
Finding Relevant Information in Big Datasets with ML
Uchechukwu F. Njoku

Universitat Politècnica de Catalunya
Barcelona, Spain

Université Libre de Bruxelles
Brussels, Belgium

uchechukwu.fortune.njoku@upc.edu

Alberto Abelló
Universitat Politècnica de Catalunya

Barcelona, Spain
alberto.abello@upc.edu

Besim Bilalli
Universitat Politècnica de Catalunya

Barcelona, Spain
besim.bilalli@upc.edu

Gianluca Bontempi
Université Libre de Bruxelles

Brussels, Belgium
gianluca.bontempi@ulb.be

ABSTRACT
Due to the abundance of data, noisy, irrelevant, or redundant
features often need to be identified and discarded. Feature selec-
tion is a collection of methods used to ensure that only relevant
data are used for a data analysis task. Extracting and using only
useful data for analysis promotes model understanding and per-
formance and reduces the model training time and variance, i.e.,
overfitting.

There is an abundance of methods for feature selection, and
they can be categorised by various perspectives and are appli-
cable to differing use cases. In this tutorial, we introduce the
feature selection problem and present it from three perspectives
of categorisation: search strategy, model reliance, and relevance
definition. Furthermore, we propose a guideline for the use of
the various methods. Lastly, we discuss current challenges and
opportunities for research on feature selection.

1 INTRODUCTION
The increased interconnectivity and storage capabilities enable
access to unprecedented amounts of data. Such data are the back-
bone of the recent advances in artificial intelligence and data
science, such as smart cities [2] and data-driven decision-making.
When building Machine Learning (ML) models, the bulk of the
work lies in making the raw data suitable for use, known as data
preprocessing, which consumes about 80% of the analysis time
[20]. The first phase of data processing consists of data cleaning
[7], dealing with missing and outlier values and data normali-
sation, among other issues. The outcome is a dataset that can
already be used to build ML models. However, there could still
be irrelevant or redundant features within this dataset [13], and
one must be able to identify and select only the relevant features
to the ML task at hand.

Feature Selection (FS) is a collection of techniques used to iden-
tify the subset of features that accurately describe the problem
and incur minimum performance degradation. FS is important
because redundant or irrelevant features within datasets often
deteriorate data and model understanding, as well as lead to
long training times and model overfitting due to high variance.
Thus, FS has been shown to limit storage requirements, speed
up the running time of learning algorithms, and improve data
quality, model performance, data understanding, as well as model
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Figure 1: Components of the FS optimisation problem.

explainability [13]. It is, therefore, essential to understand the
various FS techniques and how and when to apply them in order
to make the best of available data when building ML models.

FS is an optimisation problem where, for a given dataset with
𝑚 features, there are 2𝑚−2 possible subsets of features (excluding
the empty and complete set) in the solution space, and the goal
is to find one suitable subset for the ML task at hand. To begin
with, a starting solution must be defined as shown in Figure 1.
This is followed by choosing a suitable search strategy, subset
evaluation approach, and termination criteria [21]. FS techniques
can be categorised differently based on the search strategy and
evaluation approach used. In this tutorial, we delve into this topic,
examining the following three categorisations of FS methods:
selection strategy, model reliance, and relevance definition.

2 TUTORIAL OUTLINE
The duration for the tutorial is 1.5 hours divided into three parts
as detailed below.

• Part 1 [30 minutes]
(1) Introduction to feature selection
(2) Search perspective
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Figure 2: Categories of FS techniques.

– Exponential
– Sequential
– Population-based

• Part 2 [30 minutes]
(1) Evaluation perspective I (ML model reliance)

– Filter
– Wrapper
– Embedded

• Part 3 [30 minutes]
(1) Evaluation perspective II (Relevance definition)

– Mono-objective
– Multi-objective
– Many-objective

(2) Open challenges

2.1 Part 1
The tutorial begins with an introduction to FS, which is an op-
timisation problem with four components, as shown in Figure
1. The components can be instantiated differently, and in this
tutorial, we present each one of them together with their possible
configurations. The starting solution defines the origin of the
search for a suitable subset of features. This could be an empty set,
the full set of features, or a subset of features with any amount

of features chosen randomly or through a predefined approach.
After the starting solution is set, the search strategy indicates
the course for navigating through the search space, which can be
deterministic or not. For each potential solution visited during
the search, the subset evaluation defines how it will be evaluated.
This is the basis for comparing solutions in order to arrive at a
final solution. Lastly, the termination criterion determines when
to halt the exploration, which could be based on the elapsed
search time, current solution quality, or other quality indicators.

Following this introduction, we look at the first classification
of FS techniques, which is according to how the search space
is explored to find a final solution. This can be exponential, se-
quential, or population-based [8]. With the exponential search
strategy, all possible solutions in the search space are evaluated.
This method guarantees that the overall best solution is found.
However, it generates an exponential explosion, becoming un-
affordable even for a moderate number of features; hence, it is
not applicable in practice. The sequential strategy belongs to
the deterministic and greedy algorithms family, which moves to
the next best solution in each iteration of the search until the
termination criterion is satisfied. It does not guarantee finding
the optimum solution; however, it is more time-efficient than an
exponential search. Lastly, the population-based search strategy
follows metaheuristics that mimic natural evolution in finding a

Table 1: Examples of FS methods and their categorisation.

FS Technique Search strategy Model reliance Relevance definition

Branch and bound [16], Exhaustive [12] Exponential Filter/Wrapper Mono-objective
Information Gain, Gini [14] Sequential Filter Mono-objective
Forward selection, backward elimination [12] Sequential Wrapper Mono-objective
Decision Tree [22], Ridge or Lasso regression [15] Sequential Embedded Mono-objective
mRMR-PSO [4] Population-based Hybrid Multi-objective
Genetic Algorithms [3] Population-based Filter/Wrapper Mono-objective
NSGA-II [9] Population-based Filter/Wrapper Multi-objective
NSGA-III [23] Population-based Filter/Wrapper Many-objective
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suitable subset of features. Although it does not guarantee find-
ing the overall best solution, this approach is non-deterministic,
and, by definition, it explores the solution space in a more diverse
manner than the sequential one. Table 1 shows examples of the
three classes of FS according to search strategy.

2.2 Part 2
In this part of the tutorial, we present the most common cate-
gorisation of feature selection techniques, that is, the one based
on the subset evaluation, particularly on how the FS technique
relies on an ML model to evaluate a possible solution. Based on
this, the three classes of FS techniques are: filter, wrapper and
embedded methods [5] shown in Figure 3. With filter methods,
FS is completely disconnected from the ML model, as shown in
Figure 3a. Indeed, these methods do not use the ML model to be
trained to select relevant features. Instead, the relationships be-
tween the features are explored to evaluate a candidate solution.
Their non-reliance on ML models makes them the fastest class
of FS methods [18], and the solutions yielded are model agnostic
and so can be applied to any ML model. The wrapper methods
iteratively use ML models to measure subset relevance until the
termination criterion is satisfied, as shown in Figure 3b. Due to
their iterative nature, this FS technique class is the most compu-
tationally expensive. However, the solutions yielded are usually
more performant [19] since they are tailored for the ML model of
interest. Finally, embedded methods, shown in Figure 3c, are ML
algorithms that perform FS intrinsically, such as those generating
tree-based models and models with regularisation. Embedded
methods yield good quality results of the chosen model and come
at only the computational cost of building the model with no
iteration required. More than one method of different classes can
be combined to harness their advantages in what is called hybrid
FS [10]. The hybrid approach combines the characteristics and
functionalities of different classes of FS techniques to harness
their strengths and mitigate their weaknesses. Examples of the
classes of FS according to model reliance are shown in Table 1.

2.3 Part 3
We present a third classification of FS methods in this section
based on the number of objectives considered in defining the
relevance of a feature subset. Each potential solution encountered
in the solution space must be evaluated; this is how solutions
are compared in order to find the final solution. To determine
the performance of the candidate solution, various objectives
could be considered, such as the subset size, model performance
(e.g. accuracy, F1-score, AUC), fairness measures (e.g., statistical
parity, equalised odds), redundancy measures, and other task
custom objectives. When only one objective is used to evaluate
the performance of a candidate solution, this is referred to as
mono-objective FS; with two or three objectives, it is called multi-
objective FS [1], and for four or more objectives we refer to it as
many-objective FS [17]. More often, mono- or multi-objective FS
is used as they are less complex to implement than the many-
objective FS. The right choice depends on the ML task at hand.
Some examples of mono-, multi-, and many-objective algorithms
for FS are presented in Table 1.

To conclude, we discuss some open challenges in FS [6, 11],
including:

(1) Efficiency of FS methods for
(a) High-dimensional data
(b) Large number of instances

Feature
selection

Model

(a) Filter methods

Feature
selection

Model

(b) Wrapper methods

  Model Feature
selection

(c) Embedded methods

Figure 3: Categorisation of FS techniques based on model
dependence.

(2) Scalability of FS methods considering
(a) Parallelism
(b) Distribution

(3) Adequacy of FS methods in dealing with unbalanced clas-
sification

(4) Real-time FS methods with streaming data
(5) Distributed FS methods
(6) Inclusion of feature cost in FS
(7) Visualization and Interpretability of FS results
(a) Feature-model relationship
(b) Multiple solutions

(8) FS methods for multi-label classification
(9) Transfer learning for FS
(10) Simultaneous optimisation for FS and instance selection
(11) Many-objective FS

The earlier listed challenges of scalability and dealing with un-
balanced, streaming and distributed data are also present in ev-
eryday ML and thus have received more attention, although less
for multi- and many-objective FS. Many-objective FS remains the
least researched type of FS; however, it more accurately tackles
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the feature selection problem [17], which requires that multiple
objectives be considered in the selection process.

3 GOALS AND OBJECTIVES
This tutorial aims to provide the audience with an in-depth in-
troduction to feature selection. After the tutorial, the audience
should be able to understand why FS is needed, the pros and cons
of the various techniques and be able to choose an appropriate
method for their ML tasks. Additionally, attendees will discover
open problems and hot topics for research in feature selection.

4 INTENDED AUDIENCE
The intended audience for the tutorial is individuals who anal-
yse data by creating ML models in academia and industry. The
tutorial is also helpful for data scientists to improve their data
analysis in terms of data understanding and model execution
time, performance, and explainability.
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