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ABSTRACT
Physical Cell IDs (PCIs) are numerical identifiers crucial for dis-
tinguishing various antennas, or cells, within telecommunication
networks like 5G. They play a vital role in facilitating the efficient
connection of mobile devices to different cells, preventing issues
such as interference. However, the growing scale of 5G networks,
coupled with a limited pool of unique PCIs, allocating different PCI
to adjacent cells is a challenge known as the PCI planning problem.

In this scenario, this article explores the use of Quantum Com-
puting (QC) to solve the PCI planning problem. With remarkable
advancements in recent years, QC has shown great potential for
solving complex optimization problems. To discern the advantages
QC could bring to PCI planning, we analyzed the performance of
classical and quantum methods across diverse network configu-
rations. Our results show that quantum methods yield solutions
equivalent to exhaustive search but with substantially reduced
execution time, opening new research opportunities in QC and
telecommunications.

1 INTRODUCTION
Mobile phones can transmit and receive data by connecting to
antennas, also known as cells, at specific frequencies. These cells
are often distributed among different telecommunications towers
and are identified through a number known as Physical Cell ID (PCI).
It is essential to assign distinct PCI values to nearby cells to mitigate
Inter-Cell Interference (ICI), i.e., using the same frequency band by
adjacent cells. An efficient PCI allocation provides a high-quality
communication service to many users, avoiding, for example, long
cell allocation time.

However, the number of available PCIs is limited to only 1008
in current 5G networks, making the efficient allocation of these
identifiers challenging, especially with these networks’ growing
density. This problem, known as the PCI planning problem, is
an NP-complete combinatorial optimization problem, with recent
works in the area proposing the use of heuristics, such as reuse
distance [9] and Glowworm swarm optimization (GSO)[11]. For
example, commercial tools such as Atoll by Forsk use Monte Carlo
simulation [6] to solve the PCI planning problem.
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The innovative work of Gui et al. [7], for example, proposes a
new combinatorial optimization model to describe collision, confu-
sion, and𝑚𝑜𝑑 𝑞 interference comprehensively and quantitatively.
The PCI planning problem was mapped as a Binary Quadratic Pro-
gramming (BQP) model, and a Greedy algorithm was developed to
configure PCIs automatically for each cell in the whole network.
To evaluate the optimization performance of the proposed algo-
rithm, numerical simulations were performed compared with the
scheme implemented in the current network and the classical graph
coloring algorithm. The experimental results demonstrated that
the Greedy algorithm had a significant advantage in reducing the
collision, confusion, and𝑚𝑜𝑑 3 interference in scenarios using 1131
cells and 30 PCI. The Greedy algorithm not only eliminates conflict
and confusion completely but also reduces the mod 3 interference
by 26.213% more than the baseline scheme and far more than the
improvement ratio of 4.436% given by the classical graph coloring
algorithm.

On the other hand, Quantum Computing (QC) has seen rapid
advancement in recent years, with companies like IBM and D-Wave
launching new computers almost every year and an estimated in-
vestment of US$ 38.6 billion worldwide in just 20231. Among the
various application possibilities, QC has excellent potential for solv-
ing combinatorial optimization problems, such as PCI planning, due
to using quantum mechanical phenomena, such as superposition.
This phenomenon implies the main difference between classical
and quantum computers: while the former use the bit as the basic
unit of information, which can be 0 or 1, quantum computers use
the quantum bit (qubit), a linear combination of the base states 0
and 1, allowing more information processing with fewer units.

The first work to propose using QC in PCI planning is Boella et
al. Using a simpler Quadratic Unconstrained Binary Optimization
(QUBO) formulation, [4] executed experiments using the quantum
computer from D-Wave to solve a PCI planning. QUBO is a mathe-
matical representation that provides a powerful tool for formulating
and solving certain types of problems in computer science, particu-
larly those that are NP-hard. The formulation was applied to the
PCI planning of 5G and 4G and compared to the legacy procedure,
Fast Greedy Algorithm. To analyze the algorithm’s potential, a se-
ries of tests using a sample set of 450 cells of the TIM network were
performed, decreasing the number of Secondary Synchronization
Signal (SSS) compared to the maximum. In fact, as the number of
SSS decreases, the probability of violating the constraints increases.

1https://qureca.com/overview-of-quantum-initiatives-worldwide-2023/
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In light of the aforementioned considerations, this paper further
explores the potential of QC in solving the PCI planning problem.
Building upon the formulation introduced by [7], we have devised
classical and quantum algorithms to scrutinize their performance
across diverse network configurations characterized by varying
numbers of cells and PCI. The experiments were also performed
using a D-Wave system quantum annealing-based computer.

To the best of our knowledge, this study is one of the pioneering
endeavors to investigate the PCI planning problem within quantum
machines comprehensively. Our investigation meticulously exam-
ines the influences of different parameters on the execution time
and the quality of the obtained results (i.e., how close to the optimal
value), thus contributing novel insights to the evolving landscape of
quantum computing applications in telecommunications planning.

We performed experiments using three methods: exact brute
force, Steepest Descent heuristics, and the hybrid CQMmethod. We
systematically varied the number of cells and distributed PCIs across
66, exploring diverse cell arrangements and yielding 64 unique
scenarios for each method. Our experiments show clear empirical
evidence in favor of quantum computing solutions when comparing
their performance with the exact methods and heuristics.

This paper is organized as follows: Section 2 details the PCI
planning problem; Section 3 explains the QUBO model required to
solve the problem; Section 4 describes the experimental environ-
ment and algorithms used, while Section 5 discuss the obtained
results; finally, Section 6 summarise the main conclusions and
futures works of this research.

2 THE PCI PLANNING PROBLEM
The PCI is crucial in assisting User Equipment (UEs - the technical
term for mobile devices) in identifying which cell to connect to
among various signals within the same frequency. It comprises
two parts: Primary Synchronization Signal (PSS), which can have
values of 0, 1, or 2, and Secondary Synchronization Signal (SSS),
with values ranging from 0 to 355. These elements combine to form
the PCI using the formula 𝑃𝐶𝐼 = 3 ∗ 𝑆𝑆𝑆 + 𝑃𝑆𝑆 . In the 5G context,
this results in a total of 1008 possible PCI values, allowing for reuse
when conducting PCI planning in scenarios with a higher number
of cells.

Due to the finite number of available PCIs, reuse becomes in-
evitable in networks with a cell count exceeding 1008. However,
the wrong allocation of PCI will significantly increase the occur-
rence of ICI. To mitigate these ICIs effectively, it is imperative to
thoroughly examine scenarios involving collisions, confusion, and
𝑚𝑜𝑑 𝑞 interference within neighboring cells (i.e., adjacent cells less
than 1 km apart) operating on the same frequency. This compre-
hensive analysis is pivotal for optimizing PCI allocation strategies
and enhancing overall network performance.

In regular use, as described by Figure 1 (a), UE navigates from
one cell to another with different PCI. Collision may occur if some
neighboring cells have the same frequency and PCI, Figure 1 (b). In
this case, it is difficult for the UE to select which cell to address, as
there are two different cells with the same PCI.

Confusion may occur with two or more neighbor cells sharing
the same frequency and PCI, shown in Figure 1 (c), when the UE

leaves a cell with a PCI and goes to a region with two cells with the
same PCI.

Similar to the collision scenario,𝑚𝑜𝑑 𝑞 interference may occur
in some neighboring cells with the same frequency, as shown in
Figure 1 (d); the PCI 𝑚𝑜𝑑 𝑞 value of one cell is equal to the PCI
𝑚𝑜𝑑 𝑞 value of other cells.

Figure 1: Types of Interferences

3 OPTIMIZATION MODEL
The Quadratic Unconstrained Binary Optimization (QUBO) model
is applied to solve combinatorial optimization problems where the
goal is to find the optimal binary values (0 or 1) for a set of variables
to minimize a quadratic objective function. The optimize function
can be formally defined by Equation 1:

min 𝐹 (𝑥) =
𝑁∑︁
𝑖< 𝑗

𝑄𝑖, 𝑗𝑥𝑖𝑥 𝑗 +
𝑁∑︁
𝑖

𝑄𝑖,𝑖𝑥𝑖 (1)

, where 𝑄 is a 𝑁𝑥𝑁 triangular matrix with real values, with the
diagonal representing the linear weight terms, the off-diagonal the
quadratic weight terms, and 𝑥 is a vector of the binary variables.

This is an important formulation because real-world problems
can be naturally transformed into QUBO form by providing a way
to represent classical optimization problems as quantum problems.
In addition, quantum annealer computers, like those offered by
D-Wave2, are designed to solve QUBO problems efficiently.

The QUBO formulation used in this work to address the PCI
assignment problem was the same as that presented by Gui et al.
[7], where the objective is to minimize collisions, confusion, and
𝑚𝑜𝑑 𝑞 interference.

This work assigns one binary variable for each pair composed
by a cell 𝑖 to PCI 𝑘 :

𝑥𝑖,𝑘 =

{
1 if cell 𝑖 is associated to PCI 𝑘
0 otherwise

(2)

For this formulation, a matrix 𝐴 of dimensions 𝑛 × 𝑛, where 𝑛 is
the number of cells, is constructed, and each element 𝑎𝑖, 𝑗 represents
the relationship between the cell in row 𝑖 and the cell in column
𝑗 . The value 1 will be assigned when they are neighbors and 0

2https://www.dwavesys.com/
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otherwise. Furthermore, the value zero will be associated with the
main diagonal.

In the same way, another matrix 𝐵 is created, also of dimensions
𝑛 × 𝑛, which represents the state of confusion between the cells.
Each element 𝑏𝑖, 𝑗 of 𝐵 represents the relationship between the cell
in row 𝑖 and the cell in column 𝑗 . The value 1 will be assigned when
they are neighbors due to confusion, and 0 otherwise.

Finally, the matrix 𝐿 of dimension𝑚 × 𝑞 calculate𝑚𝑜𝑑 𝑞 inter-
ferences of𝑚 PCIs. Each element 𝑙𝑖, 𝑗 indicates if the 𝑖-th PCI has
𝑚𝑜𝑑 𝑞 equal to 𝑗 . The general expression of 𝐿 is:

𝐿 = [𝐼𝑞, 𝐼𝑞, . . . , 𝐼𝑞︸        ︷︷        ︸
𝑚/𝑞 𝑖𝑡𝑒𝑚𝑠

]𝑇 (3)

, where 𝐼𝑞 is the 𝑞 × 𝑞 identity matrix.
Thus, the QUBO model for PCI planning is described by the

objective function

min
𝑖, 𝑗

𝐹 = 𝜔1

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗

𝑚∑︁
𝑘=1

𝑥𝑖,𝑘𝑥 𝑗,𝑘

+ 𝜔2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗

𝑚∑︁
𝑘=1

𝑥𝑖,𝑘𝑥 𝑗,𝑘

+ 𝜔3

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗

𝑞∑︁
ℎ=1

(
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘𝑙𝑘,ℎ) .(
𝑚∑︁
𝑘=1

𝑥 𝑗,𝑘𝑙𝑘,ℎ)

s.t.
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘 = 1,∀𝑖 →
𝑛∑︁
𝑖

(
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘 − 1

)2
𝑥𝑖,𝑘 ∈ {0, 1},∀𝑖, 𝑘

(4)

with the constraint
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘 = 1,∀𝑖 →
𝑛∑︁
𝑖

(
𝑚∑︁
𝑘=1

𝑥𝑖,𝑘 − 1

)2
(5)

where 𝜔1, 𝜔2 and 𝜔3 are weighting factors, respectively, for the
condition of collision, confusion, and𝑚𝑜𝑑 𝑞 interference, 𝑛 is the
total of cells,𝑚 the number of PCI to be distributed, and the con-
straint that associates only one PCI to each cell leads to a penalty
function to be added to the QUBO formulation.

4 ENVIRONMENT AND ALGORITHMS
As previously mentioned, PCI planning is an NP-complete combi-
natorial optimization problem, and several studies have proposed
heuristics methods and other classical (i.e., non-quantum) strategies
to solve it efficiently [9][11].

In our analysis, we used two classical optimization methods:
(1) Exhaustive Search, which is the easiest method for find-

ing optimization solutions by testing all possible solutions.
Although this method can always find the best solution, its
use is not practical for large problems due to the exponen-
tial number of cases to be tested (combinatorial explosion).
This study used the exhaustive search in small scenarios as
a benchmark for the solution’s value for the heuristic and
quantum methods.

(2) GradientDescent, a simple iterative heuristic that gradually
moves toward a minimal local function based on its gradient.

The gradient of any differentiable function represents how
quickly it moves towards a local minimum. Therefore, the
gradient descent method moves in the opposite direction, al-
ways selecting the largest step. For our analysis, this method
was used as a benchmark for the algorithm execution time
for the exhaustive and quantum methods.

4.1 Adiabatic Quantum Computing
Adiabatic Quantum Computing (AQC) [2] stands as a fundamental
paradigm for quantum computation, drawing upon the adiabatic
theorem [5] in quantum mechanics. According to this theorem, a
quantum system will remain in its ground state if the associated
Hamiltonian changes sufficiently slowly. In broad strokes, AQC
commences with a simple Hamiltonian (�̂�0) whose ground state is
readily preparable. Over time, the Hamiltonian is smoothly changed
to represent the problem Hamiltonian (�̂�𝑓 ) wherein the ground
state encapsulates the solution to a computational problem. A pa-
rameterized time-dependent Hamiltonian describes the algorithms
associated with AQC (Equation 6)

�̂� = 𝐴(𝑡)�̂�0 + 𝐵(𝑡)�̂�𝑓 (6)

where 𝑡 ∈ [0, 1] and 𝐴(𝑡) and 𝐵(𝑡) are the functions that describe
the interpolation between the Hamiltonians and that obey the
generic boundary conditions given by

𝐴(0) ≠ 0, 𝐵(1) ≠ 0, 𝐴(1) = 𝐵(0) = 0 (7)

As the system undergoes evolution, 𝐴(𝑡) gradually decreases
while 𝐵(𝑡) increases until, ultimately, the total Hamiltonian is solely
defined by the term associated with 𝐵(𝑡). If the process is slow
enough -achieving adiabatic conditions- the resultant state will
correspond to the ground state of the final Hamiltonian of the
system, which encodes a solution to the problem.

4.2 Quantum Annealing
Quantum annealing (QA) [10] represents a specific implementation
of AQC, with the time evolution of the quantum system draw-
ing inspiration from the classical annealing process in metallurgy,
where a material is heated and slowly cooled to remove defects
and optimize its structure. QA is a heuristic quantum approxima-
tion because the switch from �̂�0 to �̂�𝑓 is determined heuristically,
and the adiabatic conditions are not guaranteed. As a result, QA
is particularly well-suited for encoding binary combinatorial opti-
mization problems, expressed in Ising or QUBO form. These two
representations are equivalent and can be readily transformed into
each other through a simple change of basis. This flexibility makes
QA a valuable approach for tackling a broad class of optimization
challenges in quantum computing.

One of the most popular, widely used QA devices is the D-Wave
System, featuring a quantum processor with a set of supercon-
ducting qubits arranged in a configuration analogous to a chain
of Ising-type magnetic spins. In this platform, �̂�0 is constructed
by applying transverse magnetic fields, aligning the spins (qubits)
in the direction of the field. The adiabatic interpolation (process
�̂�0 → �̂�𝑓 ) unfolds by slowly reducing the intensity of the trans-
verse field to zero. Simultaneously, the intensity of the couplings
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between the qubits increases, facilitating the transition from the
initial state to the final Hamiltonian.

5 COMPUTATIONAL EXPERIMENTS
As previously mentioned (Section 4.2), D-Wave Systems is the mar-
ket leader in QA devices. Founded in 1999 in Canada, the company
developed “the world’s first commercially available quantum com-
puter” with 128 qubits in 2011 [8]. Currently, its more powerful
device, the Advantage3, has 5000 qubits and an optimized topol-
ogy, being capable of solving complex commercial problems with
more than 1 million variables. Over the years, the company has
accumulated more than 200 patents and 100 research publications
in various areas, such as logistics and financial services.

D-Wave is not only a pioneer in quantum hardware but also in
software and services. It developed its own Python-based open-
source software development kit (SDK), the D-Wave Ocean 4. Addi-
tionally, the company provides a cloud service, the D-Wave Leap5,
for real-time remote access to its devices. The experiments reported
in this article were performed directly through the Leap interface.

The essential elements of a D-Wave solution are the samplers
and solvers. A sampler is a process that samples low-energy states
from objective functions to find the best solution. It takes a problem
formulated as QUBO and returns a set of potential solutions rep-
resented as binary assignments (0s and 1s) for the variables in the
model. These samplers run on a device known as a solver, which
can be mainly classified into three types: (1) Classical (i.e., a classic
computer), (2) Quantum (i.e., a QA computer), and (3) Hybrid, an
architecture that explores the advantages of both types of resources
(classical and quantum). In our experimental analyses, we’ve used
two classical solvers, Exact Solver and Steepest Decent, which
implement, respectively, the exhaustive search and a discrete ver-
sion of gradient descent, and a Hybrid Solver Service (HSS) known
as Constrained Quadratic Model (CQM).

5.1 Constrained Quadratic Models
CQM involves linear constraints, i.e., the constraint does not need
to be translated into a penalty function. Thus, the restriction that
associates only one PCI for each cell presented in Equation 5 can be
used without the need to rewrite it as a penalty. In this framework,
besides the quantum stage, a classical pre-processing involves gen-
erating an initial solution with a classical heuristic to the CQM
that can be used as a starting point for the quantum annealing
algorithm, potentially reducing the time required to find a good so-
lution. The starting point will depend on the classic algorithm used
in the heuristic. In our experiment, we used the default D-Wave
configuration, which corresponds to Simulated Annealing.

Figure 2 illustrates howHSS CQMworks [1]. The solver (blue) in-
vokes some heuristics (threads) that run on classic CPUs and GPUs
(green) and searches for good-quality starting point solutions. Each
heuristic solver contains a quantum module (QM) that formulates
and sends quantum queries to a D-Wave QPU (orange). The re-
sponses to these queries can guide heuristic search or improve the

3https://www.dwavesys.com/solutions-and-products/systems/
4https://www.dwavesys.com/solutions-and-products/ocean/
5https://www.dwavesys.com/solutions-and-products/cloud-platform/

quality of a current set of solutions. In the end, each heuristic sends
its best solutions to the solver.

Figure 2: How CQM works at D-Wave.

5.2 The problem instances
Were created two groups of instances:

(1) Synthetic Instances - cell arrangements generated syntheti-
cally to simulate collision, confusion and mod q interference.

(2) Real Instances - cell arrangements based on real world
datasets.

Each algorithm was expected to be tested through 64 instances
(Qtty Exp), with varying cell neighborhood arrangements (Ins) and
the quantity of PCI available for allocation (Qtty PCI), according to
Table 1. Synthetic instances were arranged in four ways: a 5-cell
instance, named X5, Figure 3, with matrix A configured in chess
pattern, i.e., cells 1, 3, and 5 neighbors of cells 2 and 4; and 5, 6,
and 9-cell instances, with all cells being neighbors between to each
other, respectively named V5, Figure 4, V6, and V9. Real instances
were created using public information of 5G network cells available
from a telecommunications governmental agency in Brazil6. The
circles in Figure 5 define the groups with 15, 27, 48, and 66 cells
named R15 (yellow circle with a 0.5 km radius), R27 (white circle
with a 0.7 km radius), R48 (red circle with a 0.98 km radius), and
R66 (blue circle with a 1.25 km radius), respectively. Cells that are
less than 1 km apart are considered neighbors. In Figures 3 and 4,
who represent neighborhood matrix A, value 0, zero, indicates that
the cell from that line is not neighbor to the cell in that column, the
same way that the value 1, one, means that they are neighbors.

Figure 3: Instance X5, five cells as a chess pattern.

Initially, it was decided to assign the same weight to all penalties,
that is, the factors 𝜔1, 𝜔2, and 𝜔3 will have values equal to 1. This
promotes a better understanding of each algorithm, allowing them
to find solutions that satisfy all constraints in a balanced way. In
6https://sistemas.anatel.gov.br/se/public/view/b/licenciamento.php
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Figure 4: Instance V5, five cells all neighbors.

Table 1: Instances Distribution. Qtty PCI and Exp describe,
respectively, the number of PCI and experiments per instance

Ins Type Qtty PCI Qtty Exp

X5 Synth 1 to 5 5
V5 Synth 1 to 5 5
V6 Synth 1 to 6 6
V9 Synth 1 to 9 9
R15 Real 1 to 15 15
R27 Real 1,2,3,6,9,15,27 7
R48 Real 1,2,3,6,9,15,27,48 8
R66 Real 1,2,3,6,9,15,27,48,66 9

TOTAL 64

Figure 5: Real instances, showing cell arrangements with 15
cells (yellow circle), 27 cell (white circle), 48 cell (red circle)
and 66 cell (blue circle).

this scenario, of the three algorithms tested, the exact solver was
the slowest to complete each experiment. Furthermore, the fact of
having to traverse the entire search space made the execution of
some scenarios unfeasible. Thus, the algorithm failed to generate
results in 33 of the 64 predicted scenarios.

Table 2 shows the energy (i.e., the final Hamiltonian) of exact
(EX), steepest descent (SD), and CQM methods to some of the
synthetic instances simulated. Table 3 shows the energy of steepest
descent (SD) and CQM methods for some real instances simulated.
It can be seen that the exhaustive and CQM methods always find
the lowest energy when compared to SD.

Figures 6, 7 and 8 show the execution time for V9 instances
applying the exact algorithm, SD and CQM, respectively. It can be

seen that SD has the shortest execution time, but, as highlighted in
Table 2, this method does not always present the optimal solution
(e.g, instances V5 with 4 and 5 PCI). This behavior is repeated in
all other instances. These graphs also demonstrate the more rapid
growth of the exhaustive search in comparison to other methods.

Figure 6: Execution duration based on the quantity of allo-
cated PCI - Instance V9 - Exact Solver.

Figure 7: Execution duration based on the quantity of allo-
cated PCI - Instance V9 - SteepestDescent Solver.

6 CONCLUSION
This paper explored the use of quantum computing to better solve
the Physical Cell ID (PCI) planning problem. PCI planning is essen-
tial for minimizing the impacts of Inter-Cell Interference (ICI) in 5G
Networks, such as collision, confusion, and𝑚𝑜𝑑 𝑞 interference. Due
to its complexity, this problem is usually solved with heuristics.

Our results show a clear advantage of quantum computing. CQM,
the hybrid quantum-classical method, found solutions equivalent to
the exact solver, but faster. In addition, besides the steepest descent
has the shortest run, it does not produce optimal results.

As a future work, we plan to enhance our comparative analysis
by exploring D-Wave Quantum Solvers, such as the Binary Qua-
dratic Model (BQM)7, other classic heuristics, such as Simulated
7https://docs.ocean.dwavesys.com/en/stable/concepts/bqm.html
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Figure 8: Execution duration based on the quantity of allo-
cated PCI - Instance V9 - CQM Solver.

Table 2: Energy of Synthetic Instances

Ins PCI EX SD CQM

X5 1 32 32 32
X5 2 8 8 8
X5 3 4 4 4
X5 4 2 2 2
X5 5 0 0 0
V5 1 60 60 60
V5 2 24 24 24
V5 3 12 12 12
V5 4 8 12 8
V5 5 4 8 4
V6 1 90 90 90
V6 2 36 36 36
V6 3 18 18 18
V6 4 14 14 14
V6 5 10 10 10
V6 6 6 12 6
V9 1 216 216 216
V9 2 96 96 96
V9 3 54 54 54
V9 4 44 48 44
V9 5 36 36 36
V9 6 30 30 30
V9 7 26 28 26
V9 8 22 30 22
V9 9 18 22 18

Annealing, Tabu Search, and better exact algorithms for solving
QUBO problems [3]. Additionally, we want to extend our current
analysis beyond Quantum Annealing systems, testing, for example,
gate-based systems such as the ones provided by IBM8.

8https://www.ibm.com/quantum

Table 3: Energy of Real Instances

Ins PCI SD CQM Ins PCI SD CQM

R15 2 266 242 R27 3 566 468
R15 3 148 134 R27 6 336 258
R15 4 124 98 R27 9 222 180
R15 5 104 66 R27 15 188 154
R15 6 84 62 R27 27 152 126
R15 7 70 58 R48 3 1392 1266
R15 8 56 54 R48 6 852 682
R15 9 54 50 R48 9 616 488
R15 10 50 46 R48 15 420 378
R15 11 62 44 R48 27 354 312
R15 12 62 42 R66 3 1896 1824
R15 13 44 40 R66 6 1220 920
R15 14 44 38 R66 9 910 650
R15 15 42 38 R66 15 614 468
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