite some 
time. However, against the backdrop of climate change and the as-
sociated decarbonization of the transport sector, rail transportation 
represents a possible solution. It can therefore be assumed that the 
volume of freight and passengers transported by rail will continue 
to increase, which will also increase the complexity of the train 
scheduling. In addition, the availability of sensors and the analysis 
of the data they provide by the application of machine learning or 
traditional data mining methods enables a predictive scheduling 
of the vehicle maintenance. There is therefore a need to develop 
solution approaches for the automated dispatching of vehicles that 
are capable of integrating predictive maintenance strategies.

1.1 Related Work
The rolling stock rotation problem (RSRP) has already been investi-
gated by a great variety of authors. For an introduction we refer to 
[14]. On the one hand, the contributions can be distinguished by the
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applied maintenance regime: Either preventive time- or distance-
based maintenance regulation are employed, see for example [14],
a predictive maintenance strategy is used, e.g., [4, 10, 15, 18], or no
maintenance is considered at all. For an overview on the literature
concerning RSRP we refer to [17]. On the other hand, the presented
approaches can be categorized by the employed solution methods.
The commonly utilized approaches are the direct application of
integer linear programs (ILP), column generation, or the usage of
heuristics, see [16]. In the following, we restrict ourselves to sce-
narios where maintenance is considered and focus on articles that
apply heuristics to RSRP.

There exists a variety of heuristics that already have been applied
to RSRP, but the most common ones are local search algorithms.
Here, already determined solutions are modified to make them fea-
sible or to improve their objective value. In [5], the RSRP is modeled
by a sequence graph in which the trips correspond to nodes and
the arcs indicate if two trips can be performed consecutively. They
try to obtain a feasible solution by solving an ILP and employ a
local search algorithm to include unassigned trips into the vehicle
schedules if only a partial solution could be obtained. This is done
by shifting trips between vehicles. This approach was further devel-
oped by [6], where an initial solution is derived from a stable set of
trip nodes. Another local neighborhood search for the rescheduling
variant of the RSRP was presented by [11]. Their approach is based
on a space-time graph in which the nodes correspond to departure
or arrival events of the trips, while the trips, waiting periods and
deadhead trips are represented by the arcs. They apply a 2-opt
heuristic to vehicles that meet at a station and interchange their
subsequent trips.

Local search approaches are also applied to hypergraph formu-
lations of the RSRP for maintenance scheduling. In [3], the authors
state that the non-maintenance relaxation of their model is not that
hard to solve. Therefore, a local neighborhood search is used to
construct feasible solutions out of rotations that violate the mainte-
nance constraints. This hypergraph model was subsequently used
by other authors. In [1], a backtrack heuristic is given for the inser-
tion of long-term maintenance services into predetermined rota-
tions, while [8] present a heuristic relying on the observation that in
real-life instances maintenance services can usually be performed
during over-night stops. This yields a local neighborhood search
for generating feasible solutions from maintenance-infeasible ones.

But also other types of heuristics have been applied to RSRP. In
[17], the problem is formulated as a resource-constrained shortest
path instance with side constraints in a space-time graph. The au-
thors consider a scenario with short-term maintenance and solve
the problem by applying a resource-constrained shortest path algo-
rithm within a hill climbing heuristic. Finally, [4] present a variety
of heuristics for RSRP with predictive maintenance. These include
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a genetic algorithm and three greedy algorithms that take the re-
maining useful life (RUL) of the considered vehicles into account.

1.2 Predictive Maintenance
The underlying idea of predictive maintenance in this article is the
assumption that maintenance decisions should rely on the predicted
health states of the considered vehicles, which cannot be measured
directly. If we consider for example the doors of the vehicles, then
their conditions must be approximated by either observing the num-
ber of occurring opening-closing cycles or by deriving them from
sensor measurements like the voltage applied to the actuators or
the vibration of the bearings. Since measurement errors occur here
and further uncertainties arise when determining the health states
from these values, e.g., by applying machine learning methods, the
health states must be regarded as uncertain. In addition, the future
load and operating conditions of the doors have to be predicted,
which further increases the arising uncertainty. We therefore as-
sume that the health states must be treated as random variables. The
maintenance decisions are thus based on the probability that these
random variables exceed some predefined threshold indicating a
failure. We will denote this probability as the failure probability.

1.3 Contribution
In this article, we introduce the rolling stock rotation problem with
predictive maintenance (RSRP-PdM), describe a graph model that
approximates this problem, and present a local search heuristic to
solve it. The proposed solution approach is able to handle predictive
maintenance scenarios, where the health states of the vehicles are
considered to be random variables and themaintenance is scheduled
based on the failure probability of the vehicles. However, it can
easily be adapted to handle distance- or time-based maintenance
strategies. It also allows non-linear functions for modeling the
degradation of the health states. Finally, the algorithm is tested and
evaluated on a set of instances based on real-world timetables.

2 PROBLEM FORMULATION
In RSRP-PdM, we are given a set of vehiclesV , where each vehicle
𝑣 ∈ V possesses a health state 𝐻𝑣 ∈ R. Here, 𝐻𝑣 = 1 indicates
that the vehicle is as good as new, while 𝐻𝑣 ≤ 0 corresponds
to a breakdown of the vehicle. These health states are random
variables to reflect their uncertainty and are distributed by a fam-
ily of probability distribution functions Π with parameter space
Θ ⊆ R𝑛 , i.e., we have 𝐻𝑣 ∼ Π𝜃 ∈ Π for some 𝜃 ∈ Θ. 𝐻𝑣 represents
all possible health states of 𝑣 with their respective probability of oc-
currence. Next, each 𝑣 ∈ V has an initial state 𝐻0

𝑣 ∼ Π𝜃0 , described
by a 𝜃0 ∈ Θ. During the operation of trips and other services, e.g.,
deadhead trips, the conditions of the vehicles deteriorate, which is
expressed by updating the parameters of their health states.

Furthermore, L is the set of all considered locations and K is a
finite time horizon. Moreover, we are given a timetable T consisting
of individual trips that need to be operated. To each trip 𝑡 ∈ T we
associate a departure location 𝑙𝑑𝑡 ∈ L and a departure time 𝑘𝑑𝑡 ∈ K ,
as well as an arrival location 𝑙𝑎𝑡 ∈ L and an arrival time 𝑘𝑎𝑡 ∈ K . Ad-
ditionally, each trip possesses a degradation function Δ𝑡 : Θ→ Θ
altering the parameters of the health state of the vehicle operating 𝑡 .
We assume Δ𝑡 to be continuous and monotonically increasing, i.e.,

∇𝑒𝑖Δ𝑡 (𝜃 ) ≥ 0 for all 𝑖 ∈ {1, . . . , 𝑛} and 𝜃 ∈ Θ, but we do not re-
quire it to be linear. Note that we associate similar degradation
functions with the other activities of the vehicles, i.e., with wait-
ing at stations, deadhead trips, and maintenance services. Finally,
𝑛𝑡 ∈ N determines how many vehicles are required to operate 𝑡 .

We associate costs with each of the possible operations, i.e., trips,
waiting, deadhead trips, and maintenance services, and assume that
breakdown costs arise when a vehicle failure occurs.

Next, we call a vehicle rotation balanced if the number of vehicles
at each location 𝑙 ∈ L is equal at the beginning and at the end of
the considered time horizon. This balancedness is important as it
gives rise to schedules that can be repeated on a weekly basis.

The task of RSRP-PdM is then to assign a sequence of trips,
deadhead trips, and maintenance operations to each vehicle such
that all given trips are operated and the resulting rotations are
balanced. Here, the objective is to find a solution with minimum
total costs, taking into account the operating costs, maintenance
costs, and the expected costs of vehicle failures.

3 UTILIZED GRAPH MODELS
The proposed algorithm relies on two different graph models, that
are presented in this section. The first is the space-time graph, which
is widely used in the literature to model the RSRP. We present it
briefly in the following and refer to [7] for a more detailed de-
scription. Afterwards, we introduce the state-expanded event-graph,
which is a parameter-expanded version of the space-time graph
and has been utilized in [13].

3.1 The Space-Time Graph
Given a RSRP-PdM instance as described in Section 2, the nodes
of the space-time graph represent the departure and arrival events
of the trips contained in T . Each trip 𝑡 ∈ T therefore induces two
nodes 𝑣𝑑𝑡 = (𝑙𝑑𝑡 , 𝑘𝑑𝑡 ) and 𝑣𝑎𝑡 = (𝑙𝑎𝑡 , 𝑘𝑎𝑡 ), and corresponds to the arc
𝑎𝑡 = (𝑣𝑑𝑡 , 𝑣𝑎𝑡 ). By iterating over all trips and collecting the resulting
nodes and arcs, we obtain the set of departure nodes 𝑉+, the set
of arrival nodes 𝑉− , and the set of trip arcs 𝐴T . Afterwards, we
add artificial start and end nodes for each location, i.e., 𝑣0

𝑙
= (𝑙, 0)

and 𝑣∞
𝑙

= (𝑙, 𝑘max) for each 𝑙 ∈ L, where 𝑘max B max{K}. These
nodes form the sets of the start nodes 𝑉0 and the end nodes 𝑉∞.
Thus, we define the node set to be 𝑉 B 𝑉0 ∪𝑉+ ∪𝑉− ∪𝑉∞.

Next, we construct the arcs of the graph. First, we consider arcs
representing that a vehicle waits at its current location. For this pur-
pose, the nodes of each location 𝑙 ∈ L are sorted in time-ascending
order and an arc is added between each pair of time-consecutive
nodes. This yields 𝐴𝑊 . Finally, we construct the deadhead arcs 𝐴𝐷 .
Therefore, we iterate over all nodes 𝑣1 = (𝑙1, 𝑘1) ∈ 𝑉0 ∪ 𝑉− and
add an arc to each 𝑣2 = (𝑙2, 𝑘2) ∈ 𝑉+ ∪𝑉∞ with 𝑙1 ≠ 𝑙2, which has
the smallest 𝑘2 among the nodes at 𝑙2 such that 𝑘1 + 𝑘 (𝑙1, 𝑙2) ≤ 𝑘2,
where 𝑘 (𝑙1, 𝑙2) is the time required to travel from 𝑙1 to 𝑙2.

Combining these arc sets yields 𝐴 B 𝐴T ∪ 𝐴𝑊 ∪ 𝐴𝐷 and
𝐺𝑆𝑇 = (𝑉 ,𝐴) is the resulting space-time graph. Note that we assign
each arc the costs associated with its corresponding operation.

3.2 The State-Expanded Event-Graph
The space-time graph just described in Section 3.1 is well suited
to determine assignments of trips to vehicles, however it is not

59



A Multi-Swap Heuristic for RSRP-PdM INOC 2024, March 11 - 13, 2024, Dublin, Ireland

trivial to incorporate maintenance constraints into it. Usually, these
constraints are modeled by considering the vehicle rotations as
resource-constrained paths, where a maintenance service is re-
quired when a certain resource threshold is exceeded and a re-
source consumption is associated with each of the arcs. The arising
problem becomes even more complicated if we consider non-linear
degradation functions, i.e., non-linear resource consumption. How-
ever, this should not be excluded, as mechanical components gener-
ally exhibit non-linear deterioration behavior. Therefore, we utilize
the state-expanded event graph 𝐺𝑆𝐸 , which provides a linear ap-
proximation to this non-linear problem.

Given a discretization D of the parameter space Θ, i.e., a finite
set D ⊆ Θ, we construct the nodes of 𝐺𝑆𝐸 by creating multiple
copies of the nodes in𝐺𝑆𝑇 for each 𝜃 ∈ D. This yields the node set
𝑉 ′ B {(𝑙, 𝑘, 𝜃 ) | (𝑙, 𝑘) ∈ 𝑉 (𝐺𝑆𝑇 ), 𝜃 ∈ D} of 𝐺𝑆𝐸 .

Next, we generate the arcs. As in the construction of 𝐺𝑆𝑇 , each
arc corresponds to a particular operation and the idea is that the
arcs implicitly model the degradation, i.e., the resource consump-
tion, of this operation. A vehicle traversing arc 𝑎 = (𝑣1, 𝑣2) from
𝑣1 = (𝑙1, 𝑘1, 𝜃1) to 𝑣2 = (𝑙2, 𝑘2, 𝜃2) has a health state distributed by
Π𝜃1 before performing the task corresponding to 𝑎 and a health
state distributed by Π𝜃2 afterwards. Here, the update of the health
state parameters is given by the degradation function Δ𝑎 of the arc,
which is the degradation function of the associated operation.

But we do not necessarily have Δ𝑎 (𝜃1) ∈ D, so there does not
have to exist a head for 𝑎 in 𝑉 ′. To resolve this problem, we define
the following function that rounds to the nearest element of D:

⌊·⌉D : Θ→ D, ⌊𝜃⌉D B argmin𝜑∈D
{
∥𝜃 − 𝜑 ∥2

}
Using this function, we construct the arcs of 𝐺𝑆𝐸 by iterating
over its nodes and copying the outgoing arcs of their counterparts
in 𝐺𝑆𝑇 . Let therefore 𝑣1 = (𝑙1, 𝑘1, 𝜃1) be a node in 𝐺𝑆𝐸 , and let
𝑢1 = (𝑙1, 𝑘1) be the corresponding node in 𝐺𝑆𝑇 . Furthermore,
consider any arc 𝑎 = (𝑢1, 𝑢2) ∈ 𝛿+ (𝑢1), for some 𝑢2 = (𝑙2, 𝑘2).
Then, we determine 𝜃2 B ⌊Δ𝑎 (𝜃1)⌉D and add an arc from 𝑣1 to
𝑣2 = (𝑙2, 𝑘2, 𝜃2). We repeat this procedure for all arcs originating
from𝑢1 and subsequently for all nodes of𝐺𝑆𝐸 . This results in the arc
set𝐴′ of𝐺𝑆𝐸 consisting of trip arcs, waiting arcs, and deadhead arcs.
Note that this construction leads to multiple arcs corresponding to
each of the trips.

Next, we introduce maintenance arcs. Their construction is sim-
ilar to the construction of the deadhead arcs for the space-time
graph and they are generated for every arrival node in 𝐺𝑆𝐸 . The
difference in the construction is that instead of the time required
to travel from location 𝑙1 to 𝑙2, the sum of the times necessary to
travel from 𝑙1 to the workshop, carry out the maintenance service
there and then travel to 𝑙2 is now considered. Moreover, as in the
generation of the other arcs of 𝐺𝑆𝐸 , we apply ⌊Δ𝑀 (·)⌉D to the
parameters of the tail node of each maintenance arc, where Δ𝑀 is
the degradation function associated with the maintenance activities.
This resets the parameters to values that are as good as new.

Finally, the costs of the arcs in the state-expanded event-graph
are equal to the costs of their corresponding arcs in the space-time
graph, but we add the expected failure costs to the trip arcs. There-
fore, we need to determine the failure probability of the vehicles
during the operation of the trips. Consider any arc 𝑎 = (𝑣1, 𝑣2) ∈ 𝐴′
corresponding to some trip 𝑡 ∈ T . Let 𝜃1, 𝜃2 be the parameters of
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Figure 1: Example of a state-expanded event-graph adapted
from [13].

𝑣1, 𝑣2 respectively, then traversing 𝑎 depicts that a vehicle 𝑣 with
health state 𝐻𝑣 ∼ Π𝜃1 is operating 𝑡 and its health state gets up-
dated to 𝐻𝑣 ∼ Π𝜃2 due to the occurring degradation. Thus, the
failure probability of the vehicle is given by the probability that
𝐻𝑣 exceeds the given failure threshold. Assuming that a break-
down occurs when 𝐻𝑣 falls below zero, we need to determine
P[𝐻𝑣 ≤ 0] =

∫ 0
−∞ Π𝜃2 (𝑥) 𝑑𝑥 . The expected failure costs are then

calculated by multiplying this value with the breakdown costs.
An example of a state-expanded event-graph is given in Figure 1,

where the layers of nodes having the same parameter values are
shaded in gray. The waiting and deadhead arcs are depicted in black,
while the trip arcs are colored red. Traversing these arcs decreases
the parameter by 0.5, while the maintenance arcs (blue) reset it to
one. Note that a projection onto the space-time plane, i.e., ignoring
the parameters, yields the underlying space-time graph.

4 ALGORITHM
Now, we present our solution approach for RSRP-PdM. This is based
on the same observation as made in [3], where the authors state that
the non-maintenance relaxation of RSRP is not that hard to solve.
Thus, we first solve the RSRP ignoring the maintenance constraints
and postpone the service scheduling to a subsequent step.

4.1 Generating Initial Solutions
To solve the non-maintenance relaxation of RSRP-PdM, we need to
assign the trips to the vehicles in a cost-minimal way such that each
trip is operated by the required number of vehicles and the vehicle
balance of each location is even. Such an assignment corresponds
to a flow in the space-time graph, which sufficiently covers the trip
arcs and can be determined by solving ILP formulation (NMF).

In this formulation, 𝑐𝑎 ∈ R≥0 are the costs associated with the
arcs of the underlying space-time graph, and the objective func-
tion (1) aims atminimizing the total costs of all contained operations.
Constraints (2) ensure the flow conservation and constraints (3)
guarantee the balancedness of the resulting vehicle rotations. Con-
straints (4) depict the initial positioning of the vehicles in the be-
ginning of the scenario, where 𝑛𝑙 ∈ N0 is the number of vehicles
located at 𝑙 ∈ L. Trip coverage is enforced by constraints (5), since
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the required number of vehicles is assigned to each trip. Finally, the
domains of the variables are defined in (6).

(NMF) min
∑︁
𝑎∈𝐴

𝑐𝑎𝑥𝑎 (1)

s.t.
∑︁

𝑎∈𝛿+ (𝑣)
𝑥𝑎 =

∑︁
𝑎∈𝛿− (𝑣)

𝑥𝑎 ∀𝑣 ∈ 𝑉 \ {𝑉0 ∪𝑉∞} (2)∑︁
𝑎∈𝛿+ (𝑣0

𝑙
)
𝑥𝑎 =

∑︁
𝑎∈𝛿− (𝑣∞

𝑙
)
𝑥𝑎 ∀𝑙 ∈ L (3)∑︁

𝑎∈𝛿+ (𝑣0
𝑙
)
𝑥𝑎 ≤ 𝑛𝑙 ∀𝑙 ∈ L (4)

𝑥𝑎𝑡 = 𝑛𝑡 ∀𝑡 ∈ T (5)
𝑥𝑎 ∈ N0 ∀𝑎 ∈ 𝐴 (6)

The solution of (NMF) represents a flow in the space-time graph
given by a set of paths. Each path corresponds to the tasks assigned
to one of the vehicles and consists of a sequence of trips connected
by waiting or deadhead arcs. Since maintenance is not considered
here, the path of each vehicle is determined by the assigned trips
together with its origin and destination, as these have to be con-
nected by the most cost-effective paths consisting of waiting and
deadhead arcs.

Note that, the value of an optimal solution to (NMF) is a lower
bound to the objective value of RSRP-PdM, since the costs can only
increase if the deterioration of the vehicles, the associated expected
failure costs and their maintenance are taken into account.

4.2 Scheduling Maintenance
After solving the non-maintenance relaxation of RSRP-PdM, we
need to incorporate the maintenance services into the schedules
of the individual vehicles. Therefore, we present a method that
approximates the parameters of the health states of the vehicles
and schedules the maintenance accordingly.

Recall that given a subset of trips 𝑆 ⊆ T together with an origin
𝑙0 ∈ L and a destination 𝑙∞ ∈ L, we can reconstruct the correspond-
ing path in 𝐺𝑆𝑇 by sorting the trips in time-ascending order and
connect the respective trip arcs by paths consisting of waiting and
deadhead arcs. These paths will be termed idle paths in the follow-
ing. We now transfer this idea to the state-expanded event-graph.
Due to the construction of 𝐺𝑆𝐸 , based on a discretization D, we
may have multiple arcs corresponding to each of the trips. Consider
a trip 𝑡 ∈ T that starts at (𝑙𝑑𝑡 , 𝑘𝑑𝑡 ), then we added an outgoing arc
corresponding to 𝑡 to each node in {(𝑙𝑑𝑡 , 𝑘𝑑𝑡 , 𝜃 ) ∈ 𝑉 (𝐺𝑆𝐸 ) | 𝜃 ∈ D}.
In the following, we will denote the set of arcs corresponding to
a trip 𝑡 ∈ T by 𝐴(𝑡). Thus, given a subset of trips 𝑆 ⊆ T and
𝑙0, 𝑙∞ ∈ L, we can determine a feasible schedule by selecting one
arc from each 𝐴(𝑡), for all 𝑡 ∈ 𝑆 , and connecting them by idle paths.
Note that the idle paths in 𝐺𝑆𝐸 can also contain maintenance arcs.
In addition, the desired path must take into account the parame-
ters of the initial health state of the assigned vehicle, i.e., 𝜃0 ∈ Θ,
therefore it has to start at 𝑣0 = (𝑙0, 0, ⌊𝜃0⌉D ) ∈ 𝑉 (𝐺𝑆𝐸 ).

To find such a path, we first restrict 𝐺𝑆𝐸 to the arcs that are
necessary for a vehicle that starts with parameters 𝜃0 at 𝑙0, operates
the trips in 𝑆 and arrives at 𝑙∞. We then determine a shortest path
in this restricted graph. This graph will be referred to as 𝐺𝑆𝐸

��
𝑟
, for

𝑆1: 𝑡1 𝑡3, 𝑡4, 𝑡6 𝑡8 𝑡9, 𝑡11 𝑡15, 𝑡17
𝑆2: 𝑡2, 𝑡5, 𝑡7 𝑡10, 𝑡12 𝑡13, 𝑡14 𝑡16

Figure 2: Example of the exchangeable parts of two schedules.

𝑟 = (𝑆, 𝑙0, 𝑙∞, 𝜃0), and can be obtained from 𝐺𝑆𝐸 as follows: First,
we delete all trip arcs that belong to any 𝐴(𝑡), for 𝑡 ∉ 𝑆 . Then, we
remove all arcs that are not contained in an idle path that connects
two of the remaining trip arcs. Next, all arcs that have a time overlap
with one of the trip arcs are deleted. Finally, we add a sink node
𝑣𝑠 to 𝐺𝑆𝐸

��
𝑟
and add artificial arcs with costs equal to zero from all

nodes in {𝑣 = (𝑙∞, 𝑘max, 𝜃 ) | 𝜃 ∈ D} to 𝑣𝑠 .
Due to the construction of 𝐺𝑆𝐸

��
𝑟
, a shortest 𝑣0-𝑣𝑠 -path thus

corresponds to a minimum-cost schedule for 𝑟 = (𝑆, 𝑙0, 𝑙∞, 𝜃0) w.r.t.
the applied discretization D. Note that the approximation quality
depends on the granularity of D. In the following, we assume that
a solution 𝑥 to the RSRP without maintenance is given by a set of
schedules, where the schedule of each vehicle 𝑣𝑖 can be represented
as 𝑠𝑖 = (𝑆𝑖 , 𝑙0,𝑖 , 𝑙∞,𝑖 ), for 𝑖 ∈ {1, . . . , |V|}. Then, we can derive
an approximate solution to RSRP-PdM from 𝑥 by scheduling the
maintenance of each vehicle, i.e., by determining a shortest path
in each 𝐺𝑆𝐸

��
𝑟𝑖
, for 𝑟𝑖 = (𝑠𝑖 , 𝜃0,𝑖 ). We will refer to this procedure by

scheduleMaintenance(𝑥,𝐺𝑆𝐸 ).

4.3 Improving Schedules by Swapping Trips
After presenting an approach to determine a solution for the non-
maintenance relaxation of RSRP-PdM and a procedure for incorpo-
ratingmaintenance into the resulting vehicle schedules, we describe
a local search algorithm that aims to improve a given solution by
swapping parts of the vehicles’ schedules.

Suppose we are given a non-maintenance solution 𝑥 consisting
of vehicle schedules 𝑠𝑖 = (𝑆𝑖 , 𝑙0,𝑖 , 𝑙∞,𝑖 ), for 𝑖 ∈ {1, . . . , |V|}. Then,
we randomly select two vehicles 𝑣1, 𝑣2 ∈ V and consider their
corresponding trip sets 𝑆1, 𝑆2 ⊆ T . First, we sort 𝑆1 and 𝑆2 in
ascending order of their departure times. Afterwards, we iterate
over time-consecutive pairs (𝑡1,𝑖 , 𝑡1,𝑖+1) of 𝑆1 and (𝑡2, 𝑗 , 𝑡2, 𝑗+1) of 𝑆2
and check if it is possible to operate 𝑡2, 𝑗+1 after 𝑡1,𝑖 and 𝑡1,𝑖+1 after
𝑡2, 𝑗 . If this is the case, (𝑖, 𝑗) is a possible swap position. To find all
swap positions, we next examine whether a swap is possible at the
beginning or after the end of the schedules. Therefore, we check
whether there are trips of 𝑆1 that can be operated before the first
trip of 𝑆2 and if it is possible to reach them from 𝑙0,2, i.e., the origin
of 𝑣2. The same is then repeated for 𝑆2. Analogously, we check
whether it is possible to swap trips after the last trip of 𝑆1 or 𝑆2.

These swap positions separate 𝑆1 and 𝑆2 into two ordered collec-
tions of equal cardinality. Their contained subsets of trips having
the same indices can be exchanged without violating the feasibility
of the resulting schedules. This procedure will be referred to as
getSwappingParts(𝑆1, 𝑆2) and an example is illustrated in Figure 2.
Here, the trips contained in blocks standing underneath each other
can be exchanged arbitrarily and both resulting schedules would
be feasible. For example, it would be possible to swap {𝑡9, 𝑡11} and
{𝑡10, 𝑡12}, or to shift 𝑡8 to 𝑆2.

Since a swap can occur before the first trip of a schedule, it is
possible that the initial departure location of a schedule is changed.
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It could therefore be advisable to assign this trip sequence to an-
other vehicle at another origin, which can reach the new depar-
ture location with a less expensive deadhead trip. We thus de-
fine matchVehiclePositions(𝑥), which determines a matching
between the vehicles and the schedules of 𝑥 . For this purpose, we
calculate the minimum costs of the idle paths that connect the
origins of the vehicles with the initial departure location of the
trip sequences, provided they can be reached in time. Then, we
assign the vehicles to the sequences according to the solution of
the minimum-cost matching. This yields the updated origins 𝑙0,𝑖
of the schedules. To ensure the balancedness, we then solve an-
other minimum-cost matching, which assigns the sequences to the
destinations of the vehicles such that each location occurs as a
destination exactly as often as it was employed as an origin. This
results in the updated destinations 𝑙∞,𝑖 .

Thus, given a non-maintenance solution 𝑥 , we define the proce-
dure multiSwap(𝑥) as follows: First, we randomly select two sched-
ules 𝑆1 and 𝑆2 contained in 𝑥 and apply getSwappingParts(𝑆1, 𝑆2)
to determine the subsets of trips that can potentially be swapped
between them. We then decide at random for each of the corre-
sponding parts which part is assigned to 𝑆1 and 𝑆2, respectively.
This results in a modified solution 𝑦. Subsequently, we reassign the
vehicle origins and destinations to the trip sequences by applying
matchVehiclePositions(𝑦) and obtain the solution 𝑧, which is
the result of the multi-swap procedure.

Note that multiSwap(𝑥) is a generalization of 2-opt, since it is
obtained by selecting a certain swap position and interchanging all
subsequent trip parts, while leaving the parts before unchanged.

4.4 The Resulting Algorithm
Combining the procedures presented throughout this section, yields
the multi-swap heuristic for RSRP-PdM, see Algorithm 1. First, for-
mulation (NMF) is solved to generate an initial solution. If this
formulation is infeasible, there cannot be a solution to RSRP-PdM
since the ILP solves the non-maintenance relaxation of the prob-
lem. Subsequently, multiSwap(𝑥) is utilized to modify the cur-
rent best solution and thus to explore the solution space, while
scheduleMaintenance(𝑥,𝐺𝑆𝐸 ) is employed to schedule the main-
tenance based on the approximated health states of the vehicles.
The algorithm is stopped when the given time limit is reached.

5 COMPUTATIONAL RESULTS
In this section, we present the results of the proposed solution
approach to RSRP-PdM and compare them to the LP-based lower
bound given in [13]. This lower bound is based on a relaxation of an
ILP in which the vehicle rotations are represented by paths in 𝐺𝑆𝐸

and collectively cover each trip 𝑛𝑡 times. The algorithm was tested
on the data set provided in [12], which originates from genuine
timetables. The characteristics of the individual instances are listed
in the first four columns of Table 1. All instances are based on a rail
network with a length of 4,221 km and three maintenance facilities.
The health states are assumed to be distributed by two-parameter
normal distributions and the trips possess non-linear degradation
functions. The considered components are the doors of the vehicles,
which are not safety-relevant. Thus, the vehicles can continue to
be operated even after a failure, but this causes additional costs.

Algorithm 1:Multi-swap heuristic for RSRP-PdM
Data: RSRP-PdM instance I, discretization D
Result: Solution to I or infeasible

1 𝑥 ← solution to (NMF)
2 if 𝑥 is infeasible then
3 return infeasible
4 end
5 𝐺𝑆𝐸 ← state-expanded event-graph based on D
6 𝑠𝑜𝑙 ← scheduleMaintenance(𝑥,𝐺𝑆𝐸 )
7 repeat
8 𝑦 ← multiSwap(𝑥)
9 𝑧 ← scheduleMaintenance(𝑦,𝐺𝑆𝐸 )

10 if 𝑣 (𝑧) < 𝑣 (𝑠𝑜𝑙) then
11 𝑥 ← 𝑦

12 𝑠𝑜𝑙 ← 𝑧

13 end
14 until time limit is reached
15 return 𝑠𝑜𝑙

It is assumed that the doors perform 1,500 opening-closing cycles
before failing and undergo zero to four cycles at each stop of a trip.

5.1 Computational Setup
We performed all computations on a machine with Intel(R) Xeon(R)
Gold 6342 @ 2.80GHz CPUs, eight cores and 64GB of RAM. The
algorithmwas implemented in Julia v1.9.1 [2] and Gurobi v10.0.2 [9]
was used to solve (NMF) and the LPs for the lower bounds. All
computations had a time limit of one hour.

5.2 Results
The results of the conducted computational experiments are given
in the last five columns of Table 1. These contain the value of
the best solution and the best lower bound for each instance, the
resulting gap between these values, the gap after 180 seconds, and
the time when the best solution was found. The obtained gaps show
the effectiveness of the proposed algorithm, as they vary between
0 and 3.5% and are less than 4.3% after just 180 seconds.

The progression of the gap between the best heuristic result and
the lower bound over time is quite similar across all instances and
depicted in Figure 3. The majority and most significant improve-
ments were achieved during the first 400 seconds. Afterwards, the
solution value could still be enhanced, but the gained improvements
decreased, and after 30 minutes almost no further progress could be
recorded. An exception to this behavior is instance T5, where the
best solution was found after just 14 seconds with a gap of 0.01%.
These outcomes emphasize that the presented heuristic not only
generates high-quality solutions, but is also capable of finding good
results in a short time.

6 CONCLUSION
In this article we presented a heuristic solution approach to RSRP-
PdM. We first defined the problem and then introduced two graph
models: The first is used to model the non-maintenance relaxation
of RSRP-PdM, while the other provides an approximation to the
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Table 1: Characteristics and results for the test instances.

Instance Trips Destinations Vehicles Solution Value Lower Bound Gap in % Gap after 180 s in % Running Time in s

T1 566 8 6 269,728.67 261,432.23 3.08 3.08 3,517
T2 608 10 7 436,955.86 428,348.63 1.97 2.73 2,988
T3 636 15 16 1,427,088.22 1,380,028.25 3.30 4.28 3,597
T4 679 9 8 196,410.58 189,576.54 3.48 3.48 3,387
T5 813 16 14 327,804.96 327,770.13 0.01 0.01 14
T6 919 17 29 2,355,022.71 2,290,595.54 2.74 3.45 3,545

Figure 3: Gaps of all instances over time.

problem itself. Then, we discussed the individual steps of the pro-
posed algorithm. These consist of an ILP to find an initial solution
to the non-maintenance relaxation, a method for approximate main-
tenance scheduling and finally a local search procedure based on
the multiple random swapping of trips. The effectiveness of the pro-
posed algorithm is then demonstrated by conducting computational
experiments on a set of test instances.

Possible next steps for future research are a combination of the
presented approach with simulated annealing as well as the investi-
gation of othermeta-heuristics. Furthermore, it would be interesting
to examine whether it is more effective to employ these heuristics
on the non-maintenance relaxation and postpone the maintenance
scheduling to a later step, or whether it is advantageous to apply
these approaches directly to the state-expanded event-graph.
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