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ABSTRACT

Modern big data systems process not only a huge volume of

data, but also numerous concurrent queries. These queries usually

span over distributed data and need to be processed within a

strict deadline (e.g.: report generation, SLA, etc.). While users

expect all queries to be completed within these tight deadlines,

the presence of failures (causing delays) often leads to relying on

best-effort solutions. Commonly, this involves maximizing the

number of queries that can be completed within the batch before

the deadline.

In order to address this issue, existing systems typically aim

to maximize system’s throughput either by enchancing single-

query performance or by sharing work, while being oblivious to

deadline. Previous studies on real-time systems have proposed

methods centered around meeting deadlines, but miss opportu-

nities resulting from overlap of work among queries in the batch.

Thus, these limitations result in providing limited performance.

In this paper, we present a novel system called BIGSHARED,
which aims to maximize queries that complete by harnessing

the advantages of reusing computations through work-sharing.

We introduce a unique deadline-conscious batch optimizer that
manages the delicate balance between meeting deadlines and

leveraging sharing. To further improve performance, especially

in the event of failures, we incorporate an efficient fault-tolerance

mechanism through sharing-conscious checkpointing. We evaluate

the performance of BIGSHARED using queries from the TPCDS

benchmark on an open source big data system. The experimental

results demonstrate that, on average, BIGSHARED surpasses the
optimal query-at-a-time approach by 61%, and outperforms a

state-of-the-art work-sharing system by 74%, thus showcasing

significant benefits of amalgamating deadline-aware and sharing-

aware paradigms.

1 INTRODUCTION
Businesses collect and analyze data from various sources such

as customer feedback, sales metrics, financial records, and mar-

ket trends to gain valuable insights into their operations. By

using this data, executives and managers can better understand

the strengths and weaknesses of their business, identify areas
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that require improvement, and devise strategies to optimize per-

formance. It is of paramount importance in current times with

fast-paced industries where making decisions in a timely manner

is essential for achieving business success.

To accomplish faster insights and enable better decisions, data

management systemsmust be capable of processing large batches

of queries with short deadlines, which can place significant stress

on the system. An important hurdle big systems face while meet-

ing the deadline is due to unintended or recurrent failures in the

operating environment. These failures induce delays in query

response times, as they may typically need to redo parts or the

entire set of queries. This results in users resorting to best effort

solutions w.r.t. query results. Out of the many ways of relaxing

the requirements, a standard way is to maximize the number of

queries that finish before the deadline, if not all.

Example use-case: Our motivation for this work comes from

analytical use-cases, exemplified by a stock trading scenario. In

this context, batches of analytical queries are executed to generate

comprehensive stock information within strict deadlines, aiding

prompt decisions like identifying stocks to buy within the next

hour. As insights accumulate, new query sets are devised to delve

deeper in subsequent intervals. Failures occasionally impede

query completion before deadlines, prompting decision-makers

to seek maximal extractable information.

Prior-work: Big data systems like Spark [1], Trino [2], Green-

plum [3], and Databricks [4] are the go-to solutions for handling

large batches of queries with deadlines. They aim to improve the

response time of individual queries, and hence result in more

queries finishing before the deadline. The limitation of this ap-

proach is to process queries individually, which fails to take

advantage of opportunities to save processing time through the

commonality of work across a batch. Jindal et al. [5] illustrate this

point by showing that up to 45% of jobs in Microsoft production

workloads are similar or repeated, resulting in redundant costs

that can amount to millions of dollars when using the query-at-

a-time model.

To overcome the aforementioned limitation, work sharing sys-
tems have been developed, which are designed to holistically

improve batch response time by reusing computation. These sys-

tems have gained attention for their ability to share work, which

can be achieved through various formulations, such as view selec-

tion, multi-query optimization, subexpression reuse, and shared

operators. These systems have been studied extensively in the

literature, with examples including [6–9].

Goodput: Overall, both the above lines of work have focused

on enhancing a system’s throughput. However, this approach has

its limitations as it measures the amount of work processed in a
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given time-frame without taking into account whether that work

is useful or not. Whereas goodput metric measures the amount

of useful work completed within a set time limit, specifically

the number of queries completed per unit time for a predefined

interval. Therefore, to achieve optimal performance within time

limits, a system should prioritize maximizing its goodput.

To ensure deadlines are met (or maximize goodput), many

techniques have been proposed in the past in the context of real-

time systems, wherein the queries are rescheduled based on the

use-case. For example, these batch queries are rescheduled as

per the shortest job first order [10] for enhanced performance.

The main limitation of such approaches is to adopt a query-at-

a-time paradigm, overlooking the potential benefits of reusing

computations among queries that share common subexpressions.

Tang et al. [11] look at benefit of sharing with varying deadlines

for streaming queries. Their objective is to complete all queries,

achieving 100% goodput, by allocating additional resources, with-

out incorporating fault-tolerance mechanisms.

Altogether, in order to maximize goodput with fixed resources,
current sharing systems lack awareness of deadlines, while existing
deadline-conscious approaches overlook the importance of sharing.
This creates a significant gap that needs to be bridged along with
resiliency, which forms the objective of this work.

Challenges
Sharing: The primary objective of sharing-based systems is

to maximize the sharing of common work to minimize the over-

all batch response time, even if it means sacrificing individual

response times. This philosophy entails prioritizing long-term

gains over short-term benefits. However, when deadlines are

involved, this fundamental principle is put to the test, and con-

ventional sharing methods may need to be reevaluated. In such

situations, being mindful of deadlines is crucial when determin-

ingwhich queries to share and how best to share them to optimize

performance.

Resiliency: Cluster-wide query processing is bound to en-

counter failures, which can pose significant challenges, partic-

ularly in meeting deadlines and in sharing contexts. Basic re-

siliency involves restarting queries on failures, which can be

problematic if a failure occurs near the end of query execution

or deadline. This results in very few queries being completed

before the deadline. Advanced techniques, such as recovery from

saved checkpoints [12–14], can be used to address this issue for

individual queries, but they are sharing-oblivious and may limit

the performance in batch scenarios.

Sharing and checkpointing techniques are closely related, and

these independently explored methods may be tightly coupled.

For example, consider a shared subexpression used by many

queries, which, if not checkpointed, needs to be redone after a

failure occurs. However, if this expression is checkpointed, the

dependent queries have a higher chance of completion. Proac-

tively managing failures within the context of sharing is essential

for big data systems, given the importance of performance. In

contrast, few techniques explore the allocation of additional re-

sources to meet the given deadline. In our approach, however, we

assume a fixed amount of resources, which is a typical use-case

in practical settings.

1.1 Contributions
In this paper we present, BIGSHARED, a BIG data system for batch

analytics with hard Deadlines via SHAREing. BIGSHARED is built

Prior Works Sharing Resiliency Deadline
SWO [6] ✓ - -

Datapath [15] ✓ - -

SmartFaultTolerance [13] - ✓ ✓
XDB [14] - ✓ -

RouLette [7] ✓ - -

BIGSUB [5] ✓ - -

iShare [11] ✓ - ✓
BIGSHARED (this work) ✓ ✓ ✓

Table 1: Taxonomy of Prior Works

on top of OpenLooKeng, an open source big data system that

is a fork of Trino. Table 1 summarizes BIGSHARED’s novelty in

comparison to prior work, which are further enumerated in more

detail as follows:

(1) Deadline-aware Batch Query Optimizer: We propose a novel

deadline-aware optimization algorithm for batch analytics in

Section 3. The key idea is to partition the batch queries into

mini-batches to aim for higher reuse and goodput. In order

to achieve this, we introduce:

• Query Shuffling for effectively partition queries based on

subsumption,

• Novel enhancements, such as shared cost model, over exist-
ing batch optimizer keeping it light weight and efficient,

• A way to determine extent of sharing at run-time to keep

up with deadlines.

(2) Sharing-aware Checkpointing (Resiliency): In Section 4, we

devise a sharing-aware checkpointing algorithm that selec-

tively checkpoints the most suitable subexpressions in order

to maximize goodput. The selection prioritizes the subexpres-

sions which are highly shared among batch queries and have

lower shared-cardinality. This is the first work to address

fault-tolerance in work-sharing.

(3) A novel attempt to implement shared execution in a dis-

tributed query-engine for ad-hocworkloads, unifying sharing,

resiliency, and deadline. These involve non-trivial architec-

tural designs, which are discussed in Section 5. Additionally,

our changes are in compliance with the native system’s ar-

chitecture as it can support other engine functionalities in

conjunction, which makes BIGSHARED beneficial from a de-

ployment perspective.

We evaluate BIGSHARED on OpenLooKeng [16] using queries

from TPCDS-benchmark. Our evaluation results are presented

in Section 6 which shows that the goodput of batch of queries

with BIGSHARED under failures is, on an average, 74% higher than

state-of-the-art work sharing system, and 61% more than the

optimal query-at-a-time approach.

2 BACKGROUND & PROBLEM
We first provide a background on the building blocks of shared

query execution: (a) data query model, (b) shared operators, and

(c) global query plan. Then we define the problem.

2.1 Data-Query Model
The Data-Query model [6, 15], as the name suggests, associates

data (i.e. the tuples) with the corresponding queries. This is impor-

tant since we are interested in aggregated processing of multiple
queries on the same data. This is achieved by annotating each

tuple with a query-set information that indicates the queries asso-

ciated with the tuple at any stage of the execution. To elaborate,
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Figure 1: Data Query Model and Shared operators

Figure 1 depicts an example where queries Q1 and Q2 have joins

over web_sales and customer tables with different filter predi-

cates. For instance, the filter predicates in Q1, Q2 on web_sales

are ws_quantity < 10, and ws_quantity < 20, respectively. Tuple

id 1 to 5 of web_sales all satisfy Q2’s filter predicate, while only

tuple ids 1 and 5 are satisfied by Q1’s filter. Further, since tuple 1

and 5 of web_sales are satisfied by Q1 and Q2, both are included

in its query-set info. Since we append every tuple with this query

set annotations, it is agnostic to the relationships among the fil-

ter predicates (subset, superset, etc.). Moreover, it automatically

takes care of residual predicates by combining all filter predicates

on a table in one scan.

2.2 Shared Operations
These operators, mooted in [6], are designed to sharework among

different queries. For instance, a scan operation on the same table

and attributes (based on the storage model) can be shared across

multiple queries. This is also depicted in Figure 1 with web_sales
and customer tables.

First, sharing possibilities across queries are identified through

shared filters as per the data-query model. Shared joins behave

differently from traditional joins, wherein it additionally checks

if the query set intersection of the joining tuples is not empty. For

instance, the query set of the join of tuple id 1, is the intersection

of query sets {𝑄1, 𝑄2} ∩ {𝑄2}, i.e. {Q2} goes through. While for

tuple id 4 the query set intersection is null. An empty intersection

means it is not required for both queries. Hence, the set intersec-

tion enables precision sharing, and also useful for preserving the

data-query model after join.

Finally, a router operator is placed upon a shared subtree

denoting the sharing of subexpression across multiple queries.

Based on the query set information, router multicasts of shared

operation to the associated parents. This is done to ensure that

each record is forwarded to the appropriate operator/queries.

2.3 Global Query plans
The shared operators induce a plan for multiple queries which is

referred to as the global query plans. Note that in the batch query

setting with shared operators, instead of a single plan per query,

we have a global plan for a batch of queries. Since a router can

have multiple parents, a global plan is a directed acyclic graph of

shared operators. An example global plan can be seen in Figure 3.

Optimizing global plans poses a challenge since the number

of operators in such plans tends to be very large usually. For

instance, the number of operators in a global plan can reach 100,

evenwith a few tens queries in a batch. This becomes a bottleneck

to the optimizer, which has a much larger search space compared

to a single query scenario. Further, the problem is exacerbated

with cardinality estimates for each operator as the cardinalities

now correspond to shared cardinalities frommultiple queries that

can be erroneous with existing cost models. E.g. the selectivity of

a shared operator is union of the selectivities of the participant

operations.

2.4 Problem Definition
Our problem is as follows: given a deadline T and a batch of

analytical queries, B, the objective is to design a query process-

ing technique that maximizes the number of queries completing

within the time constraint T. In other words, the goal is to maxi-

mize goodput, where

𝑔𝑜𝑜𝑑𝑝𝑢𝑡 =
No. of. completed queries

𝑇
.

Note that all the queries in the input batch are submitted to-

gether, and each query has the same deadline. Handling different

query deadlines and priorities is part of our future work.

3 DEADLINE-CONSCIOUS BATCH QUERY
OPTIMIZER

In this section, we present our first contribution, which focuses

on designing a batch query optimizer that is aware of deadlines.

Simply sharing the entire batch of queries may not yield fruitful

results when deadlines are involved, as it requires significant

effort with initially low returns for long-term benefits. In some

cases, the output of most queries may occur near the end of the

shared batch query execution, while missing the deadline. Fur-

thermore, also all the queries involved in a shared computation

that fails before the deadline will also be unable to contribute to

the goodput.

On the other hand, if we execute queries individually and miss

a deadline, we would only lose the output of the last executed

query. However, this approach overlooks the potential benefits of

sharing work among queries. This realization serves as the moti-

vation for the design of our solution, BIGSHARED. In this section,

we present a simplified version of BIGSHARED that assumes no

failures, and then then proceed to generalize the solution in the

following section, where we account for the presence of failures.

Figure 2: Deadline-aware Batch Optimizer Overview

3.1 Overview
The central idea involves achieving a balance between complete

sharing (full-share) and no sharing (no-share) by dividing a large
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batch of queries into smaller subsets termed mini-batches. Our
approach, motivated by meeting deadlines, is detailed as follows:

(1) Effective Query Partitioning (Section 3.2): We establish a

predefined query ordering (query shuffling) to group similar

queries, maximizing common work reuse.

(2) DeterminingMini-Batch Size (Section 3.4): This phase iterates

over the queries in the shuffled order to construct amini-batch.

It terminates if the mini-batch’s execution time is likely to

exceed a deadline, as indicated by a cost model.

(3) Efficient Work Sharing (Section 3.3): This step defines a light-

weight and efficient sharing strategy. It involves merging

individual query plans to generate a global query plan.
This process is illustrated in Figure 2. Input queries are initially

shuffled (query shuffling). The mini-batch creator iteratively se-

lects unprocessed queries from the shuffled list to construct the

global plan for the current mini-batch. This process continues

until the end of the mini-batch is signaled. Then the global plan

corresponding to the mini-batch is executed.

3.2 Query Shuffling
Intuition: As mentioned before, the idea is to find a query

order that can be later used to find the mini-batch queries. This

is based on the remaining deadline value at the start of the mini-

batch. In order to maximize the goodput within the deadline, this

component focuses on clustering similar queries together, and

prioritize common shorter queries earlier in the order so as to

achieve higher reuse. We leverage the concept of subsumption be-

tween queries to systematically determine the extent of common

and reusable work among batch queries.

𝑄𝑖 subsumes 𝑄 𝑗 when the join expression of query 𝑄𝑖 is a sub-
set of the join expression of query 𝑄 𝑗

1
. Figure 3 (a) provides an

example, where 𝑄1 subsumes 𝑄2 since 𝑄1’s join expression is

a subset of 𝑄2’s join expression. Similarly, 𝑄2 subsumes 𝑄3. By

ordering 𝑄𝑖 before 𝑄 𝑗 we achieve two benefits: a) the result of

𝑄𝑖 can be reused by𝑄 𝑗 , promoting efficiency; and b) a less costly

query,𝑄𝑖 (which subsumes𝑄 𝑗 ) can be executed before a possibly

more expensive 𝑄 𝑗 . The opposite order (i.e., 𝑄 𝑗 before 𝑄𝑖 ) does

not bring such advantages.

However, in practice, a query may not fully subsume another

query, especially with a large batch of queries. For example, 𝑄3

can only partially subsume 𝑄2 since 𝑄2 can possibly answer all

𝑄3’s join expression except for join with table B. This necessitates

the development of a general technique to handle subsumption.

Notations:

Join Graphs. Let B represent the batch of queries. Let us start

with the well-known notion of query join graph. The query join

graph,𝐺𝑄𝑖
for each query 𝑄𝑖 ∈ B, captures the join information

in the query. There is a vertex for each table, and an edge between

them if the corresponding join exists in the query.

Overlap Graph. Using the join graph, we now introduce over-
lap graph, O(B, 𝐸,𝑊 ), with its vertices set being B, and directed

edges 𝐸 between every pair of vertices. This graph formally cap-

tures the extent of subsumption or overlap of join expressions

between queries. In O, with a vertex for each query, 𝑄𝑖 , and the

edges in the overlap graph are assigned with weights,𝑊 , as fol-

lows: For each directed edge 𝑄𝑖 → 𝑄 𝑗 , its weight is given by its

intersection cardinality over 𝐺𝑄𝑖
’s cardinality, i.e.,

1
We do not consider filter expressions explicitly as they implicitly get shared with

shared scan operator. More details in Section 2.1

𝑄1 : 𝐷 Z 𝐸

𝑄2 : 𝐶 Z 𝐷 Z 𝐸

𝑄3 : 𝐵 Z 𝐶 Z 𝐷 Z 𝐸

𝑄3 : 𝐵 Z 𝐶 Z 𝐷 Z 𝐸

𝑄2 : 𝐶 Z 𝐷 Z 𝐸

𝑄1 : 𝐷 Z 𝐸

(a) (b)

Figure 3: Datapath Optimizer and Limitations: (a) 𝑄1 sub-
sumes𝑄2, and𝑄2 subsumes𝑄3. The global plans withmore
reuse and sharing; (b) Global Plan with low sharing (not
using subsumption property)

W(𝑄𝑖 , 𝑄 𝑗 ) =
|𝐺𝑄𝑖

∩𝐺𝑄 𝑗
|

|𝐺𝑄𝑖
| (1)

Here, any𝐺𝑄𝑖
’s cardinality (and also intersection) is defined with

respect to its edges. For the example batch of three queries, the

overlap graph for B = {𝑄1, 𝑄2, 𝑄3} along with the weights are

shown in Figure 4. The higher the weight, imply the higher the

overlap. Note that this weight function is similar to the Jaccard

similarity measure [17].

Figure 4: Overlap Graph and Query Reorder: Q1→ Q2→
Q3

Problem Formulation: To obtain the query shuffling order

that maximizes subsumption, a maximum weight path in the
overlap graph needs to be identified where all vertices are visited.
This problem can be linked to finding the Hamiltonian path in

the overlap graph with the highest weight. However, finding the

Hamiltonian path is NP-hard, and therefore, the same is true for

the weighted version.

Proposed Solution: Due to the inherent complexity of the

problem, we propose an optimal solution by formulating it as an

Integer Linear Program (ILP) and solving it using appropriate

solvers. This approach is effective for relatively small batches

or mini-batches, depending on the deadline values. However,

it becomes computationally expensive with higher batch sizes.

Therefore, we offer an efficient heuristics by transforming the

graph into a directed acyclic graph (DAG) and devising a polyno-

mial algorithm to find a path with maximum weight in the DAG.
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This heuristic provides a reasonably good solution along with

reduced computational overheads.

Optimal Algorithm. Let us now see the ILP formulation of the

problem. Let 𝑥𝑖 𝑗 be an indicator variable representing if an edge

𝑖 → 𝑗 in O is included or not in the maximum weight path
2
.

Thus,

maximize

∑︁
(𝑖, 𝑗 ) ∈𝐸

𝑤 (𝑖, 𝑗) ∗ 𝑥𝑖 𝑗

subject to

∑︁
𝑖∈B

𝑥𝑖 𝑗 = 1,
∑︁
𝑖∈B

𝑥 𝑗𝑖 = 1 ∀𝑗 ∈ B∑︁
(𝑖, 𝑗 ) ∈𝐸

𝑥𝑖 𝑗 = |B| − 1, 𝑥𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐸

The objective function is to find the maximum weight path,

i.e, sum of weights of the selected edges. Each vertex must have

one incoming and one outgoing edge (two constraints in the first

line), ensuring each vertex is visited once. However, multiple

subcycles or subtours can still be valid. So we add a constraint to

limit the selected edges to |B| − 1. This ILP can be solved with

any of the typical solvers such as Z3 [18].

Heuristic Solution. The above optimal solution, however, can

incur huge overheads with larger batch sizes based on the dead-

line values. Hence, we propose a heuristic with low overheads

while possibly relaxing the solution quality. The key idea is to

convert the overlap graph into a DAG by carefully pruning cer-

tain edges. Now the problem boils down to finding themaximum
weight path in a DAG. There is an optimal solution for DAGs

with 𝜃 ( |B||𝐸 |) time complexity, while the same is not true for

general graph structures. The details are enumerated next:

(1) Given the overlap graph, first we construct a directed acyclic

graph out of it. This is achieved by removing all the zero

weight edges in the overlap graph. Further, in the remaining

edges, retain the edge with a larger weight between any two

vertices. For instance, given two vertices corresponding to

queries 𝑄𝑖 and 𝑄 𝑗 , we retain the directed edge 𝑖 → 𝑗 if the

weight measure, as per Equation 1, of edge 𝑖 → 𝑗 is more

than that of edge 𝑗 → 𝑖 .

The resulting graph obtained after removing edges in this

manner is referred to as the truncated overlap graph. The
truncated overlap graph for the above-mentioned example is

shown in Figure 4. Here, since Q1 subsumes all other queries,

it has an outgoing edge to all other queries, but does not have

any incoming edge.

(2) On the truncated overlap graph, we perform a topological

sort to obtain initial vertex labels, disregarding weights. This

labeling ensures that (𝑖, 𝑗) is a directed edge in the overlap

graph only when 𝑖 < 𝑗 .

Let 𝐿𝑃𝐴𝑇𝐻 ( 𝑗) denote the maximum weight path in the trun-

cated overlap graph which ends at 𝑗 . The following recursion

is used to get the maximum weight path in the DAG:

𝐿𝑃𝐴𝑇𝐻 ( 𝑗) =
{
0, if 𝑗 is the source,

max𝑖:(𝑖, 𝑗 )edge{𝑤 (𝑖, 𝑗) + 𝐿𝑃𝐴𝑇𝐻 (𝑖)}, otherwise.

In order to prove the correctness of our proposed solution, we

show that the truncated overlap graph is a DAG.

2
For ease of presentation, using 𝑖 interchangeably with𝑄𝑖

Lemma 3.1. A truncated overlap graph is a directed acyclic
graph.

Proof. We need to show that the truncated overlap graph

does not have directed cycles. Let us prove it by contradiction.

Say that there is a directed cycle of size 𝑘 , 𝑉1 → . . . → 𝑉𝑘 → 𝑉1.

It means that

|𝐺𝑉
1
∩𝐺𝑉 2 |

|𝐺𝑉 1 | >
|𝐺𝑉

1
∩𝐺𝑉 2 |

|𝐺𝑉 2 | . Since all the numbers are

positive, it implies |𝐺𝑉 2 | > |𝐺𝑉 1 |. The same, when applied to

each edge of the path, leads us to get |𝐺𝑉𝑘 | > |𝐺𝑉1
|. However,

from the final edge in the path, i.e,𝑉𝑘 → 𝑉1, we can conclude that

|𝐺𝑉1
| > |𝐺𝑉𝑘 |. This leads to a contradiction about the existence

of a directed cycle, and hence the proof. □

In our batch example, this solution leads to the query order:

𝑄1 → 𝑄2 → 𝑄3 (see Figure 4). Notably, longer-running queries

are not necessarily delayed in the sharing process. The plan for

Q3 is chosen in such a way that it reuses Q2 (hence, Q1 as well).

Additionally, mini-batches often end with long-running queries

that can be completed before the deadline.

3.3 Global Query Plan Construction
Intuition: The goal here is to create an efficient global plan

for a mini-batch of queries. Inefficient plans struggle to exploit

common expressions effectively (e.g., Datapath [15]). Moreover,

optimizing complex global plans is challenging because they

often involve DAG-structured plans with significantly larger

operator trees (e.g., SWO [6]), leading to substantial overheads.

Our global plan optimizer is based on Datapath, known for

its low overhead and incremental approach, ideal for mini-batch

creation.We improve upon Datapath by adding two key elements:

a) query shuffling as a preliminary step, and b) a novel shared-

cost model during global plan construction. These enhancements

yield higher-quality plans. Before delving into our novelties, let

us briefly introduce Datapath next.

3.3.1 Datapath: In Datapath, a global plan is built iteratively

for each incoming query within a fixed query order. For each

join in the current query, it’s added to the global plan if it can’t

be satisfied by the existing plan. Since the order of join checking

within each query has an impact on the global plan quality, they

resort to the 𝐴∗
heuristic to find the minimal cost join order.

To illustrate this concept with a batch of three queries (Q1, Q2,

and Q3), consider Figure 3 (a). The number of joins incrementally

grows fromQ1 toQ3, and these queriesmay share filter predicates

through a shared operator. Starting with Q1, it gets the best

individual plan, set as the current global plan. Then, for Q2, each

of the two joins (𝐷 Z 𝐸) and (𝐶 Z 𝐷) are evaluated in order

(assuming it as the order chosen by the 𝐴∗
heuristic). It checks

if (𝐷 Z 𝐸) join can already be satisfied by the current global

plan (from Q1). Since it is satisfied here, the join is not added.

While the same is not true with (𝐶 Z 𝐷) join, and hence, the

corresponding join node is added to the global plan. This process

continues until all joins in all queries are examined, resulting in

a plan as in Figure 3(a).

Limitations. Datapath, though it is scalable, has a few limita-

tions:

(1) Query Order Sensitivity: The order in which queries are given

to the plan stitcher greatly affects global plan quality. For

instance, reversing the order of a batch of 3 queries can lead

to complex, suboptimal global plans (as shown in Figure 3

(b)), potentially the global plan having O((no. of joins)2) op-
erators in the worst case.

336



(2) Shared Cost Model: It lacks consideration for cardinality and

cost estimates when shared operators are involved, which

are distinct from traditional models.

(3) Sub-optimal Intra-Query Ordering: Exploration of join orders

in an incoming query relies on the 𝐴∗
heuristic, limiting the

intra-query join ordering choices, impacting the plan quality.

3.3.2 Datapath Enhancements.

(1) Query Shuffling based Ordering: We use the ordering

provided by query shuffling to build the global plan incre-

mentally. This results in significantly higher quality plans

as later queries inherently reuses the subexpression results

of the latter ones. Figure 3 (a) captures the effect of shuf-

fling based plan construction, resulting in high reuse and

significantly less operators.

(2) Cost Model for Shared Operators: The key idea in our

shared cardinality estimation module is to leverage the single

query estimations and later combine them systematically.

Specifically, when a shared join (or any shared operator) is

shared among 𝑛 queries, the selectivity of the shared operator

can be estimated to the selectivity of the union of the 𝑛 joins

in these 𝑛 queries. Let 𝜎 (𝐽𝑖 ) represent the selectivity of a

single query operator 𝐽𝑖 . Then, the selectivity of a shared

operator across 𝑛 queries with query 𝑞𝑖 having operator 𝐽𝑖
is represented by 𝜎 (𝐽1 ∪ . . . 𝐽𝑛). Using standard probability

theory, we can infer: 𝜎 (𝐽1 ∪ · · · ∪ 𝐽𝑛) = 1 − Π𝑖=𝑛
𝑖=1

(1 − 𝜎 (𝐽𝑖 )).
These new estimates are then plugged into the original engine

cost model to get the new costs.

3.3.3 Intra-Query Join Ordering. Another limitation of Data-

path is its reliance on a constrained search space for join orders,

akin to the traditional join ordering problem in single-query sce-

narios. The optimal join order for an incoming query depends

on selectivities and existing join nodes in the global plan.

In our solution, we exhaustively search all the possible join

orders in the incoming queries. Note that the cost of a join can be

very different from the single query setup, especially when some

joins already exist in the current global plan. In such joins, the

cost reflects the difference in cost incurred by the extra tuples

processed by it. While this cost-based approach enhances plan

quality, exhaustive search has significant time overhead. To limit

optimization times, we employ dynamic programming-based join

order searching with memoization.

Note that we consider only reordering the logical plan, though

optimizing physical operators is also helpful. However, a joint

logical-physical optimization is not practical as it is too complex.

As commonly practised, we decouple the two phases: (1) first

pass to decide on a logical plan, (2) always use a commonly used

partitioned hash join (in big data systems) for the shared joins.

In future, we can explore the merits of integrating other operator

algorithms for shared joins.

3.4 Deadline Conscious Sharing:
Mini-Batching

Intuition: Our approach, as discussed, initially processes queries
following the order defined by query shuffling. We incrementally

build the global plan, proceeding through the mini-batch until

its end. Now, an interesting question arises: How do we decide the
mini-batch sizes?

The key concept is to stop a mini-batch when the incoming

query shares low or no common sub-expressions with the queries

in the current mini-batch. In such cases, the incoming query

becomes part of a new mini-batch. Additionally, if we anticipate

that the new mini-batch with the incoming query will miss the

deadline, we signal the end of the mini-batch.

Once a mini-batch is determined, it is sent for execution. After

execution, the process repeats to determine the next mini-batch.

This cycle continues until the entire batch is processed.

Algorithm: The following rules are used to determine the

end of a mini-batch. Whichever rule is satisfied first becomes

applicable:

(1) Terminate the current mini-batch when there are no outgoing

edges in the overlap graph. As we traverse the queries in the

query-shuffled order, a query with zero or low weight out-

degree indicates that it does not or weakly subsume any other

query. Therefore, it is preferable to start a new mini-batch.

(2) Stop the current mini-batch if the cost of the current global

plan exceeds the cost equivalent of the remaining deadline

value. This deadline pertains to the time left after earlier mini-

batch completions, i.e., ’remaining deadline value’ = ’original

deadline value’ - ’total execution times of all completed mini-

batches’. To account for potential inaccuracies in cost models,

we typically opt for conservative batch sizes, derived from

observed runtime errors during runtime. Furthermore, we

continually refine the cost model for accuracy.

Discussion: Note that Rule (1) is checked before Rule (2). If

a query weakly subsumes another query, there is no point in

checking Rule (2) as we anyway start a new batch. To determine

its weak subsumption, we take the sum of weights of its outgoing

edges and check whether it is below a threshold value (e.g.: <

0.15).

Given the potential for cost model errors (even after tuning

the model as described next), the mini-batch cost may not pre-

cisely reflect the remaining deadline time. To mitigate this, we

track the average error in the cost model and proceed conserva-

tively, selecting smaller batch sizes to minimize cases where the

mini-batch exceeds the deadline, thereby maximizing goodput.

Monitoring cost model errors requires logging of query cost and

execution time.

Tuning Cost Model: To enhance the accuracy of the engine’s
cost model, we tune the constants associated with CPU, IO, and

network usage. OpenLooKeng cost model estimates the CPU,

IO and network resources for each operator, which are then

aggregated to determine the overall plan’s resource usage and

cost. The resource estimates are scaled by these constants to get

normalized cost. Our tuning approach is along the lines of [19],

where each of these constant factors are updated through the

execution of specific calibrated queries tailored to each resource

type.

4 GENERALIZATIONWITH FAILURES
In this section we generalize our optimization solution with fail-

ures. This requires extending the cost model in face of failures

and recovery. Further, we devise sharing-aware checkpointing

and fine grained recovery to achieve performance benefits.

4.1 Failure Model
Considering different cluster wide processing scenarios, different

types of failures may occur – ranging from process, node, opera-

tor, task and network failures. Our technique handles a variety

of such failures which are typical in production environments.
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Most of the prior works simplify recovery by assuming that

if an operator fails, all instances of that operator across nodes

also fail. However, we model task-level recovery, where only the

failed tasks are recovered. This means that only tasks in the nodes

affected by failures need to be restored, allowing for quicker

recovery during node failures. Furthermore, our model assumes

that the checkpointed results are not lost due to failures. To

ensure this, all shuffle data (intermediate results) are materialized

to a separate fault-tolerant storage medium (e.g., HDFS). In the

event of failures, queries are restarted from the last successfully

checkpointed intermediate result at a task level.

4.2 Background of Checkpointing
Mechanisms

Query Restart: It is a naive resiliency mechanism, which manu-

ally restarts queries from the beginning with the hope of eventual

completion. Restarting is done iteratively as many times as the

failure happens. For batch setting, however, the longer the batch

runtime, the more likely it is prone to such failures. This may

result in low goodput due to lost work (across queries), especially

when the failures happen near the deadline.

State Checkpointing: The concept involves pausing query ex-

ecution at user-defined intervals and storing the current state

of all running operators in persistent storage. In case of failures,

the latest checkpoint is used for recovery. While this approach

[13, 20] is attractive, it has the following limitations:

(1) Taking distributed snapshots is rather hard to implement.

(2) Snapshotting can be time-consuming with large task states

and numerous workers. This is more challenging with batch

scenarios where a plan tends to have hundreds of operators

even with medium-sized query batches.

(3) Offers coarse granularity and limits the opportunities for

adaptive query processing such as join reordering, operator

selection and partition tuning.

(4) All tasks must restart from a checkpoint after a failure, which

can be problematic if failures occur more frequently than

snapshots, and if a high-cardinality operator needs check-

pointing.

Figure 5: Selective Stage Checkpointing (exchange operator
abstracted)

Stage checkpointing: The idea for this approach is to check-

point at the granularity of stages [12, 13]. Outputs of stages (i.e.

an end of pipeline in a distributed context) are stored in reliable

storage. Figure 5 depicts an example scenario wherein, after the

scan of wsales and customer tables, the data are exchanged (and

is checkpointed) over the network (or locally) to other nodes.

Further, after the joins, again the output is checkpointed, which

is then passed to aggregate operators. This coarse stage-level

checkpointing offers the following advantages, and hence we

leverage it in this work:

(1) Most importantly, stage checkpointing does not break the

query processing pipeline (which significantly impairs per-

formance), unlike state or operator checkpointing.

(2) Stage checkpointing adds less overheads since even in normal

operation (w/o checkpointing) either stage output is sent

over the network or spilled to the disk in case the output size

exceeds a threshold value. The end of stages are captured by

an exchange operator (not shown in Figure 5).

(3) It allows efficient task-level recovery (a stage is composed

of parallel tasks, each on different threads). Each task can be

independently (in parallel) restarted from the saved check-

point in case of failures. In our example, a task in worker 2

fails. For recovery, only this task is retried. It uses the stage

checkpoint, the previous join stage output.

(4) Advanced techniques such as dynamic reoptimization can

come into play here as queries can be scheduled partially and

re-optimized at the stage boundaries.

In short, in stage-level checkpointing, all tasks in a stage perform

checkpointing after completion, and only the failed tasks recover

using it. For our POC implementation, a child stage starts only

after all the tasks in the parent stage complete checkpointing.

This design is very common in practice, such as in [12]. Making

the stages asynchronous with respect to checkpointing is part of

our future work.

4.3 Cost Estimation with Failures
An important component in our approach is to estimate the query

cost in the face of failures. As we have seen before, the batch

optimizer is dependent on the cost model to determine the mini-

batch for subsequent iterations. We need to extend the existing

cost models to capture the node failures and recovery of the

tasks only for the failed nodes. To do so, we decompose the cost

estimation of the whole query into estimating the cost of stages

(and tasks) and combining them. Thus the query execution time,

𝑇𝑞𝑢𝑒𝑟𝑦 , becomes:

𝑇𝑞𝑢𝑒𝑟𝑦 = 𝑀𝑎𝑥{𝑠𝑡𝑎𝑔𝑒 } {𝐸𝑛𝑑𝑇𝑖𝑚𝑒 (𝑠𝑡𝑎𝑔𝑒)}−
𝑀𝑖𝑛{𝑠𝑡𝑎𝑔𝑒 } {𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 (𝑠𝑡𝑎𝑔𝑒)} (2)

The above formula essentially means that the execution time is

the difference between the earliest start time of the first stage

and the end time of the one that finishes last. Next, we look at

the breakdown of stages into tasks with failures/recovery:

𝑇𝑠𝑡𝑎𝑔𝑒 = 𝑀𝑎𝑥{𝑡𝑎𝑠𝑘𝑠 } (𝑇𝑛𝑜𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 (𝑡𝑎𝑠𝑘) +
∑︁

𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑠

(𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦)) (3)

Here, the first term is the time needed to process the task in

case of no failures. The second term is the expected time spent in

detecting failures, reassign failed tasks to other nodes until the

start of execution of failed tasks. Finally, the maximum of these

times is the time taken for the tasks in a stage. The above model

captures the cost model with failures at the task level. Notably, it

gives us the executor’s times. The values for components with

less variance, such as optimizer and scheduler, can be easily
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estimated with high accuracy and can be added to the executor’s

times.

4.4 Sharing Conscious Checkpointing
Although the above approach is applicable to batch scenarios

with shared operators, a significant portion of total batch exe-

cution time is spent on checkpointing. We further improve its

performance with selective checkpointing by materializing only

the important stages, so that it improves by saving on the IO

while still achieving reasonable recovery times. The following

two factors mainly play a role in identifying these important

stages:

• Dependencies: If a stage is shared among many queries, then

checkpointing it is beneficial. If we do not checkpoint such a

stage output, then its failure would require redoing of all its

dependent stages. This may cause a lower batch success rate.

• Running time: Success rate is also affected by the running time.

Stages with low running time (i.e. easily recoverable) and fewer

downstream dependencies are preferred to skip checkpointing.

We assign scores to all the above parameters for each stage and

greedily pick until a cost budget (as function of deadline) is

reached.

5 SYSTEM ARCHITECTURE
Figure 6 depicts the overall architecture of BIGSHARED. We now

discuss some of the design as well as deployment aspects:

5.1 Batch Query Optimizer
BIGSHARED accepts a batch of queries along with a deadline as

input. As explained in Figure 2, a loop of mini-batch planning

is initiated after query shuffling (Section 3.2). Logical plans are

constructed for each of the queries in the mini-batch (by optimiz-

ing them with the existing rules such as eliminating redundancy,

predicate pushdown), which are then passed over to the Global
Plan Construction (Section 3). All these individual plans are pos-

sibly reordered (Section 3.3.3) to maximize sharing, and stitched

into a shared plan or a global plan till the mini-batching ends.

After having the global plan constructed, we make two more

passes over it before scheduling it for execution. The first pass

adds router operators and the second pass harmonizes or matches

the routers’ inputs for the shared expression. During the first

pass, we identify the subexpressions for which we should share

execution. On top of each of them, we add a router for multi-

casting the output of shared operators. In the second pass, we

union the projection attributes of all the shared expressions so

as to provide a consistent interface for the routers. After this, the

selective checkpoint (Section 5.3) adds stage-checkpoints to the

global plans and then passes on the plan to the physical planner.

5.2 Shared Executor
Data-QueryModel withGrouped-Filters: Grouped filters store
predicates in an easily searchable data structure (e.g., search

trees), that reduces filter evaluation into a traversal of sublinear

time complexity. We build a grouped filter per attribute. The final

filter operator output, representing the query-set satisfied by the

input tuple, is determined by intersecting all the grouped filters

together.

Shared Operators: The figure highlights shared operators

in action (inside the Runtime). They allow us to share common

work across queries. The common works are identified through

the query set model. Our shared scan, filter and join operator

maintains query-sets as an extra block (or column) that is trans-

parently added to the output.

Router operators are judiciously placed by the optimizer to

mark the end of a shared sub-expression. These routers multicast,

by selectively transmitting data based on associated query-sets.

They adhere to the producer-consumer model, where each shared

subtree has a single producer router instance and a number of

consumer instances equal to the downstream operators. Commu-

nication between the producer and consumers occurs through

shared queues, with one dequeue per consumer. The producer

router inserts incoming pages into all consumer dequeues. Upon

dequeue, each consumer retrieves a page from its own dequeue

and matches the query-set of each tuple with its assigned queries.

The newly formed page is then routed for execution, with an

exchange operator added immediately after the consumers for

distributed execution. The overhead introduced by the router

primarily stems from query-set operations during enqueuing,

dequeuing, and exchanges.

As the consumers fetch data from these queues to pass on to

downstream (shared or native) operators, all of them need to be

executed on the same node. The producer and consumer routers

belong to different stages. The scheduler has the responsibility

of identifying a common worker node for such dependent stages.

5.3 Resiliency
Failure-Detection: BIGSHARED employs a time-out-based failure

detection mechanism at the task level. Each task periodically

sends status-update signals or messages to the coordinator. If

the coordinator does not receive an update within a specified

time frame (timeout), it assumes the task has failed. Subsequently,

the coordinator node initiates the recovery process for the failed

tasks. The overhead for task-level updates is minimal in big data

settings, offering the added benefit of fine-grained recovery.

Fault-Tolerance: BIGSHARED ensures resilience through stage
checkpointing, as explained in Section 4. In this process, interme-

diate data generated by a stage is stored in reliable storage like

HDFS. This method offers substantial checkpointing savings com-

pared to conventional operator-level approaches. Our approach

to selective checkpointing focuses on materializing specific stage

outputs to improve goodput while adhering to deadlines. The

selection criteria include the stage’s importance, measured by the

number of dependent queries, and the cardinality of its output.

Scheduler: The scheduler organizes plan fragments into

stages and executes them concurrently as tasks. Fragments are

scheduled in a topological order, ensuring that independent stages

finish before dependent ones. Throughout execution, certain

stages create checkpoints as given by the plan. If a task fails, the

scheduler instructs it to restore its states from the checkpoints, fa-

cilitating recovery and resuming execution. Tasks without check-

pointed states recover through recomputation based on input

data. As noted before, recovery does not occur instantly; there is

a delay caused by the detection of the failure before the recovery

process is triggered.

6 EXPERIMENTAL EVALUATION
In this section, we assess the effectiveness of BIGSHARED on a

representative collection of complex OLAP queries, and conduct

a comparative analysis against state-of-the-art techniques.
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Figure 6: Architecture of BIGSHARED

Figure 7: Group Filter

Figure 8: Router Producer Consumer Model

6.1 Experimental Setup
Database Engine: We have implemented BIGSHARED and the

baseline approaches on OpenLooKeng [16] - an open-source big

data system based on Trino [2] that is widely used in produc-

tion environments. Within OpenLooKeng, the distributed query

planning is performed by the coordinator node, while the plan

fragments are concurrently executed by one or more worker

nodes. Notably, OpenLooKeng follows the storage compute sep-
aration paradigm, enabling queries to be executed over diverse

data sources, such as Hive, PostgreSQL and more. We use HDFS

for stage checkpointing.

Hardware: We ran our experiments on a cluster of 4 identical

machines with Intel(R) Xeon Gold CPUwith 2.60GHz, 32GB RAM,

and Ubuntu 20.04 Operating System.

Batch Workload: Our test workload is comprised of represen-

tative SPJA sub-queries from the TPC-DS benchmark with a scale

factor of 10. In the absence of missing standard benchmarks for

query batches, we create three types of diverse workloads of 100

queries each from TPC-DS capturing challenging scenarios.

(1) Low-Share (W1): Queries of the form A join B join C with

a common fact table. Dimension tables and filter predicates

are varied to generate the batch of queries. This workload

evaluates our system in cases where only a few joins exist and

the degree of sharing is low. This is hard case for BIGSHARED
and Datapath.

(2) High-Share (W2):All queries of this workload share a common

template with 4 joins, with varying filtering predicates. These

are scenarios where there is high overlap among queries.

(3) Regular-Share (W3): This workload is a mix of high and low

sharing queries with varying number of joins (2-5) and filter

predicates on the fact table. It represents a typical use case.

Note that in eachworkload there is a common fact table store_sales

(ss). It is the most commonly used fact table in TPC-DS. We

pick 10 distinct SPJA sub-query from the benchmark containing

store_sales - namely, Q1, Q7, Q38, Q42, Q43, Q55, Q73, Q79, Q87,

Q96.We created sixmore query templates containing 4 and 5 joins

required for Regular-Share using different combinations of the

following dimension tables: store (s), item (i), date_dim (d), cus-

tomer (c), income_band (ib) and household_demographics (hd).

These query templates were created because some of the larger

joins from TPC-DS (involving store_sales) were not supported

in our current implementation (although extendable)– mainly,

requiring no repeated tables and numeric filter predicates. The

batch queries for the three workloads were then created from

the above query templates by varying the filter constants along

the numerical attributes.

Baselines: The performance evaluation of BIGSHARED includes
a comparison against the following baselines:

• Query-at-a-time approach (QAT ): This baseline represents
the traditional execution model, where each query is processed

individually.

• Optimal QAT technique with deadlines (QAT-OPT ): Here,
the query is rescheduled based on the shortest job first ordering,

aiming for optimal execution within given deadlines. Note that

we use engine’s cost model for rescheduling [10]. This baseline

also serves to assess the impact of trivially executing all the

shorter running queries first for maximized goodput.

• State-of-the-art sharing system (Datapath): We observed

that Datapath often shows degraded performance when shar-

ing fully due to the bottleneck at the router operator. Hence,

the whole batch is divided into mini-batches, of constant size

based on the arrival order, for a fair comparison. Notably, we

exclude the comparison against SWO [6] due to its limited

scalability. SWO could handle a maximum batch size of 11

within a 1-hour timeout [7]. Non-intrusive approaches such as

[5] are not suitable for ad-hoc query batches that differ from

workload history.

To ensure fair comparison and fault-tolerance, we employ

stage checkpointing across all the techniques. Stage-checkpointing

strikes a balance between no-materialization, which is ineffi-

cient, and full materialization of all operators, which is resource-

intensive. The superiority of stage-checkpointing over both full
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and no materialization has been noted in [13]. For further details,

refer to Section 4.

Metric: We measure the performance of each technique by

Goodput, i.e. the query completion rate at deadline𝑇 for an input

batch. The results are normalized to QAT performance.

Deadlines: When the deadlines are too high or too low, the

goodput achieved by various techniques becomes comparable.

In order to establish a benchmark performance, we select the

deadline value such that around 1/3rd of the batch queries are

completed with QAT (for single deadline evaluations).

6.2 Performance Comparison: No Failure
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Figure 9: Comparison of goodput with batch size of 100
and deadline of 300 secs (No failures)

In this evaluation, we compare the goodput rates of different

techniques in the absence of failures across Low-Share, High-

Share, and Regular-Share workloads. The objective is to assess

the effectiveness of BIGSHARED in highly reliable environments

where failures are rare occurrences. All workloads are assigned

a deadline of 300 ms. By default, for selective materialization,

BIGSHARED runs on a cost budget corresponding to 25% of the

chosen deadline value.

Figure 9 demonstrates that BIGSHARED outperforms other tech-

niques consistently across all workloads. On average, it surpasses

Datapath (pure sharing) by more than 1.5 times in both Low-

Share and Regular-Share scenarios. It is noteworthy that under

the High-Share workload, Datapath and BIGSHARED exhibit sim-

ilar success rates as they behave similarly in context of query

shuffling. However, BIGSHARED gains an edge by incorporating

deadline awareness to the process.

Both QAT-OPT and Datapath exhibit comparable performance

in Low-Share and Regular-Share workloads, but not for High-

Share. High-Share represents the most favourable condition for

sharing systems. However, QAT-OPT falls behind BIGSHARED by

missing out on the savings achieved through sharing. The gap

between the two techniques is more pronounced in High-Share

and Regular-Share scenarios compared to Low-Share. Even for

Low-Share, where there are fewer joins in common, BIGSHARED
leverages sharing of work from scanning common tables, group-

ing filter operators together across queries. In effect, BIGSHARED
outperforms QAT-OPT by 43%.

Overall, BIGSHARED significantly improves goodput compared

to the best query-at-a-time paradigm and the state-of-the-art

sharing system, achieving performance enhancements of up to

78% and 57%, respectively.

6.3 Performance Comparison: With Failures
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Figure 10: Comparison of Goodput with varying failures
and deadline of 400 secs

Now, we assess the performance of all the techniques in case of

failures. We induce failures in the workers by killing one worker

3
at a time at regular intervals of 100 secs. Since there are failures

that induce delay, we set the deadline to a higher value of 400 secs.

Figure 10 shows the goodput with varying number of failures

of all the techniques on the regular share workload. Note the

recovery is at a fine grained task level, i.e., only the failed tasks

of a stage are retried for recovery. Note that the failure detection

timeout is set to 1 minute.

QAT-OPT shows relatively consistent performance across fail-

ures, as the impact of a failure is limited to the query running

at that particular time. On the other hand, sharing-based ap-

proaches display more variance as they share and consequently

lose more work in the presence of failures. The performance of

BIGSHARED, however, is better safeguarded due to its strategic

use of checkpoints in critical stages, coupled with deadline-aware

sharing. Comparing BIGSHARED to QAT-OPT, the former achieves

a 55% improvement in goodput with one failure, which further

increases to 81% with four failures (similar comparative perfor-

mance w.r.t. Datapath too). As noted earlier goodput numbers

are normalised to QAT performance. Since QAT performance

deteriorates at a faster rate compared to BIGSHARED, it leads to
an increase in relative performance – thanks to deadline-aware

optimization, selective checkpointing and careful sharing lever-

aged by BIGSHARED. As observed, the oscillation in the deadline-

oblivious Datapath is because performance depends on whether

the current mini-batch finishes before the deadline. Finally, the

failures affect QAT-OPT in a similar manner as QAT.

Overall, even in presence of failures, BIGSHARED outperforms

other techniques across all workloads, surpassing QAT-OPT by

61% and Datapath by 74%, respectively, on average. This show-

cases the superior resiliency of BIGSHARED compared to alterna-

tive approaches on multiple failures.

6.4 Optimization Times
Figure 11 captures the cumulative optimization times of the base-

lines and BIGSHARED on the regular share batch of 100 queries.

Dynamic-programming based intra-query ordering is applied to

both Datapath and BIGSHARED. Memoization helps to get better

quality plans without sacrificing on the optimization times. Fur-

ther, Datapath and BIGSHARED have similar optimization times,

3
The worker comes back again after a few seconds, resulting in a 3-node cluster at

each failure point
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Figure 11: Comparison of Optimization times

while being much faster than QAT-OPT. This is because the op-

timization time for QAT-OPT includes query parsing, logical and

physical planning for all batch queries. In sharing approaches,

query parsing times remain the same as QAT-OPT. However,

logical and physical planning are performed once per mini-batch

– this component is just 3X higher (for mini-batch size=16) com-

pared to a single query.

The additional query shuffling phase is there in BIGSHARED but
not in Datapath. However, it is compensated with less optimiza-

tion overheads of global plans for mini-batches in BIGSHARED.
This is becausemini-batches havemore query similarity in BIGSHARED
in comparison to Datapath – thanks to query shuffling – leading

to reduced search space, and hence, less complex plans.

6.5 Varying Deadlines
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Figure 12: Varying Deadlines

In the course of this evaluation, we systematically assessed

by altering the deadline duration within a range spanning from

200 seconds to 900 seconds, and measuring the goodput of all the

techniques. Note that there are different runs of each technique

for each deadline value. The results of this analysis are presented

in Figure 12. The evaluation was performed on a Regular-Share

batch that included three failures. To ensure an even distribution

of failures across the runtime of both Datapath and QAT-OPT,

the failures were intentionally induced at intervals of 200 secs.

Among the evaluated techniques, BIGSHARED achieves the

fastest completion of the entire batch, finishing in 500 secs (in-

dicated by line termination) compared to the 800 to 900 secs

required by QAT-OPT and Datapath. As QAT-OPT prioritizes

executing the shortest jobs first, it exhibits higher goodput com-

pared to Datapath. However, with large deadline values, sharing

becomes inherently advantageous, and QAT-OPT executes larger

queries at later stages.

Despite performing well with short deadline values, QAT-OPT

still falls short compared to the performance of BIGSHARED due to
its lack of work sharing capabilities. In contrast, BIGSHARED not

only prioritizes shorter queries to a certain extent, as explained

in the query shuffling process, but also incorporates sharing of

work. There is a noticeable dip in the performance of BIGSHARED
around the 400-second mark, which can be attributed to a failure

that occurred before that point. When the system recovered, with

around 40 secs remaining to run a mini-batch, it chooses a small

mini-batch of size 4 for execution.

Overall, BIGSHARED demonstrates strong performance across

the entire spectrum of deadline values, finishing the entire batch

63% earlier than Datapath. This impressive efficiency is achieved

by combining the strengths of QAT and sharing approaches.

6.6 Impact of Dynamic Mini-Batching
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Figure 13: Effect of Dynamic Mini-Batching

Let us now assess the impact of our proposed approach in

Figure 13. We consider all three workload types while keeping

the number of failures fixed at 3 and setting a deadline of 400

seconds. The y-axis represents goodput values for BIGSHARED,
normalized to BIGSHARED without dynamic mini-batching.

It is evident that Low-share and Regular-Share workloads

outperform High-Share workload on goodput. This disparity

arises because High-Share had relatively little time after recov-

ery with deadline following up. For other workloads, without

dynamic mini-batching, a substantial amount of work was lost

due to missed deadlines. However, with dynamic mini-batching,

a larger portion of the mini-batch work could be accomplished.

In summary, dynamic mini-batching enhances the robustness of

BIGSHARED performance concerning the timing of failures.

6.7 Discussion
While BIGSHARED shows benefit for various analytical workloads,
it may have limited utility in the following scenarios:

• Low-Latency Queries (LLQs): Even the optimization phase is

often skipped for LLQs for faster response. Resiliency is rele-

vant for medium to long-running queries, as re-computation

is costly. Recovery from failure itself takes seconds, which in-

volves reading of materialized data, slowing down the normal

execution. Therefore, LLQs cannot gain benefit from BIGSHARED.
• Low Selectivity Queries: Sharing advantages might be limited

in queries with very low selectivity or queries having less

commonality as the scope of reuse is less.
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7 RELATEDWORK
The prior-art to our work spans three dimensions: work sharing

systems, real-time databases and resiliency, as summarized next.

7.1 Work Sharing Systems
Numerous studies delve into Multi Query Optimization (MQO),

starting with Sellis’ seminal work [21]. These works detect com-

mon subexpressions among queries, reducing computation redun-

dancy [9]. This concept expands in [22] and [23], and considers

a wider context of map-reduce in [24, 25]. However, MQO’s ex-

pensive subexpression matching limits scalability to a few tens

of queries, as noted in [6].

SharedWork (SW) systems deviate from traditional MQO, aim-

ing to share work across queries. These systems share operators

on the same table or attributes and even joins, minimizing subex-

pression matching. Examples include Crescando [26], sharing

scans among hundreds of queries, and more systems like Dat-

apath [15], CJoin [27], QPipe [28], and SharedDB [29]. Finally,

MQJoin extends ShareDB[30] with high-throughput joins.

Some approaches optimize global plans, such as Shared-workload

Optimization (SWO) [6] and Datapath [15]. SWO frames the prob-

lem as a bi-linear optimization problem but does not scale well

[7]. Datapath offers a scalable alternative for batch optimization

and serves as the foundation for BIGSHARED optimizer (Section

3). Recent work like RouLette [7] addresses scalability through

adaptive query processing, but necessitates a complete engine

redesign, limiting its adaptability. Finally, SW systems can benefit

from leveraging materialized views [5, 31], which can be used

alongside BIGSHARED for enhanced performance.

7.2 Real-Time Databases
A substantial body of literature on real-time databases focuses

on imposing real-time constraints based on application require-

ments. These systems are typically evaluated by analyzingmissed

transaction frequency and lateness in meeting deadlines, while

ensuring data consistency. Various aspects are explored, includ-

ing transaction scheduling, real-time concurrency control, buffer

management, overload management, and distributed real-time

databases [10, 32].

Transaction scheduling is particularly relevant to BIGSHARED
in batch-analytics context. When deadline values are the same,

the shortest job first algorithm is optimal. However, for tasks with

different deadlines, algorithms like most-critical-first, earliest-

deadline-first and their variations [33] are established. These

algorithms consider different deadline values for each task [10].

Additionally, there are generalizations of these algorithms for

online scheduling, where all tasks are not known upfront. Vari-

ants have been proposed for different types of deadlines, such

as hard, soft, and firm. However, BIGSHARED considers a simpler

setting with the same hard deadline values for all queries, equal
priorities, offline mode, and similar conditions. Finally, Tang et

al. [11] employ sharing through materialized views in streaming

queries with varying deadlines. They aim to complete all queries

with higher throughput using materialized views, without re-

siliency. In contrast, we consider fixed resources and resiliency,

balancing sharing with deadline. In short, all these earlier works

have seen queries in isolation and missed opportunities from

sharing work. Furthermore, these algorithms assume an accurate

estimate of task completion times, which is rarely true in practice.

7.3 Resiliency
Popular MPP data engines such as Teradata [34], Greenplum

[3], Vertica [35], Impala [36], and HAWQ [37] retry parts or

the entire query until it succeeds, to handle failures. Traditional

databases employ techniques like storage-level replication [38–

40] or checkpointing intermediate results [41]. Spark [1] uses

RDDs, to capture data lineage, for fault tolerance.

Single-query fault tolerance solutions include FTOpt [42] and

XDB [14]. XDB uses a cost-based approach to choose which

operator to checkpoint, but breaks the processing pipeline and

leads to longer recovery times when an operator fails. In contrast,

stage checkpointing approach in BIGSHARED does not break the

pipeline and recovers only the failed tasks. FTOpt offers an ex-

tensible operator level fault tolerance framework but relies on

impractical assumptions like order-preserving data transmission

between operators. Neither XDB nor FTOpt is designed for MPP

engines. Stage checkpointing has been adopted in SmartFaultTol-

erance [13] and Trino [12], but has not been devised for batch

scenarios. Moreover, SmartFaultTolerance looks at producing a

plan with highest success probability. However, the approach

does not scale well for large plans as it relies on Monte Carlo

probability estimation to decide the plans, which becomes a huge

bottleneck with large global plans as in our case.

In summary, existing resiliency approaches have focused on a

query-at-a-time paradigm. This work re-evaluates them in the

context of batch queries with a sharing-conscious perspective.

8 CONCLUSION
In this paper, we introduced BIGSHARED, designed to optimize

goodput by efficiently sharingworkloads among a batch of queries

while considering deadlines. Our batch query optimizer, tailored

for deadline-sensitive scenarios, manages the delicate balance

between meeting deadlines and leveraging sharing, even in the

presence of failures. We have incorporated selective stage-level

checkpointing to enhance overall system performance further.

BIGSHARED represents a significant advancement in enhancing

system goodput through efficient sharing.

In the realm of real-time databases, various problem formula-

tions related to deadlines have been explored, including online

versions, deadlines with slack, queries with priorities, and dead-

line hardness. All of these, in the context of BIGSHARED, present
interesting directions for future research. Equally important are

tightly integrated engine components, such as the scheduler and

buffer management, for improved performance. Also it will be in-

teresting to explore leveraging GPUs for optimizing large global

plans along the lines of [43, 44].

Exploring the applicability of BIGSHARED’s approach in other

domains, such as cross-geographical analytics, holds promise for

future research. Some of the challenges we anticipate include

managing slow and variable WAN bandwidth, new execution op-

erators, optimizing operator (and router) placements, and sched-

uling them, among others.
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