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ABSTRACT
In recent years, the concept of nesting gained renewed interest
within the location science community. Nesting allows to model
temporal aspects in planning, which are highly relevant in practice.
In this paper, we introduce the nested 𝑝-center problem, which is
an extension of the classic 𝑝-center problem. In this problem we are
given a finite time horizon and at each time period, we are allowed
to open a given number of facilities. The sets of open facilities at
each time period must fulfill the nesting property, i.e., the open
facilities at an earlier time period must be a subset of the open
facilities at a later time period. The objective function is the sum of
the objective function values of the individual periods and the goal
is to minimize this objective function. The objective function value
of each period is the maximal distance between a customer and its
closest open facility. We present two mixed integer programming
formulations for this problem. We provide a computational study
on well-known 𝑝-center instances from literature to assess the
performance of the two formulations and also to analyse the effect
of nesting.

1 INTRODUCTION
Consistency is very important in long term planning and in partic-
ular in the location of facilities. However, many facility location
problems potentially provide inconsistent solutions for varying
numbers of open facilities, i.e., for different numbers of allowed
open facilities the optimal locations can be vastly different. In prac-
tice, this could result in opening and closing of facilities when facing
a long term planning project, where initially some facilities are to
be built, and at some later time steps additional facilities are to be
built. This is of course undesirable for a variety of reasons such as
monetary cost or environmental cost.

The first ideas of modeling a facility location problem with such
consistency in mind appeared in the 1970s in works by Scott [20]
and Roodman and Schwarz [19]. In these works, the authors de-
scribe certain multi-period facility location problems, where the
number of open facilities is changed over time, but the open facili-
ties cannot be relocated. We note that location problems needing to
fulfill constraints of this type such as the particular nesting property
which is considered in our work (see Definition 1 for details) can
be categorized as one problem family within the area of the multi-
period problems (see Chapter 11 of [15] for a general overview of
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this area). However, most of the existing recent work regarding
such multi-period location problems usually focuses on varying de-
mand, distances, or cost over time, see e.g., [4, 7]. In 2022, McGarvey
and Thorsen [16] revisited nesting and applied the concept to the
𝑝-median problem. They also posed the question about applying
the nesting property to other classical location problems, such as
the maximum coverage problem or the 𝑝-center problem. In this
paper, we follow up on this open question by considering the latter.

The (discrete) nested 𝑝-center problem (n-𝑝CP) can be defined the
following way:

Definition 1. We are given a set I of customer demand points, a
set J of potential facility locations and distances 𝑑𝑖 𝑗 ≥ 0 between
each 𝑖 ∈ I and 𝑗 ∈ J . Additionally, we are given a time horizon
H = {1, . . . , 𝐻 } and a set of integers P =

{
𝑝1, . . . 𝑝𝐻

}
where 𝑝ℎ ≤

𝑝ℎ+1 for ℎ = 1, . . . , 𝐻 − 1 and 𝑝𝐻 ≤ |J |.
A feasible solution to the nested 𝑝-center problem consists of

a set Jℎ ⊆ J with
���Jℎ

��� = 𝑝ℎ for ℎ ∈ H . Moreover, the nesting

property must be fulfilled by these sets, i.e., Jℎ ⊆ Jℎ+1 must hold
for ℎ = 1, . . . , 𝐻 − 1.

For a given time period ℎ ∈ H and set Jℎ , let 𝑑ℎ (Jℎ) =

max𝑖∈𝐼 min𝑗∈Jℎ 𝑑𝑖 𝑗 . The objective function value of a given fea-
sible solution is defined as

∑𝐻
ℎ=1 𝑑ℎ (J

ℎ) and the goal is to find a
feasible solution with minimal objective function value.

Observation 1. The objective function of the n-𝑝CP can be viewed
as minimizing the sum of the regrets over the time periods, where
the regret of a given n-𝑝CP-solution for a time period ℎ is defined
as the difference between the objective function value of the n-
𝑝CP-solution for the time period and the optimal 𝑝-center value
for 𝑝 = 𝑝ℎ . We note that the minimization of regret is a popular
concept when dealing with uncertainty, see, e.g., [21] and was also
considered in [16].

Observation 2. For |P | = 1 the problem reduces to the (classical)
𝑝-center problem (𝑝CP) which was introduced by Hakimi [12] in
1964. The 𝑝CP is NP-hard for 𝑝 ≥ 2 [14].

Observation 3. In our definition of the n-𝑝CP we have that the
number of facilities to be allowed open is non-decreasing over the
time horizon. The optimal solution to this problem is also the opti-
mal solution to the problem variant, where the number of facilities
to be allowed open is non-increasing over the time horizon (and the
nesting property is accordingly adapted to Jℎ+1 ⊆ Jℎ), as these
problems are equivalent.

Figure 1 shows an instance of the (nested) 𝑝-center problem (the
eil51 instance of the TSPlib[18]). In this instance, we have that
I = J , i.e., each point (visualized as gray dot) is a demand point
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Figure 1: Instance: eil51 and optimal solutions for n-𝑝CP with
P = {4, 5, 6} and 𝑝CP for 𝑝 = 4, 5, 6

and can also be used as potential facility location. The distance
between two points in this instance is the Euclidean distance. In
this figure, next to illustrating an optimal solution of the n-𝑝CP
for 𝐻 = 3 with P = {4, 5, 6}, we also illustrate optimal solutions
for the 𝑝CP when solving it for 𝑝 = 4, 5, 6 individually. The nested
solution is visualized using green triangles, with a green number
above a triangle indicating that the facility is open at this location
in the time period where 𝑝ℎ is this number. For example, if the
numbers four, five, and six are besides the diamonds, it means that
this location is used in all three time periods for the nested solution.
The solutions for the 𝑝CP are visualized using the orange rectangles,
with the orange numbers indicating that a facility is open at the
location in the optimal solution where 𝑝 is this number. Note that
the optimal solutions for the 𝑝CP open twelve different facilities in
total and only one facility which was in the solution for 𝑝 = 4 was
also in the solution for 𝑝 = 6. The optimal objective function value
for the n-𝑝CP is 61, while the objective function values for the 𝑝CP
for 𝑝 = 4, 5, 6 are 22, 19 and 17, giving a value of 58 in total. The
sum of the regrets is 61-58=3.

1.1 Contribution and outline
In this paper, we introduce the nested 𝑝-center problem and provide
two mixed-integer linear programming (MILP) formulations for it.
Based on these formulations, we conduct a computational study
on well-known 𝑝CP instances from literature to assess the perfor-
mance of the two approaches and also identify their limitations and
potential areas for their improvement.

The paper is structured as follows: In the remainder of this sec-
tion, we discuss previous and related work to the 𝑝CP and the
nesting property. In Section 2 we present our two MILP formula-
tions and Section 3 contains the computational study. Section 4
concludes the paper with an outlook to potential improvements to
be considered in future work.

1.2 Literature review
For the 𝑝CP there exists considerable amount of work on heuristic
and exact solution methods, as well as different adaptations and
variants. We focus our literature review on existing exact methods,
as our work is about the design of exact solution approaches. For the
existing work on heuristic methods and approximation algorithms
for the 𝑝CP we refer to the recent survey [11]. In 1970 the first
exact solution approach for the 𝑝CP was developed [17] using the
relationship to the set cover problem. Some recent state-of-the-art
algorithms for the 𝑝CP also use this connection [5, 6]. The classical
MILP formulation for the problem can be found in textbooks like
in Chapter 5 of [8]. More recently, a compact formulation has been
introduced in [9] and further extension of this formulation are pre-
sented in [1]. Their formulation has a binary variable 𝑦 𝑗 for 𝑗 ∈ J
to indicate at which point a facility opens and a binary variable 𝑢𝑘
for each distinct distance 𝐷𝑘 indicating whether the optimal value
of 𝑝CP is less or equal than 𝐷𝑘 . The authors show that their for-
mulation has stronger linear programming (LP) relaxation bounds
than the classical formulation. In [3] another compact formulation
with the same strength of the LP-relaxation is presented.

In 2022 a new projection based formulation was introduced
[10], which can be obtained by applying Benders Decomposition
to the classical formulation [8]. Their formulation only uses binary
variables 𝑦 𝑗 for 𝑗 ∈ J indicating open facilities and a continuous
variable which measures the distance in the objective function.
The authors also present a lifting procedure for the inequalities
in their formulation and show that the LP-relaxation bounds of
their lifted formulation are the same as the bounds obtained by the
formulations of [1, 3, 9].

Location problems, where facilities are opened iteratively over a
certain time horizon, has been discussed firstly in the 70s by [20].
The authors compared a dynamic programming system,which takes
into account the complete time horizon, with a myopic system,
which optimizes the next period without considering any later
periods. Their dynamic programming system outperformed the
myopic system for larger time horizons. A first MILP formulation
for such problems has been introduced in [19], where the authors
try to minimize the operational cost of closing facilities iteratively
over a certain time horizon and where the first to use a nesting-
type constraint which enforces open facilities to be open until the
end of the time horizon. Further, they presented a generalization
of the formulation where they start with a set of facilities which
are open at the beginning and a set of potential facilities which
can be opened. The starting facilities can be closed at any point in
the time horizon, but once closed must remain closed, while the
potential facilities can be opened, but not closed again. This allows
for a restricted redistribution of facilities. More recently, the nesting
concept was revisited and applied it to the 𝑝-median problem for
two objective functions, minimizing the sum of the regrets and
minimizing maximum regret by [16].

Incremental facility location and network design problems, f.e. [2,
13] are multi-period problems, in which a network is incrementally
extended by the means of adding arcs, facilities or nodes to maintain
incrementally increasing coverage requirements in each period
while optimizing some objective like minimization of total cost or
maximizing the cumulative flow over the planning horizon.
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2 MIXED INTEGER LINEAR PROGRAMMING
FORMULATIONS

In this section, we begin by presenting a first formulation of the
nested 𝑝-center problem based on the textbook 𝑝CP formulation
(see, e.g., [8]). Afterward, we present a second formulation based
on the 𝑝CP formulation presented in Section 2.1 of [1].

2.1 First formulation
Our first formulation (nPC1) for the n-𝑝CP uses two sets of binary
variables, denoted as 𝑥 and 𝑦. The variable 𝑥ℎ

𝑖 𝑗
is indicating if cus-

tomer demand point 𝑖 ∈ I is assigned to potential facility location
𝑗 ∈ J in time period ℎ and the variable 𝑦ℎ

𝑗
is indicating if a facility

is opened at the potential facility location 𝑗 in time period ℎ. The
continuous variables 𝑅ℎ measure the maximum distance from any
customer demand point to its nearest open facility in time period ℎ.

(nPC1) min
∑︁
ℎ∈H

𝑅ℎ (1a)

s.t.
∑︁
𝑗∈J

𝑦ℎ𝑗 = 𝑝
ℎ ∀ℎ ∈ H (1b)∑︁

𝑗∈J
𝑥ℎ𝑖 𝑗 = 1 ∀𝑖 ∈ I,∀ℎ ∈ H (1c)∑︁

𝑗∈J
𝑑𝑖 𝑗𝑥

ℎ
𝑖 𝑗 ≤ 𝑅ℎ ∀𝑖 ∈ I,∀ℎ ∈ H (1d)

𝑥ℎ𝑖 𝑗 ≤ 𝑦
ℎ
𝑗 ∀𝑖 ∈ I,∀𝑗 ∈ J , ℎ ∈ H (1e)

𝑦ℎ𝑗 ≤ 𝑦ℎ+1𝑗 ∀𝑗 ∈ J ,∀ℎ ∈ H \ {𝐻 } (1f)

𝑥ℎ𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ I,∀𝑗 ∈ J , ℎ ∈ H (1g)

𝑦ℎ𝑗 ∈ {0, 1} ∀𝑗 ∈ J , ℎ ∈ H (1h)

𝑅ℎ ∈ R≥0 ∀ℎ ∈ H (1i)

The objective function (1a) minimizes the sum over the distances
𝑅ℎ over all time periods. The constraints (1b) ensure that 𝑝ℎ facili-
ties are opened in time period ℎ. Constraints (1c) ensure that each
customer is only assigned to one facility in each time period. The
constraints (1d) are pushing the decision variables 𝑅ℎ to the largest
distance of any assigned customer-facility combination in each
time period. Each customer can only be assigned to an open facil-
ity, which is ensured by constraints (1e). The nesting constraints
(1f) ensure that each facility, which is opened in time period ℎ, is
also open in time period ℎ + 1, so once a facility is opened in a
time period, it cannot be closed in later time periods. Without this
constraint, the formulation would just represent the sum over the
individual 𝑝-center problems for each time period. The remaining
constraints (1g) - (1i) are the binary constraints for the variables
𝑥ℎ
𝑖 𝑗
and 𝑦ℎ

𝑗
and the non-negativity constraint for variables 𝑅ℎ .

2.2 Second formulation
Our second formulation uses the binary variable 𝑦ℎ

𝑗
for 𝑗 ∈ J and

ℎ ∈ H to indicate the open facilities analogously to the formulation
(nPC1). Furthermore, letD =

{
𝑑𝑖 𝑗 : 𝑖 ∈ I, 𝑗 ∈ J

}
denote the set of

all possible distances and let𝐷1 ≤ . . . ≤ 𝐷𝐾 be the values contained
in D, so D = {𝐷1, . . . , 𝐷𝐾 }. Let K be the set of indices in D.

For a 𝑘 ∈ K the binary variables 𝑢ℎ
𝑘
indicate if the objective

function value in time period ℎ (measured by continuous variable
𝑅ℎ) is greater or equal than 𝐷𝑘 . For customer 𝑖 ∈ I let the set S𝑖
be the set of indices 𝑘 ∈ K for which there exists a facility 𝑗 ∈ J
with 𝑑𝑖 𝑗 = 𝐷𝑘 .

(nPC2) min
∑︁
ℎ∈𝐻

𝑅ℎ (2a)

s.t.
∑︁
𝑗∈ 𝐽

𝑦ℎ𝑗 = 𝑝ℎ ∀ℎ ∈ H (2b)

𝐷0 +
𝐾∑︁
𝑘=1

(𝐷𝑘 − 𝐷𝑘−1) 𝑢ℎ
𝑘
≤ 𝑅ℎ ∀ℎ ∈ H (2c)

𝑢ℎ
𝑘
+

∑︁
𝑗 :𝑑𝑖 𝑗<𝐷𝑘

𝑦ℎ𝑗 ≥ 1 ∀𝑖 ∈ I, ∀𝑘 ∈ S𝑖 ∪ {𝐾},∀ℎ ∈ H (2d)

𝑢ℎ
𝑘
≥ 𝑢ℎ

𝑘+1 ∀𝑘 ∈ K \ {𝐾},∀ℎ ∈ H (2e)

𝑦ℎ𝑗 ≤ 𝑦ℎ−1𝑗 ∀𝑗 ∈ J ,∀ℎ ∈ H (2f)

𝑦ℎ𝑗 ∈ {0, 1} ∀𝑗 ∈ J ,∀ℎ ∈ H (2g)

𝑢ℎ
𝑘
∈ {0, 1} ∀𝑘 ∈ K,∀ℎ ∈ H (2h)

𝑅ℎ ∈ R ∀ℎ ∈ H (2i)

The objective function (2a) minimizes the sum over the distances
𝑅ℎ over all time periods. The correct value of the 𝑅ℎ-variables is en-
sured by constraints (2c). The constraints (2b) ensure that no more
than 𝑝ℎ facilities are opened in each time period. Constraint (2d) is
ensuring that if for any customer 𝑖 in time periodℎ no facility 𝑗 with
smaller distance than 𝐷𝑘 is opened 𝑢ℎ

𝑘
has to be one. Since (2d) is

not defined for all 𝑘 ∈ K but only for the subsets based on S𝑖 ∪{𝐾},
constraints (2e) are necessary in order to ensure that no 𝑢ℎ

𝑘
can

equal zero if 𝑢ℎ
𝑘+1 is one (otherwise constraints (2c) would not mea-

sure the distance correctly). The inequalities (2f) are for the nesting
and are the same as (1f). The remaining constraints are the bi-
nary and non-negativity constraints, respectively. This formulation
hasO((|I|+|K|) |H |) variables andO(min {|I| |J | , |I | |K |} |H |)
constraints instead of O(|I| |J | |H |) variables and constraints in
(nPC1). Depending on |K | this can be a significant reduction in
both variables and constraints.

Observation 4. There exist instances of the n-𝑝CP where the
LP relaxation bound of (nPC2) is stronger than the LP relaxation
bound of (nPC1). This is a direct consequence of the fact that for
instances with |P | = 1 (i.e., the 𝑝CP) both formulations reduce to
their classical 𝑝CP-formulation counterparts and that such a result
is known for these 𝑝CP-formulations, see, e.g., [1, 9].

3 COMPUTATIONAL RESULTS
The formulations from Section 2 have been implemented in C++ with
CPLEX 20.1 as MILP-solver and were run on a single core of an
Intel Xeon X5570 machine with 2.93 GHz with all CPLEX settings
left on default values. The time limit was set to 3600 seconds and
the memory limit to 9 GB.

We used two well-known instance sets in our computational
study:

30



INOC 2024, March 11 - 13, 2024, Dublin, Ireland

• pmed: This set contains 40 instances andwas used for the 𝑝CP
in e.g., [1, 3, 5, 6, 10]. For all instances, I = J = V holds,
so all customer demand points are also potential facility
locations. The number of |V| ranges between 100 and 900,
and 𝑝 is between 5 and 200. The instances in this set are
given as graphs, and the distances 𝑑𝑖 𝑗 are the shortest-path
distances between 𝑖, 𝑗 ∈ V in the graph.

• TSPlib: This is an instance set originally introduced in [18]
for the traveling salesperson problem. Subsets of this in-
stance set have been used in many works for the 𝑝CP, see,
e.g., [3, 5, 6, 9, 10]. The number of potential facilities equals
again the number of customer demand points, so |V| =

|I | = |J |. In the subset we consider for our study |V|
ranges between 51 and 1002. The exact values of |V| can be
found in the name of the instances in Table 2 as part of the
instance name. The instances contain the two-dimensional
coordinates for each point to calculate the Euclidean distance.
Following previous literature, we rounded the distances to
the nearest integer.

3.1 Comparison of formulations
In Table 1 we present the runtime (column t[s]), lower and upper
bounds (columns lb and ub) and optimality gap (column g[%]) ob-
tained for the pmed instances with P = {𝑝, 𝑝 + 1, 𝑝 + 2}, where 𝑝
is given by the instance. If no optimal solution has been found
within the time limit, it is indicated with the abbreviation TL in the
runtime-column. The optimality gap is calculated as 𝑢𝑏−𝑙𝑏

𝑢𝑏
100 and

the best obtained gap considering both formulations is indicated in
bold. The formulation (nPC2)manages to solve eleven instances to
optimality within the time limit, whereas formulation (nPC1) does
not manage to solve any instance. Moreover, there is no instance
where the obtained optimality gap of (nPC1) at the time limit is
better than the time limit of (nPC2). We note that for formulation
(nPC1) in 19 instances it was not possible to finish building the
model for CPLEX to finish solving the initial LP relaxation within
the given time limit. These issues in scalability between the two
formulations can be explained by the fact, that the distances in the
pmed-instance are based on shortest-path distances in a graph, thus
there are not so many distinct distances, hence 𝐾 is small, which is
good for (nPC2).

For the instance set TSPlib, we used P = {4, 5, 6}. The results
(reported in Table 2) paint a similar overall picture, i.e., (nPC2)
outperforms (nPC1) most of the time. With formulation (nPC2) 14
out of 50 instances of this set can be solved to optimality within
the timelimit, whereas for formulation (nPC1) only 3 out of 50
instances can be solved to optimality. Regarding the optimality gap
for instances not solved to optimality, the picture is not as clear as
for instance set pmed. However, for nearly all instance for which
(nPC1) had a lower gap than (nPC2), the lower bound of (nPC2)
is better, but the upper bound is worse. This indicates that CPLEX
primal heuristics seem to work better with (nPC1) while the theo-
retical strength of the LP relaxation of (nPC2) compared to (nPC1)
seems to pay off also in practice. We note that for these instances
there are much more distinct distances, and thus larger values of 𝐾
compared to instance set pmed, as in this instance set the distances
are based on the Euclidean distance. This can contribute to make
them more difficult for formulation (nPC2) and is also reflected

Table 1: Comparison of (nPC1) and (nPC2) for the pmed instances
with P = {𝑝, 𝑝 + 1, 𝑝 + 2}

(nPC1) (nPC2)

Inst. p |V| t[s] lb ub g[%] t[s] lb ub g[%]

1 100 5 TL 267 381 29.95 1833.939 356 356 0.00
2 100 10 TL 196 345 43.14 313.387 292 292 0.00
3 100 10 TL 207 310 33.27 111.594 278 278 0.00
4 100 20 TL 139 235 40.85 85.634 220 220 0.00
5 100 33 TL 85 139 38.64 61.483 138 138 0.00
6 200 5 TL 178 276 35.50 TL 220 252 12.70
7 200 10 TL 134 201 33.42 TL 180 188 4.05
8 200 20 TL 100 180 44.31 1028.47 161 161 0.00
9 200 40 TL 59 488 87.84 1022.54 109 109 0.00
10 200 67 TL 29 63 53.23 416.797 58 58 0.00
11 300 5 TL 132 297 55.51 TL 160 175 8.79
12 300 10 TL 111 303 63.25 TL 140 154 9.03
13 300 30 TL 69 349 80.34 2964.903 107 107 0.00
14 300 60 TL 42 406 89.73 TL 67 78 13.49
15 300 100 TL 24 204 88.24 2756.437 52 52 0.00
16 400 5 TL 108 223 51.51 TL 131 140 6.50
17 400 10 TL 87 216 59.55 TL 106 117 9.68
18 400 40 TL 0 103239 100.00 TL 74 423 82.44
19 400 80 TL 30 256 88.34 TL 49 303 83.92
20 400 133 TL 18 106 83.04 3488.017 39 39 0.00
21 500 5 TL 0 92343 100.00 TL 107 130 17.39
22 500 10 TL 0 125994 100.00 TL 101 339 70.13
23 500 50 TL 0 95016 100.00 TL 58 282 79.31
24 500 100 TL 0 101730 100.00 TL 39 300 86.89
25 500 167 TL 14 228 93.64 TL 32 245 86.98
26 600 5 TL 0 106278 100.00 TL 101 113 10.88
27 600 10 TL 0 120651 100.00 TL 87 96 9.30
28 600 60 TL 0 148722 100.00 TL 48 330 85.57
29 600 120 TL 0 109215 100.00 TL 32 264 87.74
30 600 200 TL 13 220 94.13 TL 24 288 91.82
31 700 5 TL 0 96330 100.00 TL 82 195 58.05
32 700 10 TL 0 210198 100.00 TL 77 372 79.25
33 700 70 TL 0 106851 100.00 TL 41 222 81.60
34 700 140 TL 0 149175 100.00 TL 28 294 90.52
35 800 5 TL 0 119076 100.00 TL 82 91 9.50
36 800 10 TL 0 161628 100.00 TL 75 261 71.44
37 800 80 TL 0 139044 100.00 TL 40 234 83.09
38 900 5 TL 0 160359 100.00 TL 78 252 69.16
39 900 10 TL 0 262383 100.00 TL 62 345 81.89
40 900 90 TL 0 127518 100.00 TL 34 207 83.61

in the results, as for some instances of this set, the formulation
does not manage to solve the root relaxation within the time limit
(indicated by a value of zero in the column lb in the table).

3.2 Results in context to the 𝑝CP
Next, we take a closer look at the performance of (nPC2) and also
put the results obtained for the (nPC2) in context with results
obtained for the 𝑝CP. In Table 3 we report the objective function
values at termination (columns ub), the lower bound at the root
node (columns root lb) and at termination (columns lb) for the n-
𝑝CP with P = {𝑝, 𝑝 + 1, 𝑝 + 2} and also for the 𝑝CP with 𝑝 . The
𝑝CP is solved using the formulation of [1], i.e., (nPC2) for P = {𝑝}.
We denote this formulation by (PC). Table 4 reports the same values
for TSPlib.

In Table 3 and Table 4, we can see that the nesting does not
seem to have a huge effect on the obtained root lower bounds, as
for both (PC)̧ and (nPC2) the root lower bounds are close to the
lower bounds at termination and also close to the upper bounds
for instances solved to optimality. Thus, also for the (nPC2) this
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Table 2: Comparison of (nPC1) and (nPC2) for the TSPlib in-
stances with P = {4, 5, 6} for (nPC2). The number in the instance
names indicate the numbers of point in each instance.

(nPC1) (nPC2)

Inst. t[s] lb ub g[%] t[s] lb ub g[%]

eil51 869.843 61 61 0.00 46.905 61 61 0.00
berlin52 2105.984 1215 1215 0.00 31.623 1215 1215 0.00
st70 2558.426 90 90 0.00 99.939 90 90 0.00
eil76 TL 50 70 29.20 409.317 64 64 0.00
pr76 TL 13060 16850 22.49 1416.761 16330 16330 0.00
rat99 TL 98 163 39.91 1399.774 144 144 0.00
kroA100 TL 1976 2973 33.54 2465.575 2812 2812 0.00
kroB100 TL 1967 3426 42.57 TL 2496 2965 15.83
kroC100 TL 1937 3199 39.45 TL 2402 2886 16.76
kroD100 TL 1842 3062 39.85 2863.816 2862 2862 0.00
kroE100 TL 1939 3097 37.38 2582.52 2893 2893 0.00
rd100 TL 669 1208 44.64 TL 911 993 8.22
eil101 TL 50 75 33.42 537.34 66 66 0.00
lin105 TL 1384 2352 41.14 2419.2 2067 2067 0.00
pr107 TL 3258 5238 37.80 1763.96 5170 5170 0.00
pr124 TL 5637 7682 26.62 2752.469 7370 7370 0.00
bier127 TL 12541 18279 31.39 2791.905 15936 15936 0.00
ch130 TL 487 776 37.25 TL 589 715 17.63
pr136 TL 7251 10674 32.07 TL 8591 9318 7.80
pr144 TL 6392 11866 46.13 TL 7774 12221 36.39
ch150 TL 441 873 49.44 TL 514 2547 79.81
kroA150 TL 1872 3523 46.85 TL 2198 12654 82.63
kroB150 TL 1881 3663 48.66 TL 2200 12561 82.49
pr152 TL 6831 15625 56.28 TL 8756 14493 39.58
u159 TL 3155 6593 52.14 TL 4073 5119 20.44
rat195 TL 132 280 52.71 TL 152 859 82.29
d198 TL 1013 4531 77.65 TL 1260 12780 90.14
kroA200 TL 1905 4092 53.43 TL 2215 12879 82.80
kroB200 TL 1862 3602 48.32 TL 2179 12510 82.58
ts225 TL 8548 41811 79.56 TL 9602 44826 78.58
tsp225 TL 227 543 58.23 TL 271 1557 82.58
pr226 TL 7733 14448 46.47 TL 9467 50796 81.36
gil262 TL 132 620 78.70 TL 152 703 78.33
pr264 TL 3104 24933 87.55 TL 3755 26069 85.60
a280 TL 140 726 80.76 TL 159 843 81.09
pr299 TL 2760 18220 84.85 TL 3136 20877 84.98
lin318 TL 2395 10980 78.18 TL 2774 14598 80.99
linhp318 TL 2395 10980 78.18 TL 2774 14598 80.99
rd400 TL 0 898956 100.00 TL 767 4059 81.10
fl417 TL 0 0 100.00 TL 1381 7029 80.36
pr439 TL 0 0 100.00 TL 7780 38460 79.77
pcb442 TL 0 0 100.00 TL 2530 14523 82.58
d493 TL 0 0 100.00 TL 1900 12888 85.26
u574 TL 0 0 100.00 TL 0 10314 100.00
rat575 TL 0 493497 100.00 TL 0 493497 100.00
p654 TL 0 0 100.00 TL 0 0 100.00
d657 TL 0 0 100.00 TL 0 0 100.00
u724 TL 0 0 100.00 TL 0 0 100.00
rat783 TL 0 782220 100.00 TL 0 782220 100.00
pr1002 TL 0 0 100.00 2014.429 0 0 100.00

modeling approach seems to give strong lower bounds. However,
the heuristics of CPLEX seem to struggle to find good feasible
solutions for larger instances of the n-𝑝CP. This can be inferred
from the fact that we can construct a valid upper bound solution
for the n-𝑝CP-instances by just putting the solution obtained for
the 𝑝CP also as solution for 𝑝 + 1 and 𝑝 + 2 (together with one, resp.,
two random additional open facilities). The objective function value
of solutions constructed in such a way for the n-𝑝CP is at most
three times the objective function value obtained the 𝑝CP. Thus,
for example, for the instance rat195 we would obtain a solution
for n-𝑝CP with value at most 216 while using (nPC2) we obtained

Table 3: Root bound comparison on instance set pmed with P =

{𝑝, 𝑝 + 1, 𝑝 + 2} . Optimal objective function values are printed in
bold.

(PC) (nPC2)

Inst. |V| p ub root lb lb ub root lb lb

1 100 5 127 118 127 356 306 356
2 100 10 98 98 98 292 243 292
3 100 10 93 93 93 278 237 278
4 100 20 74 74 74 220 188 220
5 100 33 48 43 48 138 104 138
6 200 5 84 79 84 252 214 220
7 200 10 64 61 64 188 167 180
8 200 20 55 51 55 161 140 161
9 200 40 37 36 37 109 92 109
10 200 67 20 25 20 58 47 58
11 300 5 59 59 59 175 154 160
12 300 10 51 52 51 154 139 140
13 300 30 36 32 36 107 95 107
14 300 60 26 31 26 78 65 67
15 300 100 18 14 18 52 41 52
16 400 5 47 46 47 140 128 131
17 400 10 39 36 39 117 105 106
18 400 40 28 25 28 423 74 74
19 400 80 18 15 18 303 46 49
20 400 133 13 11 13 39 31 39
21 500 5 40 38 40 130 107 107
22 500 10 38 35 38 339 101 101
23 500 50 22 20 22 282 58 58
24 500 100 15 13 15 300 38 39
25 500 167 11 9 11 245 26 32
26 600 5 38 36 38 113 100 101
27 600 10 32 30 32 96 87 87
28 600 60 18 16 18 330 48 48
29 600 120 13 11 13 264 32 32
30 600 200 9 7 9 288 22 24
31 700 5 30 31 30 195 82 82
32 700 10 29 27 29 372 77 77
33 700 70 15 14 15 222 41 41
34 700 140 11 9 11 294 28 28
35 800 5 30 29 30 91 82 82
36 800 10 28 25 27 261 74 75
37 800 80 59 13 15 234 40 40
38 900 5 29 29 29 252 77 78
39 900 10 23 21 23 345 62 62
40 900 90 13 11 13 207 34 34

an upper bound of 859 at termination. The situation is similar for
many other instances.

4 CONCLUSION AND OUTLOOK
In this work, we introduced the nested 𝑝-center problem and pre-
sented two mixed-integer linear programming formulations for it,
together with a computational study to evaluate the effectiveness
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Table 4: Root bound comparison on instance set TSPlib with P =

{4, 5, 6}. TSPlib. Optimal objective function values are printed in
bold.

(PC) (nPC2)

Inst. ub root lb lb ub root lb lb

eil51 22 22 22 61 52 61
berlin52 426 426 426 1215 1100 1215
st70 33 33 33 90 78 90
eil76 23 23 23 64 52 64
pr76 6082 6082 6082 16330 12862 16329
rat99 51 46 51 144 109 144
kroA100 1001 832 1001 2812 2198 2812
kroB100 989 857 989 2965 2241 2496
kroC100 977 839 977 2886 2197 2402
kroD100 995 840 995 2862 2188 2862
kroE100 1030 826 1030 2893 2164 2893
rd100 349 305 349 993 794 911
eil101 23 92 23 66 53 66
lin105 717 615 717 2067 1619 2067
pr107 1746 1746 1746 5170 3730 5170
pr124 2588 2497 2588 7370 6592 7370
bier127 5578 5051 5578 15936 13004 15936
ch130 237 228 237 715 544 589
pr136 3225 2880 3225 9318 7742 8591
pr144 3375 2961 3375 12221 7758 7774
ch150 225 196 225 2547 512 514
kroA150 1024 822 1024 12654 2192 2198
kroB150 1042 830 1042 12561 2190 2200
pr152 5100 3732 5100 14493 8730 8756
u159 1655 1461 1655 5119 3754 4073
rat195 72 57 72 859 152 152
d198 623 541 623 12780 1255 1260
kroA200 1011 834 975 12879 2214 2215
kroB200 1008 826 835 12510 2178 2179
ts225 4243 3751 4243 44826 9601 9602
tsp225 124 104 124 1557 271 271
pr226 4104 3704 4104 50796 9438 9467
gil262 66 58 66 703 152 152
pr264 1610 1537 1610 26069 3754 3755
a280 79 60 79 843 159 159
pr299 6959 1192 1194 20877 3136 3136
lin318 4866 1065 1065 14598 2774 2774
linhp318 1331 1065 1065 14598 2774 2774
rd400 441 296 296 4059 767 767
fl417 676 536 537 7029 1381 1381
pr439 12820 12820 2958 38460 7780 7780
pcb442 4280 980 980 14523 2530 2530
d493 3957 749 749 12888 1900 1900
u574 3438 3438 692 10314 0 0
rat575 534 100 113 493497 0 0
p654 6083 1438 1444 7594660 0 0
d657 4771 4771 878 6044890 0 0
u724 3198 3198 614 3927170 0 0
rat783 628 628 117 782220 0 0
pr1002 0 0 0 0 0 0

of the proposed formulations. Based on the findings of the compu-
tational study, we currently work on the following topics to obtain
an improved solution framework for the problem:

• design of starting and primal heuristics, as CPLEX seems to
struggle to find good primal solutions on its own

• transferring the projection-based 𝑝-center formulation and
constraint lifting ideas of [10] to the nested setting for better
overall scaleability

Another interesting avenue for further research could be to combine
the nested problem with some form of uncertainty.
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