
Learning to Prune Instances of Steiner Tree Problem in Graphs
Jiwei Zhang

University College Dublin
Dublin, Ireland

Dena Tayebi
University College Dublin

Dublin, Ireland

Saurabh Ray
New York University

Abu Dhabi, United Arab Emirates

Deepak Ajwani
University College Dublin

Dublin, Ireland

ABSTRACT
We consider the Steiner tree problem on graphs where we are given
a set of nodes and the goal is to find a tree sub-graph of minimum
weight that contains all nodes in the given set, potentially including
additional nodes. This is a classical NP-hard combinatorial optimisa-
tion problem. In recent years, a machine learning framework called
learning-to-prune (L2P) has been successfully used for solving a
diverse range of combinatorial optimisation problems. In this paper,
we use this learning framework on the Steiner tree problem and
show that even on this problem, the learning-to-prune framework
results in computing near-optimal solutions on a large majority of
the instances at a fraction of the time required by commercial ILP
solvers. Furthermore, we show that on instances from the Stein-
Lib and PACE Challenge datasets where the L2P framework does
not find the optimal solution, the optimal solution can often be
discovered by either using a lightweight local search algorithm to
improve the L2P solution or using L2P solution as a warm start
in an ILP solver. Our heuristic for Steiner tree problem leverages
historical solutions of known solutions for past instances from the
same distribution. Our results underscore the potential of the L2P
framework in solving various combinatorial optimisation problems.

KEYWORDS
MinimumSteiner Tree, Combinatorial Optimisation,Machine Learn-
ing, Learning to Prune

1 INTRODUCTION
Steiner tree problem is a classical well-studied combinatorial op-
timisation problem. It is applied to various problems in research
and industry [12] including various network design problems (see
e.g., [9]).We consider the variant of this problem on graphs, where
we are given an input weighted graph, a set of terminal nodes 𝑉
and the goal is to compute a minimal connected subgraph that
contains all nodes in 𝑉 . This variant of the problem is NP-hard.
Furthermore, it is even NP-hard to approximate it within a factor of
96/95 [3]. Given its applications and hardness, numerous approx-
imation algorithms and heuristics have been developed to solve
this problem efficiently. We refer the reader to the PACE challenge
2018 report [2] for a list and ranking of the various algorithms and
heuristics developed for this problem.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the 11th
International Network Optimization Conference (INOC), March 11 - 13, 2024, Dublin,
Ireland. ISBN 978-3-89318-096-7 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Traditional approaches to solve combinatorial optimisation prob-
lems include the usage of integer linear programming solvers, con-
straint programming approaches, parameterised and approxima-
tion algorithms, various heuristics including nature based meta-
heuristics (e.g., genetic algorithms) and customising algorithms
to specific input distribution. In recent years, machine learning
techniques have been explored to speed-up the computation of
solutions (c.f., [1] for a survey). Machine learning techniques are
particularly useful in applications where the same optimisation
problem is solved repeatedly on instances coming from the same
distribution [6]. Many of these learning techniques aim to learn
the optimal solution directly. An example of such an end-to-end
machine learning technique on Steiner tree problem is the Cher-
rypick solution by Yan et al. [19], where a deep reinforcement
learning technique called DQN is used together with an embedding
to encode path-related information in order to predict the optimal
solution directly. Such end-to-end approaches generally suffer from
poor generalisation (resulting in poor solutions for larger and/or
more complex problem instances) and large training requirement.
To deal with these issues, these approaches would need to collect
the training data by solving a large number of problem instances of
the same size as the test instances. Furthermore, these end-to-end
deep learning approaches also suffer from poor interpretability and
explanability of the algorithms learnt. This is because the learnt
algorithm is implicit in the millions of parameters of the deep learn-
ing architecture. Since in real industry setting, new constraints
are routinely added to the problem, poor interpretability means
that we do not know if the learnt model will still work with newly
discovered constraints and thus, new models have to be learnt from
scratch every time this occurs.

A key reason for the poor generalizability of end-to-end ap-
proaches is that they do not leverage any algorithmic insight into
the problem, instead relying solely on the input and embedding
vectors. This is also an important factor for them needing deep
learning models with poor interpretability. To address some of
these issues, a learning-to-prune approach [4, 10, 11, 16] has been
proposed. Instead of trying to predict the optimal solution directly,
it uses a supervised learning model to predict the elements (e.g.,
nodes/edges) that are unlikely to be part of optimal solution and
prune them from further consideration. Once these elements are
pruned out, the problem on the remaining elements (predicted to
be in optimal solution by the classifier or where the classifier was
not confident) is usually quite small and can, thus, be solved using
existing exact/approximate approaches. The supervised learning
approach leverages a large number of features that can capture
the algorithmic insights from the state-of-the-art literature on the

Series ISSN: 2510-7437 40 10.48786/inoc.2024.08

https://OpenProceedings.org/
http://dx.doi.org/10.48786/inoc.2024.08

INOC 2024, March 11 - 13, 2024, Dublin, Ireland Zhang et al.

problem. As such, classification techniques with significantly fewer
parameters, such as random forest, SVM etc. work very well in this
framework and there is no need for more complex deep learning
models. An added advantage of this framework is that it requires
far fewer labelled training instances for training, which is vital for
NP-hard optimisation problems.

In this paper, we explore if the learning-to-prune framework can
be used to solve the Steiner tree problem efficiently. Towards this
end, we carefully select an ILP formulation with small integrality
gap and the features used in the learning approach. We consider
the instances from SteinLib dataset [7, 8] and the 2018 PACE chal-
lenge [2]. We show that on the instances where the LP relaxation
doesn’t return integral solutions, learning-to-prune framework is
able to obtain optimal or near-optimal solution in orders of mag-
nitude less time compared to solving the ILP formulation directly
using Gurobi. Furthermore, we show that even on instances where
the solution returned by learning-to-prune is not optimal, we can
often achieve optimal solution by using a lightweight local search
algorithm to improve the learning-to-prune solution. Using the
learnt solution as a warm start in Gurobi is also quite effective in
finding optimal or near-optimal solutions for many of the instances
where the learning-to-prune solution is not already optimal.

We note thatmany state-of-the-art Steiner tree problem solvers [12–
15] use preprocessing and problem reduction techniques and some
of these techniques rely on features similar to ones used in our
adaptation of learning-to-prune framework. While these solvers
are very successful in practice, they need to be carefully redesigned
for each new variant of the problem. In contrast, the effort required
to adapt the learning-to-prune framework to the other variants
is likely to be considerably less. Thus, our work paves the way
for augmenting the ability of algorithm designers to develop pre-
processing techniques that can leverage the specific application
constraints and the input distributions. Our learnt preprocessing
can be combined with well-known "exact" preprocessing techniques
in different ways.

2 APPLYING LEARNING-TO-PRUNE TO
STEINER TREE PROBLEM

In the context of minimum Steiner tree problem, the learning-to-
prune framework learns a classification model to predict whether
an edge will be part of the optimal solution or not. The training
examples consists of edges from a set of training graphs and the
classification model learns a mapping from a feature vector of
an edge to its label. The edges, for which the classifier is highly
confident that they are not part of the optimal solution, are pruned
out and the remaining (hopefully much smaller) instance is then
solved using an ILP solver.

The key decisions we need to make in order to apply the learning-
to-prune framework involve (i) the choice of the ILP formulation
for the Steiner tree problem, (ii) the choice of features and (iii) the
classification models. We found that the choice of the ILP formula-
tion was crucial for the success of the learning-to-prune framework
on this problem. An ILP formulation with smaller integrality gap
seems to be particularly suitable for this framework as its LP relax-
ation can be used as a highly discriminative feature in the process
of search-space pruning. Thus, we carefully considered the various

ILP formulations for this problem and opted for a formulation based
on multicommodity flow transmission [18].

We note that there are other formulations such as those based
on directed cut [13] that are algorithmically more efficient (see
the survey article [12]). We expect that the gains from learning-
to-prune approach will be similar for these other formulations as
well.

2.1 Integer Linear Programming Formulation
In this formulation, we first convert an undirected Steiner tree
problem into a directed version by replacing each edge {𝑖, 𝑗} with
weight 𝑐𝑖 𝑗 by two directed edges (𝑖, 𝑗) and (𝑗, 𝑖) of the same weight
𝑐𝑖 𝑗 . Then, we consider the problem of connecting the set of terminal
nodes in the undirected graph as sending a unit flow from an arbi-
trary terminal node (referred to as root and indexed as node 1) to
the remaining terminal nodes in the corresponding directed graph.
In particular, the 𝑘𝑡ℎ flow goes from the root to the 𝑘𝑡ℎ terminal
node (the first flow goes from the root node to itself). Since all flows
are moving away from root and towards the terminal nodes, the ag-
gregation of these paths result in the Steiner tree in the undirected
graph. Next, we describe this formulation in more detail:

2.1.1 Sets and Indices.

• 𝑖 ∈ 𝑁 = {1, 2, .., 𝑛} = {1} ∪𝑉 ∪ 𝑆 : The index number of root
node is 1. Here, {1} ∪𝑉 is the set of terminal nodes and 𝑆 is
the set of remaining nodes.

• 𝐸 = {(𝑖, 𝑗)} : Set of directed edges. Note that the size of 𝐸 is
double the size of the edge set of the undirected graph.

• 𝐺 = (𝑁, 𝐸): A graph where the set 𝑁 defines the set of
nodes, the set 𝐸 defines the set of directed edges and the set
{1} ∪𝑉 ⊆ 𝑁 defines the set of terminals.

• 𝑇 ⊂ 𝐸 : Set of edges that represents a tree spanning {1} ∪𝑉

in 𝐺 .
• 𝑐𝑖 𝑗 ∈ 𝑅+: The cost of the arc (𝑖, 𝑗), for all (𝑖, 𝑗) ∈ 𝐸.

2.1.2 Decision Variables.

• 𝑦𝑖 𝑗 ∈ {0, 1}: This variable is equal to 1, if edge (𝑖, 𝑗) is in the
set 𝑇 . Otherwise, the decision variable is equal to zero.

• 𝑥𝑘
𝑖 𝑗
: This is the amount of commodity 𝑘 (the amount of flow

from node 1 to 𝑘) that goes through edge (𝑖, 𝑗).

2.1.3 Objective Function. Minimize the total cost of 𝑇 :

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁

(𝑖, 𝑗) ∈𝐸
𝑐𝑖 𝑗 · 𝑦𝑖 𝑗 (1)

2.1.4 Constraints.∑︁
ℎ∈𝑁

𝑥𝑘
𝑖ℎ

−
∑︁
𝑗∈𝑁

𝑥𝑘𝑗𝑖 =

1, 𝑖 = 1,

−1, 𝑖 = 𝑘,

0, 𝑖 ≠ 1, 𝑘 .
∀𝑘 ∈ 𝑉 , (2)

𝑥𝑘𝑖 𝑗 ≤ 𝑦𝑖 𝑗 , (3)

𝑥𝑘𝑖 𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝑉 , (4)

𝑦𝑖 𝑗 ∈ {0, 1}. (5)

41

Learning to Prune Instances of Steiner Tree Problem in Graphs INOC 2024, March 11 - 13, 2024, Dublin, Ireland

2.1.5 Constraints Explanation. As described before, we use an em-
bedded multi-commodity network flow problem to describe the
connectivity of the Steiner tree problem. In constraint 2, one unit
of commodity k must be transmitted from node 1 to node k. Con-
straint 3 indicates that when the flow is allowed in an edge, the
edge must be in the solution. Constraint 4 enforces that the flow
on any edge is non-negative while Constraint 5 enforces that the
variables 𝑦𝑖 𝑗 are binary. Constraints 2- 5 indicate that a feasible
solution must have a directed path of edges (i. e. 𝑦𝑖 𝑗 = 1) between
node 1 and a node belonging to 𝑉 .

2.2 Features
Another requirement for applying the learning-to-prune framework
is to have a set of highly discriminative features that can separate
the edges in the optimal solution from those that are not. In other
words, we want to associate a set of features with each edge that
will allow us to train a classifier separating the set of edges in the
optimal solution from the other edges. For the Steiner tree problem,
we consider features associated with the LP relaxation, weight of
the edges with respect to other edge weights and centrality of
associated nodes. Except for Eigenvector centrality, these features
can be computed quite fast and they allow us to achieve a high
degree of pruning with little loss in objective function value.

2.2.1 LP relaxation feature. The first feature is the value of edge
variables 𝑦𝑖 𝑗 in the LP relaxation of the problem. A high value of
this variable suggests a higher likelihood of the edge appearing
in the optimal solution. We didn’t consider any signals from the
dual of the problem and we also didn’t utilise the variables 𝑥𝑘

𝑖 𝑗
in

this study. Note that the computation of LP relaxation requires
significantly less time compared to the ILP computation.

2.2.2 Weight-Related Features. Weused the followingweight-related
features: (i) normalised weight𝑤𝑁 (𝑒) = (𝑤 (𝑒) −𝑤𝑚𝑖𝑛)/(𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑖𝑛) where𝑤 (𝑒) is the weight of the edge 𝑒 and𝑤𝑚𝑖𝑛 and𝑤𝑚𝑎𝑥

are the lightest and heaviest edge-weight in the graph, (ii) standard-
ised weight 𝑤𝑆 (𝑒) = (𝑤 (𝑒) − 𝜇 (𝑤))/𝜎 (𝑤) where 𝜇 (𝑤) and 𝜎 (𝑤)
are the mean and standard deviation of the edge-weights, (iii) chi-
square of normalised weight𝑤𝐶 (𝑒) = (𝑤𝑁 (𝑒) − 𝜇 (𝑤𝑁))2/𝜇 (𝑤𝑁)
where 𝜇 (𝑤𝑁) is the mean of the normalised edge-weights and (iv,
v) local rank of edge (𝑖, 𝑗) at node 𝑖 and 𝑗 . Here, local rank refers
to the rank of this edge in the sorted order of all edges (by weight)
incident at the node.

2.2.3 Centrality Features. To capture the discriminative power of
an edge further, we also use the centrality of the incident nodes.
Intuitively, the edges between highly central nodes are more likely
to be part of optimal Steiner trees as they are crucial for low-weight
connectivity. Specifically, we use the following centrality features:
degree centrality, betweenness centrality and Eigenvector centrality.
Degree centrality is defined as the number of links incident upon a
node, which is the simplest centrality feature to calculate. It simply
measures the importance of a node by howmany edges are incident
to it. Betweenness centrality is widely used in weighted graphs as
it captures the fraction of shortest paths passing through a given
node [17]. The betweenness centrality of a node 𝑣 is defined as
𝐶𝐵 (𝑣) =

∑
𝑠≠𝑣≠𝑡 ∈𝑉

𝜎𝑠𝑡 (𝑣)
𝜎𝑠𝑡

where 𝜎𝑠𝑡 is the total number of shortest
paths between 𝑠 and 𝑡 and 𝜎𝑠𝑡 (𝑣) is the number of shortest paths

between 𝑠 and 𝑡 that pass through 𝑣 . Eigenvector centrality [20] is
also an important centrality feature that captures the “influence” of
a node in the network: A high eigenvector score means that a node
is connected to many nodes who themselves have high scores.

For all centrality features, NetworkX is used to construct the
graph and calculate the feature values [5]. As these centrality fea-
tures are focusing on nodes instead of edges, each centrality metric
results in two features for an edge (𝑖, 𝑗) corresponding to the smaller
and the bigger value of the two incident nodes 𝑖 and 𝑗 .

2.3 Classification
As noted by the previous work on learning-to-prune [4, 10, 11, 16],
the exact classification model is not so crucial in this framework.
We experimented with five different classification techniques: Ran-
dom forest (RF), Support vector machine (SVM), Logistic Re-
gression (LR), K-nearest neighbour and Gaussian naive bayes.
While the SVM performs best on this problem, the main insights
from the experimental results remain the same for all these classi-
fiers. This provides us confidence that our results are not too specific
to a particular classification model, but are more broad-based.

2.4 ILP on the pruned subgraph
We run the exact Steiner tree ILP formulation on the unpruned
graph so obtained. This can be done by fixing all the edge variables
of the pruned edges to 0 in the ILP formulation and solving the
modified ILP using an ILP solver. The output of this modified ILP is
then returned as the output of the learning-to-prune approach.

2.5 Ensuring Feasibility
One issue with the learning-to-prune framework is that the re-
maining set of edges may not contain any feasible solution of the
problem that satisfies all constraints. In other words, the pruned
graph (graph remaining after the pruned edges have been removed)
may have multiple connected components with nodes in 𝑉 divided
between these components. To resolve this issue, we add back all
edges for which the corresponding variable has a non-zero value in
the LP relaxation. Assuming that the input graph was connected,
the set of edges with non-zero values in LP relaxation solution will
maintain connectivity among the terminal nodes and thus, with
their addition, feasibility will be guaranteed.

Next, we evaluate the quality of this solution as well as the
running time of this approach and the relative importance of the
different features used in the framework.

3 RESULT
3.1 Experimental Setup
In the benchmark SteinLib [7] dataset, we found that there are only
55 problem instances for which the LP relaxation of the considered
ILP formulation does not return integral solutions. Thus, we only
focus on these instances and select 80% of them with the smallest
running times as training and use the remaining 20% of the instances
with the largest running time as the test dataset. This is because
we want to show that our model generalises from smaller instances
to larger and more complex instances in this dataset.

42

INOC 2024, March 11 - 13, 2024, Dublin, Ireland Zhang et al.

3.1.1 Feature Importance. The feature importance for training the
model is shown in Table 1 for a SVM classification model. Unsupris-
ingly, Table 1 shows that the LP relaxation feature is the most
discriminative of all. An important observation here is that even
though LP relaxation feature is important, it accounts for less than
half of the discriminative power of all the features. This implies
that this feature alone isn’t enough, but other features also con-
tribute significantly to improving the accuracy of the classification
model and the entire learning framework is needed. We also consid-
ered the feature importance from a logistic regression classification
model1. Similar to the case of SVM, it showed that while the LP
relaxation feature is the most discriminative, the other features
(such as the maximum degree centrality of the two incident nodes
and the minimum local rank of the two incident nodes) also prove
to be quite useful in the classification.

Feature Importance
LP relaxation feature 0.462
Normalised Weight 0.108
Variance 0.083
Degree Centrality Max 0.052
Eigenvector Centrality Max 0.048
Betweenness Centrality Max 0.048
Degree Centrality Min 0.046
Local Rank j 0.041
Eigenvector Centrality Min 0.039
Betweenness Centrality Min 0.038
Local Rank i 0.036

Table 1: Relative feature importance of different features
based on a SVM classification model

Figure 1: Trade-off obtained by varying the threshold of a
SVM classifier

3.1.2 Objective Function vs. Running Time Trade-off. As noted in
Figure 1, both SVM classifier and logistic regression classifiers
obtained a drastic reduction in running time at little loss in objective
function value. In these plots, we vary the pruning thresholds. A
pruning rate of 60-70% resulted in a significant reduction in running
1calculated as the product of the feature coefficient with the standard deviation of
feature values in the training set

time while increasing the objective function only slightly. While
the general trends are similar between SVM and logistic regression,
SVM gives a better trade-off between the objective function value
and running time. The drastic reduction in running time at little
loss in objective function value is further illustrated in Table 2 and
3, which presents the results of the learning-to-prune approach on
the 10 test instances using the SVM classification model. We first
note that on these larger and more complex instances, the time
to compute all the features including the LP values is very small
compared to the time to run the original ILP. More importantly,
the running time of the learning-to-prune approach (including
the time to compute features and then running the ILP with hard
pruning constraint) is around 99% less than the original ILP solver
time on these instances (using the Gurobi solver). In 7 of these
10 instances, the hard pruning is able to find the optimal solution
itself in significantly less time. In the remaining three instances,
the resultant increase in the objective function value because of the
mistakes in the pruning process is still very small (less than 0.6%).

Objective Objective Objective
(Original) (After Pruning) Increase %

i160-344 8307 8324 0.20
i160-244 5076 5103 0.53
i160-345 8327 8327 0
i160-343 8275 8275 0
i160-342 8348 8355 0.08
i160-313 9159 9159 0
i160-241 5086 5086 0
i160-341 8331 8331 0
i160-245 5084 5084 0
i160-242 5106 5106 0

Table 2: Objective function values returned by Gurobi ILP
solver and the learning-to-prune framework (with SVM clas-
sifier) for different test instances

Runtime Time to ILP Solver Runtime
(Original) Compute Runtime Decrease %

Features
i160-344 27245.21 54.17 157.71 99.22
i160-244 7762.75 25.68 47.13 99.06
i160-345 70653.84 51.93 242.82 99.58
i160-343 20897.36 50.54 114.90 99.21
i160-342 91351.38 60.09 1384.39 98.42
i160-313 3832.54 15.25 84.73 97.39
i160-241 6446.48 24.78 32.78 99.11
i160-341 52473.68 53.65 104.74 99.70
i160-245 3014.05 28.05 15.95 98.54
i160-242 4817.80 27.34 42.81 98.54

Table 3: Running time taken by Gurobi ILP solver and the
learning-to-prune framework (with SVM classifier) for dif-
ferent test instances

At this stage, a natural question to ask is how do these results
compare with directly pruning based on the LP relaxation values

43

Learning to Prune Instances of Steiner Tree Problem in Graphs INOC 2024, March 11 - 13, 2024, Dublin, Ireland

with different thresholds. Next, we consider the three instances
where the hard pruning doesn’t get optimal results and compare the
results of the hard pruning with pruning based on the LP relaxation
value. Figures 2 and 3 presents the result of such a comparison.
We observe that the hard pruning provides significantly better
objective value vs running time trade-off compared to the Gurobi
ILP solver. In particular, note that Gurobi requires considerably
more time to reach a comparable objective function value. In all
three instances, hard pruning based on a diverse range of features
provides solutions with better objective function values compared
to directly pruning based on LP relaxation values, even though it
takes some more time. In these plots, the dashed orange horizontal
line in these curves represent the objective function value of the
optimal ILP solution on the instance obtained by pruning all edges
with zero LP relaxation value. Note that even this value is higher
than the solutions from our hard pruning approach.

Figure 2: Comparing hard pruning (referred “ML Pruned”)
with LP-based pruning and Gurobi ILP solver on the original
formulation of Steiner tree problem on instances i160-244.
The dashed blue horizontal line represents the optimal ILP
solution, while the dashed orange horizontal line represents
the optimal ILP solution on the instance obtained by pruning
all edges with zero LP values.

In applications where we wish to reduce the optimality gap even
further, we can use the soft pruning approach. The idea here is
that instead of adding a hard constraint that no edge can be taken
from the set of pruned edges (fixing those edge variables to 0), we
add a soft constraint that a small constant number of edges can
be taken from the set of pruned edges in the returned solution. In
other words, we add the constraint that sum of all edge variables
corresponding to pruned edges has to be less than equal to a small
constant. This is implemented by simply adding the corresponding
constraint in the ILP formulation.While the soft pruning still retains
all the edge variables in the ILP formulation, it prunes the search
space considerably. When applied on the instance i160-344, the soft
pruning approach, that allows just one edge from the pruned set,

Figure 3: Comparing hard pruning (referred “ML Pruned”)
with LP-based pruning and Gurobi ILP solver on the original
formulation of Steiner tree problem on instance i160-342.

finds the optimal solution of the original problem. The running time
of this approach on this instance is around 3000 seconds, which is
still considerably less than the original ILP time of around 27000
seconds, but more than the time of the hard pruning approach
(around 150 seconds).

3.2 Results on PACE Challenge datasets
Next, we consider the 200 instances from the track 1 of the 2018
PACE challenge [2]. This track provided the benchmark dataset for
the exact search techniques. Of the 200 instances, the LP relaxation
of our ILP formulation was able to compute the optimal integral
solution on 148 instances. On another 17 instances, the LP solution
was very close to the optimal integral solution. Thus, we focused
on the remaining 35 instances. Out of these instances, we used 13
for training and tested on the remaining 22 instances. Based on
the results on the SteinLib dataset, we decided to use SVM as the
classification technique for this dataset. Table 4 shows that on all of
these instances, the learning to prune approach provides optimal
or near-optimal solutions.

On the few instances where the solution returned by learning-to-
prune was not optimal, we use a lightweight local search algorithm
to improve the solution.We define the local neighbourhood function
to consist of solutions that can be obtained by removing one edge
from the current solution and adding one replacement edge (from
outside the current solution) in its place. We find the best solution
in this local neighbourhood. This can be computed efficiently as
the returned solution is a tree and removing an edge leaves the
tree disconnected. Thus, to find a replacement edge, we only need
to consider edges that connect the two components and find a
minimum weight replacement edge. We found that this local search
algorithm was able to yield the optimal solution when initialised
with the learning-to-prune solution. For instance, on instance 010,
the objective function values of the optimal solution and learning-
to-prune solution are 2338 and 2344, respectively. The local search

44

INOC 2024, March 11 - 13, 2024, Dublin, Ireland Zhang et al.

Objective Objective Objective
(Original) (After Pruning) Increase %

010 2338 2344 0.26
109 939 942 0.32
141 2200557 2200560 0.0001
160 1996 1996 0.0
161 5199 5209 0.19
162 5193 5193 0.0
164 5205 5205 0.0
165 5218 5218 0.0
171 42 42 0.0
172 7229 7304 0.07
173 71 72 1.4
176 10519 10519 0.0
195 54 54 0.0
196 100 101 1.0

Table 4: Objective function values returned by Gurobi ILP
solver and the learning-to-prune framework for different
test instances of PACE Challenge dataset

was able to improve the learning-to-prune solution to the optimal
solution. Similarly on instance 109, the optimal solution and the
learning-to-prune solution had objective function values of 939
and 942 respectively. Again, the local search was able to obtain the
optimal solution.

We found that using the learning-to-prune solution as a warm
start in the Gurobi ILP solver is also quite effective. For instance,
on instance 010 (one of the few instances where the learning-to-
prune doesn’t return an optimal solution), Gurobi warm start from
learning-to-prune returns an optimal solution.

The track 2 of the PACE challenge was dedicated to instances that
have small tree-width. Surprisingly, we discovered that our learn-
ing model that was trained on track 1 instances (exact algorithms
track) was quite effective on track 2 instances as well. The solution
obtained after pruning was optimal in 9 out of 15 track 2 instances
where the LP and ILP solutions had different objective function
values. On the remaining 6 test instances, the solution obtained
using the learning-to-prune framework was within a multiplicative
factor of 1.0002 of the optimal solution. Thus, we conclude that our
learning model is also quite robust to changes in input distribution
and instance sizes.

4 CONCLUSION
Our experiments show that the learning-to-prune framework pro-
vides optimal or near-optimal solutions on instances of the SteinLib
and PACE challenge benchmarks at a fraction of the costs of the
Gurobi ILP solver. While the feature based on LP relaxation is unsur-
prisingly the most discriminatory feature for classification, the hard
pruning is able to achieve better objective function value compared
to pruning directly based on LP relaxation values. It shows that com-
bining the signal from different features using classification models
is an effective strategy to prune the problem instances. On the few
instances where the learning-to-prune solution is not optimal, we
show that using it as a warm start for Gurobi ILP solver or using it
as the initial solution for a lightweight local search heuristic can
often yield the optimal solution. We expect that this framework will
also be effective on many other network optimisation problems.

ACKNOWLEDGMENTS
The research of first and last author is partially supported by Science
Foundation Ireland under Grant number 18/CRT/6183.

REFERENCES
[1] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2021. Machine learning for

combinatorial optimization: a methodological tour d’horizon. European Journal
of Operational Research 290 (2021), 405–421. Issue 2.

[2] Édouard Bonnet and Florian Sikora. 2019. The PACE 2018 Parameterized Algo-
rithms and Computational Experiments Challenge: The Third Iteration. In 13th
International Symposium on Parameterized and Exact Computation (IPEC 2018)
(Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 115. 26:1–26:15.

[3] Miroslav Chlebík and Janka Chlebíková. 2008. The Steiner tree problem on
graphs: Inapproximability results. Theoretical Computer Science 406, 3 (2008),
207–214.

[4] James Fitzpatrick, Deepak Ajwani, and Paula Carroll. 2021. Learning to Sparsify
Travelling Salesman Problem Instances. In International Conference on Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research.
Springer Cham.

[5] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report LA-UR-08-5495. Los
Alamos National Lab.(LANL), Los Alamos, NM (United States).

[6] Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learn-
ing Combinatorial Optimization Algorithms over Graphs. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems. 6348–6358. https://proceedings.neurips.cc/paper/2017/hash/
d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html

[7] T. Koch, A. Martin, and S. Voß. 2000. SteinLib: An Updated Library on Steiner Tree
Problems in Graphs. Technical Report. Konrad-Zuse-Zentrum für Information-
stechnik Berlin ZIB-Report 00-37.

[8] Thorsten Koch, Alexander Martin, and Stefan Voß. 2001. SteinLib: An Updated
Library on Steiner Tree Problems in Graphs. Springer US, Boston, MA, 285–325.

[9] Moyukh Laha and Raja Datta. 2023. A Steiner Tree based efficient network
infrastructure design in 5G urban vehicular networks. Computer Communications
201 (2023), 59–71.

[10] Juho Lauri and Sourav Dutta. 2019. Fine-grained search space classification
for hard enumeration variants of subset problems. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33.

[11] Juho Lauri, Sourav Dutta, Marco Grassia, and Deepak Ajwani. 2023. Learning
fine-grained search space pruning and heuristics for combinatorial optimization.
Journal of Heuristics 29, 2-3 (2023), 313–347.

[12] Ivana Ljubic. 2021. Solving Steiner trees: Recent advances, challenges, and
perspectives. Networks 77, 2 (2021), 177–204.

[13] Tobias Polzin and Siavash Vahdati Daneshmand. 2003. On Steiner trees and
minimum spanning trees in hypergraphs. Operations Research Letters 31, 1 (2003),
12–20.

[14] Daniel Rehfeldt and Thorsten Koch. 2022. On the Exact Solution of Prize-
Collecting Steiner Tree Problems. INFORMS J. Comput. 34, 2 (2022), 872–889.

[15] Daniel Rehfeldt and Thorsten Koch. 2023. Implications, conflicts, and reductions
for Steiner trees. Math. Program. 197, 2 (2023), 903–966.

[16] Dena Tayebi, Saurabh Ray, and Deepak Ajwani. 2022. Learning to Prune Instances
of k-median and Related Problems. In Proceedings of the ACM-SIAM symposium
on algorithm engineering and experiments (ALENEX). 184–194.

[17] Huijuan Wang, Javier Martin Hernandez, and Piet Van Mieghem. 2008. Between-
ness centrality in a weighted network. Physical Review 77, 4 (2008).

[18] Richard T. Wong. 1984. A dual ascent approach for Steiner tree problems on a
directed graph. Mathematical programming 28 (1984), 271–287. Issue 3.

[19] Zong Yan, Haizhou Du, Jiahao Zhang, and Guoqing Li. 2021. Cherrypick: Solving
the Steiner Tree Problem in Graphs using Deep Reinforcement Learning. In IEEE
16th Conference on Industrial Electronics and Applications (ICIEA). 35–40.

[20] Mohammed J. Zaki and Wagner Meira Jr. 2014. Data Mining and Analysis:
Fundamental Concepts and Algorithms. Cambridge University Press. http:
//www.dataminingbook.info/

45

