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ABSTRACT
Assume that a proper coloring (PC) is available for a given 
undirected graph 𝐺 = (𝑉, 𝐸). Assume as well that all ver-
tices in any of the color classes at hand are simultaneously 
dominated by a same vertex. Such a PC is then called a 
dominated coloring (DC) of 𝐺 and the least number of color 
classes a DC might have, 𝜒𝑑𝑜𝑚(𝐺), is called the dominated 
chromatic number of 𝐺. In turn, the problem of finding a 
DC of cardinality exactly 𝜒𝑑𝑜𝑚(𝐺) is called the Dominated 
Coloring Problem (DCP). In this paper, we investigate two In-
teger Programming formulations for DCP and accompanying 
Branch-and-bound algorithms. One formulation relies on the 
concept of representatives and is strengthened with a set of 
valid inequalities that substantially improves its Linear Pro-
gramming Relaxation bounds for sparse graph instances. The 
other is a set covering (SC) formulation that assigns binary 
variables to the maximal cliques in the open neighborhoods 
of every individual vertex of 𝐺. Our preliminary numerical 
results suggest that the clique formulation is, on average, 
47% stronger than the formulation by representatives. Addi-
tionally, its corresponding Branch-and-bound algorithm also 
provides substantially better results, despite the fact that, 
at least for the moment, we explicitly enumerate and keep 
all necessary cliques, as opposed to resorting to a properly 
defined r estricted master problem, i n a  column generation 
scheme.

1 INTRODUCTION
Let 𝐺 = (𝑉, 𝐸) be a undirected graph with 𝑛 = |𝑉 | vertices 
and 𝑚 = |𝐸| edges. The (open) neighborhood of 𝑖 ∈ 𝑉 , 
𝑁(𝑖) = {𝑗 ∈ 𝑉 : {𝑖, 𝑗} ∈ 𝐸}, corresponds to the set of vertices 
that share an edge of 𝐸 with 𝑖. Vertex 𝑖 ∈ 𝑉 dominates a set 
𝑆 ⊂ 𝑉 if and only if 𝑆 ⊆ 𝑁(𝑖) applies. A proper coloring of 𝐺, 
or simply a coloring, is a function 𝑐 : 𝑉 → {1, 2, . . . , 𝑛} such 
that no pair of adjacent vertices are colored with the same 
color. A color class 𝐶𝑖 = {𝑗 ∈ 𝑉 : 𝑐(𝑗) = 𝑖} corresponds to all 
vertices of 𝐺 which are assigned a same color and consequently
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defines a stable set of 𝐺. A 𝑘-coloring of 𝐺 is a partitioning
of 𝑉 into 𝑘 color classes. Additionally, a 𝑘-coloring of 𝐺 is
dominated if and only if 𝐶𝑖 ⊆ 𝑁(𝑢) holds for some 𝑢 ∈ 𝑉 , for
every color class 𝐶𝑖 in the partitioning. Assume, from now
on, that when we say a vertex of 𝑉 dominates a color class
it implies that such a vertex dominates, i.e., is a neighbor to,
all vertices in that class. The Dominated Coloring Problem
(DCP) then asks a dominated 𝑘-coloring of 𝐺 with 𝑘 as small
as possible, i.e., one for which 𝑘 = 𝜒𝑑𝑜𝑚(𝐺) applies. Note that
according to such a definition, color classes may eventually
contain a single vertex, provided 𝐺 has no leaves.

Vertex coloring problems [8] are intensively investigated
in the literature. This applies mostly due to their widespread
theoretical and practical applicability and also to the fact
that they are generally NP-complete. More recently, prob-
lems combining coloring and domination demands started
to be investigated, DCP among them. In particular, DCP
was introduced in [10] where its decision version was proven
NP-Complete for arbitrary graphs with 𝜒𝑑𝑜𝑚(𝐺) ≥ 4. Addi-
tionally, a polynomial time algorithm for recognizing graphs
with 𝜒𝑑𝑜𝑚(𝐺) ≤ 3 is also proposed in [10]. Besides its intrin-
sic theoretical importance, DCP finds applications in social
networks [5], in genetic networks [6] for finding minimum
groups of proteins satisfying some given types of interactions
and in the interconnection of computer networks [7].

A problem that is closely related to DCP is the Dominator
Coloring Problem (DtorCP) [4, 6]. A coloring is said to be
feasible for it if every vertex of 𝐺 dominates at least one
color class, possibly its own color class (i.e., dominates all
vertices in that class). Accordingly, among other differences,
dominance requirements differ from DCP to DtorCP.

To the best of our knowledge, no Integer Programming (IP)
formulations or IP based exact solution approach appears to
exist for DCP. In this paper, we introduce two IP formula-
tions, valid inequalities and Branch-and-bound algorithms
for the problem. Apart from this introduction, the paper
contains four additional sections. In Section 2, we present
the formulations and in Section 3 we give some implementa-
tion details of our Branch-and-bound algorithms for solving
them. Some preliminary computational results are reported
in Section 4. We conclude the paper in Section 5, where
we highlight our main findings and offer some directions for
future research.
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2 INTEGER PROGRAMMING
FORMULATIONS

The presentation that follows relies on some standard nota-
tion in Graph Theory [2], summarized next. The closed neigh-
borhood of 𝑖 is 𝑁 [𝑖] := 𝑁(𝑖) ∪ {𝑖}. The anti-neighborhoods

of 𝑖 are 𝑁(𝑖) = 𝑉 ∖ (𝑁(𝑖) ∪ {𝑖}) and 𝑁 [𝑖] = 𝑉 ∖𝑁(𝑖). Pairs
of vertices {𝑖, 𝑗} that are not neighbors in 𝐺 are identified

by the end points to the edge 𝑒 = {𝑖, 𝑗} ∈ 𝐸, where 𝐸 is

the complement of 𝐸. Accordingly, 𝐺 is the graph (𝑉,𝐸),
that complements 𝐺. We assume that 𝐺 is connected since
otherwise DCP would then decompose into various, smaller,
DCPs, one for every connected component of the graph. We
also assume that 𝐺 has no leaves, since otherwise any leaf
𝑖 ∈ 𝑉 might be colored with the same color of a vertex 𝑗
adjacent to the only neighbor of 𝑖, 𝑝 (𝑝 ∈ 𝑁(𝑖)∩𝑁(𝑗)), with-
out increasing the chromatic number. Given a set 𝑆 ⊆ 𝑉 ,
the subgraph induced by 𝑆 is 𝐺[𝑆] = (𝑆,𝐸(𝑆)), where 𝐸(𝑆)
denotes the set of edges of 𝐸 with both endpoints in 𝑆.
Likewise, 𝐺[𝑆] = (𝑆,𝐸(𝑆)) denotes a subgraph of 𝐺, where

𝐸(𝑆) = {{𝑖, 𝑗} ∈ 𝑆 : {𝑖, 𝑗} ∈ 𝐸}. A clique of 𝐺 is a set 𝑆 ⊆ 𝑉
such that 𝐺[𝑆] is complete, i.e., all vertices in 𝑆 are pairwise
neighbors in 𝐺. Thus, a stable set of 𝐺 corresponds to a
clique of 𝐺, after we extend the clique definition to subsets of
vertices of size 2 and 3, i.e., respectively edges and triangles.
As usual, we assume that B is the set {0, 1}.

2.1 A formulation by representatives

The formulation uses two sets of decision variables, namely:

∙ x = {𝑥𝑖𝑗 ∈ B : 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁 [𝑖], 𝑗 ≥ 𝑖}. If 𝑥𝑗𝑗 = 1
applies, vertex 𝑗 is colored with color 𝑐(𝑗) = 𝑗, and
is said to represent 𝐶𝑗 , the color class containing it.
Conversely, if 𝑥𝑗𝑗 = 0 holds, vertex 𝑗 must belong to a
color class represented by one of its anti-neighbors. In
more detail, variable 𝑥𝑖𝑗 for 𝑖 < 𝑗 is used to indicate
whether or not vertex 𝑗 belongs to the color class 𝐶𝑖.
In case it does, 𝑥𝑖𝑗 = 1 must hold and both vertices are
colored identically with color 𝑐(𝑖) = 𝑐(𝑗) = 𝑖 and the
two vertices therefore belong to 𝐶𝑖. Otherwise, 𝑥𝑖𝑗 = 0
applies. Note that, in order to break formulation sym-
metries, variables 𝑥𝑖𝑗 are not assigned to anti-neighbors
𝑖, 𝑗 such that 𝑖 > 𝑗.

∙ z = {𝑧𝑝𝑢 ∈ B : 𝑢 ∈ 𝑉, 𝑝 ∈ 𝑁(𝑢)}. Variable 𝑧𝑝𝑢 is used to
indicate whether or not 𝑢 ∈ 𝑉 is the vertex chosen to
dominate 𝐶𝑝, an eventual color class represented by 𝑝.
In case it is the chosen vertex, all vertices colored with
color 𝑐(𝑝) = 𝑝 must be neighbors of 𝑢. Thus, if 𝑧𝑝𝑢 = 1,
𝐶𝑝 ⊆ 𝑁(𝑢) must hold.

DCP can be formulated as the following IP

𝜒𝑑𝑜𝑚(𝐺) = min

{︃∑︁

𝑖∈𝑉

𝑥𝑖𝑖 : (x, z) ∈ 𝒫𝑟 ∩ (B𝑑𝑥 ,B𝑑𝑧 )

}︃
, (1)

where the polyhedral set 𝒫𝑟 is defined by constraints (2)-(7)
and 𝑑𝑥 and 𝑑𝑧 respectively denote the dimension of x and z.
Accordingly, 𝒫𝑟 is thus formulated as

∑︁

𝑣∈𝑁 [𝑢],𝑣≤𝑢

𝑥𝑣𝑢 = 1 𝑢 ∈ 𝑉 (2)

𝑥𝑝𝑖 + 𝑥𝑝𝑗 ≤ 𝑥𝑝𝑝 {𝑖, 𝑗} ∈ 𝐸, 𝑝 ∈ 𝑁(𝑖) ∩𝑁(𝑗) (3)

𝑝 < 𝑖, 𝑝 < 𝑗
∑︁

𝑢∈𝑁(𝑣)

𝑧𝑣𝑢 = 𝑥𝑣𝑣 𝑣 ∈ 𝑉 (4)

𝑧𝑣𝑢 + 𝑥𝑣𝑡 ≤ 𝑥𝑣𝑣 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑁(𝑢), (5)

𝑡 ∈ 𝑁(𝑢) ∩𝑁(𝑣), 𝑣 < 𝑡

𝑥𝑖𝑗 ∈ [0, 1] 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁 [𝑖], 𝑗 ≥ 𝑖 (6)

𝑧𝑝𝑢 ∈ [0, 1] 𝑢 ∈ 𝑉, 𝑝 ∈ 𝑁(𝑢) (7)

Constraints (2) enforce that all vertices of 𝐺 are assigned
to a color class and the number of classes is minimized by
the objective function in (1). In turn, constraints (3) imply
that a vertex 𝑝 cannot represent the color of a anti-neighbor,
say 𝑖, unless 𝑝 is the representative of its own color class.
They also enforce that no pair of neighbors 𝑖 and 𝑗 can be
represented by a common anti-neighbor 𝑝.

The fact that every color class must be dominated by a
vertex is ensured by constraints (4) and (5). Notice that
constraints (4) imply that if 𝑣 represents a color class, there
must be another vertex 𝑢, in the neighborhood of 𝑣, such
that 𝑧𝑣𝑢 = 1 applies. Now, under the assumption that 𝑧𝑣𝑢 = 1
holds, constraints (5) forbid vertex 𝑣 to represent a vertex 𝑡
outside the neighborhood of 𝑢, the vertex chosen to dominate
the color class 𝐶𝑣. Note that a color class 𝐶𝑣 may well be
dominated by more than two neighbors of 𝑣. The formulation,
however, requires that only one variable, say 𝑧𝑣𝑢 : 𝑢 ∈ 𝑁(𝑣),
assumes value one in such cases.

Formulation 𝒫𝑟 could be reinforced, for instance, by re-
placing inequalities (3) by its stronger clique form:

∑︁

𝑖∈𝑄,𝑖>𝑝

𝑥𝑝𝑖 ≤ 𝑥𝑝𝑝, 𝑝 ∈ 𝑉,𝑄 a maximal clique of 𝐺[𝑁(𝑝)].

(8)
It can also be strengthened with the following set of valid

inequalities:

𝑥𝑘𝑡 ≤
∑︁

𝑖∈𝑁(𝑡)∩𝑁(𝑘)

𝑧𝑘𝑖 , 𝑘 ∈ 𝑉, 𝑡 ∈ 𝑁(𝑘), 𝑡 > 𝑘. (9)

If 𝑥𝑘𝑡 = 0 applies, inequality (9) is trivially valid. Other-
wise, if 𝑥𝑘𝑡 = 1 holds, color 𝑘 must be dominated by a vertex
in the open neighborhood of both 𝑘 and 𝑡. Hence, inequalities
(9) are valid for DCP.

For the moment, we do not use the stronger set (8) to
enforce proper colorings of 𝐺. Thus, denote by 𝒫+

𝑟 the poly-
hedral region 𝒫𝑟 reinforced with constraints (9) only, i.e., 𝒫+

𝑟

is defined by constraints (2)-(7) and (9).

2.2 A formulation based on cliques of
𝐺[𝑁(𝑢)]

From the seminal work of Mehrotra and Trick [9] onwards,
it became a common practice to use maximal cliques to
formulate the vertex coloring problem and variants of it.
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As a result, column generation based Branch-and-bound
algorithms became the standard approach for solving coloring
problems. Our additional DCP formulation complies with this
standard. It is a set covering one that assigns binary variables
to a subset of the cliques of 𝐺. In doing so, the formulation
makes sure that every vertex of 𝐺 must be part of at least
one clique. Given that color classes must be dominated by at
least one vertex, one must only consider cliques contained in
{𝐺[𝑁(𝑢)] : 𝑢 ∈ 𝑉 }.

Our formulation makes a clear distinction between cliques
of sizes 3 or greater and cliques of size 2. As we shall discuss
later on, among all cliques of size at least 3 for the graphs
{𝐺[𝑁(𝑢)] : 𝑢 ∈ 𝑉 }, we can restrict ourselves to maximal
ones.

Prior to introducing the formulation, additional notation is
required. Firstly, let 𝒬𝑢 denote the set of all maximal cliques
of 𝐺[𝑁(𝑢)] with at least 3 vertices. Accordingly, denote by

𝒬 =
⋃︀

𝑢∈𝑉 𝒬𝑢 the set of all these cliques in 𝐺[𝑁(𝑢)] . Ad-

ditionally, define the set 𝛿(𝑢) as the subset of edges of the

complement graph 𝐺 that are incident to 𝑢. Furthermore, de-
fine 𝛿𝑅(𝑢) = {{𝑢, 𝑝} ∈ 𝛿(𝑢) : 𝑢, 𝑝 ∈ 𝑁(𝑣) for some 𝑣 ∈ 𝑉 } as

the subset of edges of 𝛿(𝑢) whose endpoints share a common

neighbor in 𝐸. Finally, define 𝐸𝑅 =
⋃︀

𝑢∈𝑉 𝛿𝑅(𝑢).
We now discuss the decision variables required by the for-

mulation. Recall that DCP allows for color classes composed
by singleton vertices. Since we assume that 𝐺 is connected,
any color class 𝐶𝑢 composed by just a single vertex 𝑢 can
be dominated by a neighbor of 𝑢. In order to model the case
where a vertex alone defines a color class, the formulation
makes use of variables w = {𝑤𝑢 ∈ B : 𝑢 ∈ 𝑉 }. If 𝑤𝑢 = 1,
𝐶𝑢 = {𝑢}, 𝑢 represents itself and no other vertex in 𝑉 . Oth-
erwise, if 𝑤𝑢 = 0 holds, vertex 𝑢 must be part of a color class
containing at least two vertices.

Note that if a color class is composed by just two vertices,
say two anti-neighbors 𝑢 and 𝑝, then these two vertices must
define an edge of 𝛿𝑅(𝑢) (and 𝛿𝑅(𝑝)) as they must have a
common neighbor 𝑣 that dominates them. To model these
cliques, the formulation uses binary variables y = {𝑦𝑢𝑝 ∈ B :

{𝑢, 𝑝} ∈ 𝐸𝑅}. Since two anti-neighbors 𝑢 and 𝑝 that do not
share a common neighbor cannot define a color class, the
formulation needs not to assign variables to edges in 𝐸 ∖𝐸𝑅.

The formulation also uses binary decision variables 𝜆 =
{𝜆𝑄 ∈ B : 𝑄 ∈ 𝒬} associated to the maximal cliques in 𝒬. If
𝜆𝑄 = 1, all the vertices in 𝑄 define a color class. Otherwise,
if 𝜆𝑄 = 0 holds, at least one vertex in 𝒬 is colored differently
from the others.

Our set covering based formulation is defined as

𝜒𝑑𝑜𝑚(𝐺) = min

⎧
⎨
⎩

∑︁

𝑄∈𝒬
𝜆𝑄 +

∑︁

𝑢∈𝑉

𝑤𝑢 +
∑︁

{𝑝,𝑞}∈𝐸𝑅

𝑦𝑝𝑞 :

(w,y, 𝜆) ∈ 𝒫𝑐 ∩ (B𝑛,B|𝐸𝑅|,B|𝒬|)
}︁
, (10)

where 𝒫𝑐 is the defined by constraints (11)-(14).

∑︁

𝑄∈𝒬:𝑢∈𝑄

𝜆𝑄 +
∑︁

{𝑢,𝑞}∈𝛿𝑅(𝑢)

𝑦𝑢𝑞 + 𝑤𝑢 ≥ 1 𝑢 ∈ 𝑉 (11)

𝜆𝑄 ∈ [0, 1] 𝑄 ∈ 𝒬 (12)

𝑤𝑢 ∈ [0, 1] 𝑢 ∈ 𝑉 (13)

𝑦𝑝𝑞 ∈ [0, 1] {𝑝, 𝑞} ∈ 𝐸𝑅

(14)

In order to attest its validity, initially note that the defini-
tion of the decision variables enforces that all color classes
are dominated by some vertex of 𝑉 . Therefore the dominance
property of our coloring is naturally enforced by set covering
constraints (11), which also ensure that every vertex belongs
to at least one color class. Since decision variables 𝜆 are
assigned to maximal cliques of {𝐺[𝑁(𝑢)] : 𝑢 ∈ 𝑉 } only, and
not to general cliques of these graphs, the formulation must
impose a covering of the vertices of 𝑉 and not a partitioning
of them. Additionally, in order to certify that assigning a
same vertex to two distinct color classes does not represent

a problem, let (�̂�, ŵ, ŷ) be an optimal solution to (10) with
�̂�𝑑𝑜𝑚(𝐺) color classes. Suppose as well that 𝑢 belongs to two
or more color classes in such a solution. A dominated coloring
of 𝐺 containing no more than �̂�𝑑𝑜𝑚(𝐺) color classes and such
that every vertex of 𝐺 belongs to a single color class, may

be obtained directly from (�̂�, ŵ, ŷ), as follows:

∙ If �̂�𝑢 = 1 and either 𝑦𝑢𝑝 = 1 or �̂�𝑄 = 1, 𝑢 ∈ 𝑄, applies,
one may safely set �̂�𝑢 = 0, and obtain a solution with
�̂�𝑑𝑜𝑚(𝐺)− 1 color classes, contradicting the optimality

of (�̂�, ŵ, ŷ).
∙ If two or more cliques with at least two vertices con-
tain the same 𝑢, we can remove 𝑢 from all but one
of them and an alternative optimal solution to (10),
with �̂�𝑑𝑜𝑚(𝐺) color classes is thus obtained. In partic-
ular, note that the resulting solution remains a proper
coloring of 𝐺.

Our numerical results show that optimal solutions to (10)
typically involve non-disjoint color classes. Accordingly, a fast
post-processing procedure based on the second observation
above suffices to obtain an alternative optimal solution, with
every vertex of 𝐺 belonging to exactly one color class.

3 ALGORITHMS FOR SOLVING THE
FORMULATIONS

We implemented two Branch-and-bound algorithms for solv-
ing DCP formulations 𝒫+

𝑟 and 𝒫𝑐, BBR and BBCLK, respec-
tively. They are implemented in Python 3.8.5 and rely on
the XPRESS Mixed Integer Programming (MIP) suite [12], re-
lease 39.01.04, for carrying out Branch-and-bound demands.
XPRESS thus takes care of solving Linear Programming Re-
laxations (LPRs) and managing the search tree. The solver
separates general purpose cutting planes, implements branch-
ing and searches the Branch-and-bound tree according to its
default policies. Aside from forbidding multi-threading, we
changed no other default XPRESS parameters.
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As formulation 𝒫𝑐 involves exponentially many decision
variables, a natural solution approach for solving it would
resort to column generation, i.e., generating maximal cliques
on-the-fly. Instead of that, we enumerate all cliques of 𝒬 and
use them directly in the formulation. Accordingly, differently
from most graph coloring algorithms introduced in the past
twenty years, ours is a Branch-and-bound algorithm based
on the full blown formulation 𝒫𝑐 and not a Branch-and-price
one.

The enumeration of maximal cliques of {𝐺[𝑁(𝑢)] : 𝑢 ∈ 𝑉 }
is carried out by our C implementation of the algorithm in
[11], a variant of the widely known Bron-Kerbosh algorithm
[3].

The most time consuming operation for loading formu-
lation 𝒫𝑐 into the MIP solver was not the enumeration of
all required maximal cliques, but checking for duplicates
among them. Since the same set 𝑄 may define a maximal
clique for different graphs 𝐺[𝑁(𝑢)] and 𝐺[𝑁(𝑣)], we used
a hash table to identify duplicate cliques. This hash table
was implemented using standard Python data structures. As
we shall see next, the number of variables appearing in our
formulation tends to be relatively small. Additionally, the
total CPU times taken to enumerate maximal cliques we
require, to check for duplicate ones among them, and to get
the algorithm up and running for solving our initial LPRs
were not an issue.

4 PRELIMINARY NUMERICAL
EXPERIMENTS

This section presents numerical results obtained with formu-
lations 𝒫𝑟, 𝒫+

𝑟 and 𝒫𝑐. We first compare the quality of their
LPR bounds and then compare algorithms BBR and BBCLK,
respectively based on 𝒫+

𝑟 and 𝒫𝑐. From now on, assume that
𝑤(𝒫𝑟), 𝑤(𝒫+

𝑟 ) and 𝑤(𝒫𝑐) denote the LPR bounds associated
with formulations 𝒫𝑟, 𝒫+

𝑟 and 𝒫𝑐, respectively.
Our numerical investigation was conducted with two sets of

test instances. One of them comprising 29 graphs frequently
used to test exact solution algorithms for the Minimum Con-
nected Dominating Set (MCDS) [1]. These are randomly
generated instances with 𝑛 ∈ [30, 120] vertices and different
graph densities, in the range [5%, 70%]. Instances are identi-
fied as 𝑣 𝑛 𝑑𝑒𝑛, where 𝑛 gives the number of vertices for the
corresponding connected input graph and 𝑑𝑒𝑛 is the instance
density. Additional details on how they were generated can
be found in [1]. The other set comprises 8 benchmark in-
stances for the Maximal Clique Problem, introduced in the
2nd DIMACS Challenge, being available at the web reposi-
tory https://iridia.ulb.ac.be/̃fmascia/maximum clique.
Among the instances available there, we collected 8, with 𝑛 ≤
120 vertices, namely: myciel4, myciel5, myciel6, hamming6-2,
hamming6-4, johnson8-2-4, johnson8-4-4 and MANN a9.

Table 1 presents some numerical results. Its first four
columns provide the instance name, followed by 𝑛, 𝑚 and
graph density (den), 2𝑚

𝑛(𝑛−1)
, in percentage values. The three

subsequent columns indicate the dual bounds 𝑤(𝒫𝑟), 𝑤(𝒫+
𝑟 )

and 𝑤(𝒫𝑐). Additionally, the table provides numerical results

for the two algorithms under comparison, BBR and BBCLK.
Each algorithm was allowed to run for 1800 seconds, for
every instance involved. The results displayed for algorithm
BBR are: the best lower (BLB) and upper (BUB) bounds
attained during the search, the CPU time (𝑡, in seconds)
taken to solve the instance and the number of nodes investi-
gated in the search. For algorithm BBCLK, the table provides
an additional information, 𝑛𝑣, the total number of decision
variables needed to formulate the problem. If the best DCP
lower and upper bounds found after hitting the imposed time
limit do not match, a label “tl” indicates that the instance
remained unsolved after 1800 CPU seconds. Numerical exper-
iments were conducted with a 12 core Intel i7-5820K machine,
running at 3.30GHz with 32Gbytes of shared RAM memory.
Our clique enumeration algorithm was implemented in C and
compiled with gcc, with optimization flag -O3 turned on.

We first evaluate the impact of strengthening formulation
𝒫𝑟 with valid inequalities (9). To that aim, some additional
results are depicted in Figure 1. For each instance in our test

set, we plot the LPR ratio
𝑤(𝒫+

𝑟 )

𝑤(𝒫𝑟)
in the horizontal axis and

the graph density, 𝑑𝑒𝑛, in the vertical axis. Our results indi-
cate that the inclusion of inequalities (9) impacts positively
for sparse instances. For such cases, bounds 𝑤(𝒫𝑟) frequently
more than doubled, without significantly increasing the CPU
time demands for their evaluation. In contrast, these inequal-
ities brought no strengthening benefits for instances with
input graph densities in the [50%, 70%] range.
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Figure 1: Comparison of formulations 𝒫+
𝑟 and 𝒫𝑟.

The horizontal axis gives the ratio
𝑤(𝒫+

𝑟 )

𝑤(𝒫𝑟)
whereas

the vertical axis gives the graph density.

In order to compare formulations 𝒫+
𝑟 and 𝒫𝑐, Figure 2

plots, for each instance, the LPR bound ratio 𝑤(𝒫𝑐)

𝑤(𝒫+
𝑟 )

(indi-

cated in the horizontal axis) and the ratio between the CPU
times taken to compute 𝑤(𝒫𝑐) and 𝑤(𝒫+

𝑟 ) (in the vertical
axis). The CPU times we recorded for the computation of
𝑤(𝒫𝑐) account for the time taken to enumerate cliques, for
the checking of duplicate ones, as well as for solving the LPR

itself. Measured by the gap
𝑤(𝒫𝑐)−𝑤(𝒫+

𝑟 )

𝑤(𝒫+
𝑟 )

, formulation 𝑤(𝒫𝑐)

is about 47% stronger, on average, than 𝑤(𝒫+
𝑟 ). Compared

to 𝒫+
𝑟 , formulation 𝒫𝑐 becomes stronger as the graph density

increases. Notice that Figure 2 shows that the CPU times
taken to compute 𝑤(𝒫𝑐) are frequently below 50% of the
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CPU times needed to compute 𝑤(𝒫+
𝑟 ). That happens despite

the fact that formulation 𝒫𝑐 involves, at times, more than 150
thousand variables, all of them being explicitly used in the
linear programming master program. Our numerical results
thus lean in favor of formulation 𝒫𝑐 not only in terms of
bound quality but also in terms of the computational effort
taken to upload and solve it.
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Figure 2: Comparison of formulations 𝒫𝑐 and 𝒫+
𝑟 ,

in terms of LPR relaxation bounds and LPR CPU
times. The horizontal axis gives the ratio 𝑤(𝒫𝑐)

𝑤(𝒫+
𝑟 )

whereas the vertical axis gives the ratio between the
CPU time taken to compute bounds 𝑤(𝒫𝑐) and the
time needed to compute 𝑤(𝒫+

𝑟 ).

We now discuss numerical results attained by Branch-and-
bound algorithms BBCLK and BBR. Out of the 37 instances
tested here, BBCLK and BBR respectively solved 30 and 24
instances to proven optimality, within the 1800 seconds time
limit. All instances solved by BBR were also solved by BBCLK.
While BBCLK takes less than 35 seconds to solve all these 24
instances, BBR takes more than 2744 seconds to accomplish
that. BBCLK solved all instances with up to 70 vertices coming
from the MCDS literature and failed to solve larger instances
with densities in the intermediate range for our test bed.
BBCLK solved all 8 maximum clique instances, whereas BBR
solved 6 of them.

Considering now the 7 instances both algorithms left un-
solved, BBCLK also has the edge for them. Best lower bounds
provided by BBCLK are always stronger than BBR’s counter-
parts when the time limit is hit. Similarly, the BUB values
attained by BBCLK are strictly smaller than BBR’s in 6 out of
7 cases. For just one case, both algorithms attained feasible
solutions of the same value. At termination, BBR attains an
average duality gap of 38.9% for these 7 instances, while the
corresponding figure for BBCLK is just 15.8%.

Another interesting result is that BBR spent the entire CPU
time at the root node when solving instance v120 d20. Notice
that for this instance, the best lower bound attained by BBR

(9.41) is strictly larger than the 𝑤(𝒫+
𝑟 ) value (5.94), but

smaller than the 𝑤(𝒫𝑐) counterpart (10.89). BBR root node
lower bounds are stronger than the 𝑤(𝒫+

𝑟 ) values since BBR

(as well as BBCLK) benefits from the general purpose cutting
plane algorithm implemented by XPRESS, in the sense that
after LPR bounds 𝑤(𝒫+

𝑟 ) (and 𝑤(𝒫𝑐)) are computed, XPRESS

adds some additional valid inequalities to the formulation at
hand. However, for 8 out of the 13 instances not solved by
BBR, the best BBR lower bounds, after the addition of these
XPRESS cuts throughout the search tree and the enumeration
of hundreds of BBR nodes, are weaker than LPR bounds
𝑤(𝒫𝑐).

5 CONCLUSIONS

We investigated formulations, valid inequalities and Branch-
and-bound algorithms for the Dominated Coloring Problem.
Two Integer Programming formulations were proposed here.
One is based on a model by representatives and the other
makes use of exponentially many maximal cliques of the
complement graphs induced by the open neighborhood of the
vertices of 𝐺. Two Branch-and-bound algorithms based on
these formulations were also numerically tested here. Our so
far limited numerical experience suggests a clear advantage
of the formulation based on cliques over the representatives.
Linear Programming relaxation bounds for the clique for-
mulation are about 47% stronger than those attained by
the formulation by representatives, even after strengthening
the latter with a set of valid inequalities introduced here.
Better results were also provided by the Branch-and-bound
algorithm based on the clique formulation, despite the fact
that the algorithm enumerates and explicitly uses all de-
cision variables in the model, without resorting to column
generation.

The formulation by representatives could be further strength-
ened by separating the stronger form (8) of inequalities (3).
In doing so, the resulting Branch-and-cut algorithm might
become more competitive with the algorithm that relies on
maximal cliques. The implementation of a Branch-and-price
algorithm that prices cliques instead of explicitly using them
in the model should also be an interesting research direc-
tion, that might improve the preliminary numerical results
provided here.
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