
Size-bounded Community Search over Large Bipartite Graphs
Yuting Zhang

University of New South Wales

Data61, CSIRO

Sydney, Australia

yutingz@cse.unsw.edu.au

Kai Wang

Shanghai Jiao Tong University

Shanghai, China

w.kai@sjtu.edu.cn

Wenjie Zhang

University of New South Wales

Sydney, Australia

zhangw@cse.unsw.edu.au

Wei Ni

Data61, CSIRO

Sydney, Australia

wei.ni@data61.csiro.au

Xuemin Lin

Shanghai Jiao Tong University

Shanghai, China

xuemin.lin@sjtu.edu.cn

ABSTRACT
In real-world applications, bipartite graphs are commonly used

to represent relationships between two types of entities. How-

ever, existing studies in community discovery on bipartite graphs

have overlooked the importance of considering the size of the

resulting community, which can reflect practical constraints such

as venue capacity or team size. In this paper, we address this

limitation by introducing the size-bounded (𝛼, 𝛽)-community

(SABC) model, which incorporates both structural cohesiveness

and size constraints in bipartite graphs. Our model has appli-

cations in various domains such as team formation, biological

network analysis, and suspicious group identification. To enable

efficient query processing on large graphs, we propose shrink-

based and expand-based algorithms, complemented by reduction

rules and vertex ordering strategies. Our extensive experiments

conducted on 9 real-world datasets demonstrate the effective-

ness and efficiency of our proposed model, query processing

algorithms, and optimizations.

1 INTRODUCTION
Bipartite graphs are widely adopted to model relationships be-

tween two distinct types of entities. In bipartite graphs, vertices

are divided into two disjoint sets (i.e., the upper and lower layers)

and edges only exist between vertices from different layers. Such

a structure allows bipartite graphs to capture many real-life inter-

actions, such as author-paper networks [13], customer-product

networks [31], and gene-property networks [30]. Community

structures naturally reside in these real-life bipartite networks

and community search, which retrieves densely connected sub-

graphs containing given query vertices, has recently been ex-

plored following different cohesive subgraph models of bipartite

graphs (e.g., (𝛼, 𝛽)-core [7, 18, 35, 36, 45], bitruss [28, 33, 39, 47],

and biclique [6, 16, 17, 24, 42]). Community search over bipartite

graphs has been proved useful in many real-world applications,

such as personalized recommendations [19, 36], team formation

[28], and fraud detection [3, 19]. Previous studies also reveal

that the size of retrieved communities can be quite large and

unpredictable [15, 23, 29], thus hindering the usefulness of com-

munity search models. For instance, on the MovieLense dataset (
https://grouplens.org/datasets/movielens/25m/), when querying

the (𝛼, 𝛽)-core with 𝛼 = 𝛽 = 10, the returned subgraph contains

162,539 users and 24,330 movies.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the

27th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2024, ISBN 978-3-89318-094-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Size-bounded community search has been extensively stud-

ied on general (unipartite) graphs in recent years including size-

bounded 𝑘-core model [23, 29, 41] and size-bounded 𝑘-truss

model [20]. These studies demonstrate the size constraint of a

community is natural and crucial in many real-world applications

especially when query vertices are involved (e.g., a host wants

to organize a party with 10 guests or forming a team with 12

group members). Despite the success of size-bounded community

search models over unipartite graphs, these models cannot be

directly applied to bipartite graphs since they do not consider the

unique structure of bipartite graphs where two vertex sets with

different semantics are involved and a single-value size constraint

based models for unipartite graphs are no longer appropriate.

u1 u3u2 u4 u5 u6 u7 u8

v3 v4v2v1 v5 v6 v7

u1 u3u2 u4 u5 u6 u7 u8

v3 v4v2v1 v5 v6 v7

u1 u3u2 u4 u5 u6 u7 u8

v3 v4v2v1 v5 v6 v7

u1 u3u2 u4 u5 u6 u7 u8

v3 v4v2v1 v5 v6 v7

v3 v4v2v1 v5 v6 v7

Nicola

u1 u3u2 u4 u5 u6 u7 u8

JuliaHilaryBrett James Anne JanineRayEddy

Gravity Troll Speed Curve Jaws Shrek Till

Figure 1: A user-movie network
Motivated by the observations above, in this paper, we are

the first to study the size-bounded community search problem

on bipartite graphs to find high-quality communities based on

the well-studied (𝛼, 𝛽)-core model. Specifically, given a bipartite

graph 𝐺 , a query vertex 𝑞, degree constraints 𝛼 and 𝛽 , and size

constraints S𝑈 and S𝐿 , we aim to find a size-bounded (𝛼, 𝛽)-
community (SABC) which is a connected subgraph 𝐻 ⊆ 𝐺 con-

taining 𝑞, satisfying the following conditions: (1) cohesiveness

constraint: the degree of all upper layer vertices in 𝐻 is at least 𝛼 ,

and the degree of all lower layer vertices in𝐻 is at least 𝛽 , (2) size

constraint: the number of vertices in upper and lower layer of 𝐻

is no larger than S𝑈 and S𝐿 , respectively. The intuition behind

the new SABC model is to utilize the widely adopted (𝛼, 𝛽)-core

model to capture structural cohesiveness and incorporate size

constraints to restrict the size of the resultant community. Note

that the two disjoint sets of vertices in a bipartite graph represent

distinct entities and hold different application semantics, it is

more appropriate to impose different size constraints on two lay-

ers. Consider the example in Figure 1. If the (𝛼, 𝛽)-core model is

applied to search a (2,3)-community of "Brett", the entire graph in

the figure will be returned, which includes 8 users and 7 movies.

However, if "Brett" only has time for at most three movies and

wishes to engage in discussions with up to three other users

due to venue capacity, our model with size constraints S𝑈 = 4

Series ISSN: 2367-2005 320 10.48786/edbt.2024.28

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.28

and S𝐿 = 3 can provide a more realistic solution. It can find the

community in the red circle, which exclusively consists of users

"Brett", "Eddy", "Hilary", and "Ray", along with movies "Gravity",

"Troll", and "Speed". In addition, the (𝛼, 𝛽)-core model naturally

implies a lower bound over the number of upper and lower layer

vertices, which are 𝛽 and 𝛼 , respectively.

Applications. Finding SABC has many real-world applications,

and we list some of them below.

• Team Formation. In user-movie networks (e.g., MovieLense
and IMDB), a host may wish to organize a group activity with

users having similar interests in movies and share some movies

together. As shown in [18], cohesive models such as (𝛼, 𝛽)-core

can be used to find the desired community. However, when con-

sidering factors such as venue capacity and activity duration, it

becomes crucial to include size constraints alongside cohesive

constraints when searching for the community. Thus, the SABC
model can effectively provide personalized recommendations to

the host, suggesting a group with a desired number of attendees

and movies.

• Biological Network Analysis. In gene-property networks, the

upper layer represents genes and the lower layer represents prop-

erties. A key task in biology is to identify functional modules

composed of genes and corresponding properties, which are co-

hesive subgraphs in the gene-property network [26]. A recent

study [30] demonstrates that the (𝛼, 𝛽)-core model can be used

to identify genes with similar properties. Li et al. [14] reveal that

only small cohesive subgraphs can help to find a group with

homophily property as the query vertex. Therefore, based on a

given property or gene, the SABC model can effectively locate rel-

evant properties or genes associated with disease susceptibility

or drug response.

• Suspicious Group Identification. In online shopping platforms

like Amazon or eBay, users and items naturally form a bipartite

network. A group of malicious users tend to give a large number

of fake ratings to some of the items they want to promote. A

recent study [36] highlights the effectiveness of the (𝛼, 𝛽)-core

model in identifying such groups of malicious users and the

associated products. However, one limitation of the (𝛼, 𝛽)-core

model is that it often generates large communities, which may

include numerous innocent users. This, in turn, can increase the

costs and efforts required for human checks and investigations.

By constraining the size of the resulting community, our model

allows a more targeted and efficient identification of malicious

users and associated items.

Challenges and our solutions. In this paper, we aim to de-

velop efficient algorithms for the size-bounded community (SABC)
search problem over bipartite graphs.

We prove that the size-bounded (𝛼, 𝛽)-community search prob-

lem is NP-hard. The high computational complexity makes it

difficult to retrieve an exact solution for SABC model within a

reasonable time. A naive solution to this problem is to evalu-

ate all possible combinations of vertices in𝐺 to identify a com-

munity that satisfies the degree and size constraints. However,

this approach is impractical as it will involve exploring many

unpromising combinations. Therefore, it is crucial to design ef-

fective searching strategies and pruning techniques to avoid

unpromising combinations and narrow down the search space.

Motivated by the above challenges, we propose both shrink-

based and expand-based algorithms to efficiently obtain the re-

sults. The shrink-based search strategy quickly finds a feasible

solution by starting from the entire (𝛼, 𝛽)-core and removing

vertices until the remaining graph forms a SABC. Following the

observation that the result tends to be close to the query node,

we also propose an expand-based search strategy that iteratively

expands from the query vertex 𝑞 to form a SABC. In addition, we

propose three pruning rules to effectively limit the search space

and eliminate unpromising branches during the search process.

Furthermore, we propose two score functions based on the dis-

tribution of their neighbors in the current partial solution. This

enables each iteration in the expand-based approach to select the

most promising vertex, and each iteration in the shrink-based

approach to remove the most unpromising vertex.

Contributions. Our principal contributions in this paper are

summarized below.

• A new community model.Motivated by real-life requirements,

we apply the size constraint to the (𝛼, 𝛽)-community model. The

paper is the first to study the problem of size-bounded community

search on bipartite graphs.

•Online search algorithm.Wedevelop efficient Shrink and Expand
algorithms to query SABCwith given size constraints, degree con-

straints and query vertex.

• Novel pruning rules and vertex selection strategies. To alleviate

the expensive online searching cost, we design several pruning

rules to limit the search space, reduce the number of search

branches, and optimise the visiting order of vertices.

• Extensive experimental studies. We conduct extensive experi-

ments over 9 real-world graphs to evaluate the effectiveness of

the proposed model and the efficiency of our algorithms.

Organization. The rest of the paper is organized as follows.

Section 2 defines the problem. Section 3 introduces the shrink-

based algorithm and optimizes it with a pruning rule and the

vertex selection technique. Section 4 introduces the expand-based

algorithm and its optimizations. Section 5 reports experimental

results. Section 6 reviews the related work. Section 7 concludes

the paper.

2 PROBLEM DEFINITION
In this section, we formally introduce notations and definitions.

Mathematical notations used throughout this paper are summa-

rized in Table 1.

Table 1: The summary of notations

Notation Definition

𝐺 a bipartite graph

𝑉 (𝐺)/𝐸 (𝐺) the vertex/edge set of 𝐺

𝑈 (𝐺)/𝐿(𝐺) the upper/lower layer of 𝐺

𝑛,𝑚 the number of vertices and edges in𝐺 (𝑚 > 𝑛)

𝑢, 𝑣 a vertex in a bipartite graph

(𝑢, 𝑣), 𝑒 an edge in a bipartite graph

𝐻 the size-bounded (𝛼, 𝛽)-community of 𝑞 in 𝐺

𝑁𝐺 (𝑢) the set of neighbors of 𝑢 in 𝐺

𝑑𝑒𝑔𝐺 (𝑢) the degree of vertex 𝑢 in 𝐺

𝐺𝐷,𝑞 the subgraph induced by𝑞 and𝐷-hop neighbor

of 𝑞 in 𝐺

𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑣) the shortest distance between 𝑢 and 𝑣 in 𝐺

Our problem is defined over a bipartite graph 𝐺 (𝑉=(𝑈 , 𝐿), 𝐸),
where 𝑈 (𝐺) denotes the set of vertices in the upper layer, 𝐿(𝐺)
denotes the set of vertices in the lower layer, and 𝐸 (𝐺) denotes
the set of edges. We have 𝐸 (𝐺) ⊆ 𝑈 (𝐺) × 𝐿(𝐺), and 𝑈 (𝐺) ∩
𝐿(𝐺) = ∅. An edge 𝑒 between two vertices𝑢 and 𝑣 in𝐺 is denoted

as 𝑒 = (𝑢, 𝑣) or (𝑣,𝑢). The set of neighbors of a vertex 𝑢 in 𝐺

321

is denoted as 𝑁𝐺 (𝑢) = {𝑣 ∈ 𝑉 (𝐺) | (𝑢, 𝑣) ∈ 𝐸 (𝐺)}, and the

degree of 𝑢 is denoted as 𝑑𝑒𝑔𝐺 (𝑢) = |𝑁𝐺 (𝑢) |. We use 𝑛 and𝑚

to denote the number of vertices and edges in 𝐺 , respectively.

Before formally defining the problem, we introduce the following

critical concepts.

Definition 2.1. (𝛼, 𝛽)-core. Given a bipartite graph G and de-

gree constraints 𝛼 and 𝛽 , a subgraph is an (𝛼, 𝛽)-core of𝐺 if all

the vertices in the upper layer have degree at least 𝛼 and all the

vertices in the lower layer have degree at least 𝛽 ; An (𝛼, 𝛽)-core

is maximal if any supergraph of it is not an (𝛼, 𝛽)-core.

Based on the (𝛼, 𝛽)-core model, our proposed model introduces

additional size constraints to meet the query requirements in real-

life scenarios. Since the upper layer𝑈 (𝐺) and lower layer 𝐿(𝐺)
in a bipartite graph represent two distinct sets of entities, we use

parameters S𝑈 and S𝐿 to represent the size constraints to the

upper and lower layers respectively.

Definition 2.2. Size-bounded (𝛼, 𝛽)-community (SABC). Given
a bipartite graph𝐺 , a query vertex 𝑞, degree constraints 𝛼 and 𝛽 ,

and size constraints S𝑈 and S𝐿 , a subgraph 𝐻 is a size-bounded

(𝛼, 𝛽)-community of 𝐺 if it satisfies the following constraints.

(1) Connectivity constraint. 𝐻 is connected and 𝑞 ∈ 𝐻 ;
(2) Cohesiveness constraint. 𝑑𝑒𝑔𝐻 (𝑢) ≥ 𝛼 for each𝑢 ∈ 𝑈 (𝐻) and
𝑑𝑒𝑔𝐻 (𝑣) ≥ 𝛽 for each 𝑣 ∈ 𝐿(𝐻);
(3) Size constraint. |𝑈 (𝐻) | ≤ S𝑈 and |𝐿(𝐻) | ≤ S𝐿 .

Problem Statement (SABC Search). Given a bipartite graph 𝐺 ,

a query vertex 𝑞, degree constraints 𝛼 and 𝛽 , and size constraints

S𝑈 and S𝐿 , we aim to find a size-bounded (𝛼, 𝛽)-community in 𝐺 .

Problem Hardness. We prove the NP-hardness of the SABC
search.

Theorem 2.3. The SABC search problem is NP-hard.

Proof. We prove this by reducing the 𝑘-biclique search prob-

lem [17]. Given a bipartite graph 𝐺 , and a integer 𝑘 , the 𝑘-

biclique search problem aims to find the biclique𝐾𝑘,𝑘 in𝐺 having

|𝑈 (𝐾𝑘,𝑘) | = 𝑘 and |𝐿(𝐾𝑘,𝑘) | = 𝑘 . Now, given an instance of the 𝑘-

biclique search problem which takes a graph𝐺 (𝑉=(𝑈 , 𝐿), 𝐸) and
an integer 𝑘 and aims to determine whether 𝐺 has a 𝑘-biclique.

We reduce it into a SABC problem as follows. We add the dummy

vertex 𝑣𝑞 and edges between 𝑣𝑞 and every vertex in the other

layer. Without loss of generality, we assume 𝑣𝑞 is in the upper

layer. Denote the resulting graph as 𝐺 ′, i.e., 𝑈 (𝐺 ′) = 𝑈 ∪ {𝑣𝑞},
𝐿(𝐺 ′) = 𝐿(𝐺) and 𝐸 (𝐺 ′) = 𝐸 ∪ {(𝑣𝑞, 𝑣) |𝑣 ∈ 𝐿(𝐺)}. The query
of SABC problem consists of a query vertex 𝑣𝑞 , size constraints

(𝑘 + 1, 𝑘), and degree constraints (𝑘, 𝑘 + 1). It is easy to verify

that a subgraph 𝐻 ⊆ 𝐺 is a 𝑘-biclique if and only if 𝐻 ∪ 𝑣𝑞 is a so-

lution to the SABC problem. This is because the given constraints

require every vertex in one layer to be connected to every vertex

in the other layer in the SABC. And put 𝑣𝑞 aside, the rest of the

subgraph is a fully connected subgraph with 𝑘 vertices in both

layers. Therefore, since the 𝑘-biclique search problem is NP-hard,

our SABC search problem is also NP-hard. □

Remark. Note that given a specific query vertex and constraints

of degree and size, there can be multiple possible results that sat-

isfy the given criteria. However, due to the inherent complexity as

discussed above, it is impractical to cover all the possible results,

and we aim to retrieve one of them. To simplify our discussion,

we refer to a subgraph by its vertices set in the following.

3 SHRINK-BASED APPROACHES
3.1 A basic shrink-based approach
According to Definition 2.1 and Definition 2.2, a SABC must be a

connected subgraph of the (𝛼, 𝛽)-core containing 𝑞. Following
this idea, we introduce a shrink-based approach that gradually

peels the input graph to a connected subgraph of (𝛼, 𝛽)-core

containing 𝑞 and checks whether it meets the cohesiveness and

size constraints.

Let𝐺 ′ represent the connected subgraph of the (𝛼, 𝛽)-core that
contains 𝑞 in 𝐺 . We recursively select a vertex to remove and

maintain𝐺 ′ as a connected subgraph satisfying the cohesiveness

constraint and containing 𝑞. However, there is a situation where

removing a vertex 𝑣 would result in 𝐺 ′ no longer satisfying

the cohesiveness constraints. In such cases, we recover𝐺 ′ and
avoid removing 𝑣 in the subsequent recursions to ensure the

degree constraints for 𝑞. We use set 𝐶 to record the vertices

that cannot be removed. This process gives our shrink-based

algorithm a recursive nature, resembling a binary tree. During

each recursion, we attempt to remove a vertex from 𝐺 ′ that is
not in 𝐶 , while ensuring that all vertices in 𝐶 remain in 𝐺 ′. The
recursion continues until 𝐺 ′ satisfies the size constraints, at this
point, 𝐺 ′ represents a SABC.

In Algorithm 1, we present details of the shrink-based ap-

proach. The algorithm begins by initializing a set𝐶 with 𝑞, which

records the vertices that must be preserved to maintain 𝑞 satis-

fying the degree constraints (Line 1). Then, we obtain 𝐺 ′ as the
connected component of (𝛼, 𝛽)-core in 𝐺 that contains 𝑞 (Line 2).

If 𝐺 ′ is empty, an empty set is returned, indicating that no result

exists (Lines 3 - 4). Otherwise, we initialize 𝐻 as 𝐺 ′ (Line 5) and
find the result by calling the SSearch function (Line 6). SSearch
recursively determines whether a vertex 𝑣 can be removed (Line

8). In each iteration, a selected vertex is attempted to be removed

from𝐺 ′ (Line 12). Note that removing 𝑣 may lead to the removal

of other vertices that do not satisfy the degree constraints, and we

describe this process in Algorithm 2. If 𝐶 remains a subset of 𝐺 ′

after the removal and 𝐺 ′ satisfies the size constraints, we return
𝐺 ′ as a result (Lines 13 - 15). Otherwise, if the size of 𝐺 ′ still
exceeds the size constraints, the SSearch function is recursively

called to further shrink 𝐺 ′ (Line 16). Note that if the removal

of selected vertex results in cascading removals of any vertex

in 𝐶 , the algorithm recovers 𝐺 ′ by adding back all the vertices

removed during the Peeling process (Line 17). The vertex 𝑣 is
then included in𝐶 as it must be preserved to ensure that 𝑞 is part

of the final result (Line 18).

Algorithm 2 shows the pseudo-code of the Peeling algorithm,

which is invoked at Line 12 in Algorithm 1. Firstly, it initializes

a queue 𝑄 and adds the selected vertex 𝑣 to it (Line 1). Next, 𝑣

is removed from 𝐺 ′ (Line 2), and a Breadth First Search (BFS)

approach is employed to iteratively remove vertices from 𝐺 ′

based on the vertices in 𝑄 (Lines 3 - 10). In each iteration, it

dequeues the first vertex 𝑢′ from 𝑄 (Line 4). Then it visits the

neighborhood vertices of 𝑢′ and removes the one that does not

meet the degree constraint (Lines 6 - 7). If 𝑢′ is a vertex in 𝐶 ,

which means 𝑢′ cannot be removed to keep 𝑞 still in the (𝛼, 𝛽)-
core. The algorithm terminates to avoid unnecessary peeling and

back-track steps for the remaining vertices in 𝐺 ′ and returns 𝐺 ′

(Line 8). If 𝑣 ′ can be removed from 𝐺 ′, it added 𝑣 ′ into 𝑄 (Line

10). Once the iterations are complete, the connected component

in 𝐺 ′ that contains the query vertex is returned.

Example 3.1. Consider the bipartite graph 𝐺 in Figure 1. Sup-

pose 𝑞 = 𝑢1, 𝛼 = 2, 𝛽 = 3, S𝑈 = 4, and S𝐿 = 3. Initially,𝐶 = {𝑢1},

322

Algorithm 1: Shrink
Input:𝐺 , 𝑞, 𝛼 , 𝛽 , S𝑈 , and S𝐿 ;
Output: 𝐻 ;

1 𝐶 ← {𝑞};
2 𝐺 ′ ← the connected component of (𝛼, 𝛽)-core containing 𝑞;

3 if 𝐺 ′ is empty then
4 return ∅;
5 𝐻 ← 𝐺 ′;

6 𝐻 ← SSearch(𝐺 ′,𝐶) ;
7 return 𝐻 ;

8 Function SSearch(𝐺 ′ ,𝐶)
9 if a valid solution 𝐻 is found then
10 return 𝐻 ;

11 foreach 𝑣 ∈ 𝑉 (𝐺 ′) \𝐶 do
12 𝐺 ′ ← Peeling(𝐺 ′,𝐶, 𝑣) ;
13 if 𝐶 ⊆ 𝑉 (𝐺 ′) then
14 if |𝑈 (𝐺 ′) | ≤ S𝑈 and |𝐿 (𝐺 ′)) | ≤ S𝐿 then
15 return𝐺 ′;

16 𝐻 ← SSearch(𝐺 ′,𝐶) ;
17 recover 𝑣 and the vertices removed with 𝑣 into𝐺 ′;

18 𝐶 ← 𝐶 ∪ {𝑣};
19 if |𝑈 (𝐶) | > S𝑈 or |𝐿 (𝐶) | > S𝐿 then
20 return ∅;

Algorithm 2: Peeling
Input: a graph𝐺 ′ , the set𝐶 of vertices that must be included,

the vertex 𝑣 to be removed;

Output: updated𝐺 ′;
1 𝑄 ← ∅;𝑄.𝑝𝑢𝑠ℎ (𝑣) ;
2 remove 𝑣 from𝐺 ′;

3 while𝑄 ≠ ∅ do
4 𝑢′ ← 𝑄.𝑝𝑜𝑝 () ;
5 foreach 𝑣′ ∈ 𝑁𝐺 ′ (𝑢′) do
6 if 𝑣′ does not have enough degree then
7 remove 𝑣′ from𝐺 ′;

8 if 𝑣′ ∈ 𝐶 then
9 return𝐺 ′;

10 𝑄.𝑝𝑢𝑠ℎ (𝑣′) ;
11 remove isolated vertices from𝐺 ′;

12 return𝐺 ′;

and 𝐺 ′ = 𝐺 since 𝐺 is already a (2, 3)-core. Assume the visiting

order of vertices at Line 11 is vertex ID and alternate between two

layers. We first remove 𝑣1 from 𝐺 ′ using the Peeling algorithm.

After 𝑣1 is removed, the degree of 𝑢1 does not meet the degree

constraint to the upper layer, which is 2. So 𝑢1 is also removed

from 𝐺 . Since 𝑢1 ∈ 𝐶 , which cannot be removed, the Peeling
algorithm returns. Then we add all the vertex removed in this

Peeling algorithm (𝑣1 and 𝑢1) back to 𝐺 ′ and also add 𝑣1 into

𝐶 . Then the same process is repeated for 𝑢2, 𝑣2, 𝑢3, 𝑣3, and 𝑢4.

When we select to remove 𝑢5, vertices 𝑣4, 𝑣5, 𝑣6, 𝑢8, 𝑢6, 𝑢7, and 𝑣7
are also be removed along with 𝑢5. At this step,𝐺

′
satisfies the

size constraints S𝑈 = 4, and S𝐿 = 3. Thus the algorithm returns

𝐺 ′ as 𝐻 and terminates.

Correctness Analysis. Suppose there is a solution𝐻 containing

𝐶 . There are two conditions for the vertex 𝑣 to be removed at

Line 11 in Algorithm 1, either it is in 𝐻 (i.e., 𝑣 ∈ 𝐻) or it is not in

𝐻 (i.e., 𝑣 ∈ 𝑉 (𝐺 ′) \𝑉 (𝐻)). 1) If the selected vertex 𝑣 is in 𝐻 , the

𝑣 will be added to 𝐶 at Line 18 in Algorithm 1 unless there exist

other solutions. Then it continues invoking itself at Line 16 in

Algorithm 1 to compute a solution based on𝐺 ′ and 𝐶 . 2) If the
selected vertex 𝑣 is not in 𝐻 . Then removing 𝑣 will not lead to

the removal of any vertex in 𝐶 by the degree constraints. Thus,

before the remaining graph𝐺 ′ satisfies the size constraints, all the
vertex 𝑣 ∈ 𝑉 (𝐺 ′) \𝑉 (𝐻) will be examined recursively. Therefore,

Algorithm 1 can correctly solve the SABC search problem.

Time Complexity. In Algorithm 1, the Peeling algorithm in-

voked at Line 11 takes𝑂 (|𝐸 (𝐺 ′) |) time to peel𝐺 ′ to a connected
subgraph satisfying the cohesiveness constraints. Let 𝑇𝑖 denote

the total time complexity of SSearch when |𝐶 | = 𝑖 , where |𝐶 |
denotes the size of set 𝐶 . Thus, the total time complexity of

SSearch is 𝑇1 where 𝐶 contains only the query vertex 𝑞. Since

Lines 10 - 20 is executed at most 𝑉 (𝐺 ′) times, the time complex-

ity 𝑇𝑖 = |𝑉 (𝐺 ′) | ×𝑇𝑖+1 +𝑂 (|𝐸 (𝐺 ′) |). There are at most S𝑈 + S𝐿
iterations for the SSearch process, so 𝑖 is bounded by S𝑈 + S𝐿 .
Then we have 𝑇|𝐶 | = 𝑂 (|𝑉 (𝐺 ′) |S𝑈 +S𝐿−|𝐶 | × |𝐸 (𝐺 ′) |). At Line 5
in Algorithm 1, we have |𝐶 | = 1 , |𝐸 (𝐺 ′) | = 𝑂 (𝑚), and |𝑉 (𝐺 ′) | =
𝑂 (𝑛). Thus, the time cost of Algorithm 1 is 𝑂 (𝑛S𝑈 +S𝐿−1 ×𝑚).

3.2 Improving the shrink-based approach
Although the Shrink algorithm can correctly solve the SABC

search problem, we can further explore opportunities for im-

provement in the following aspects.

• Reduce the search space. The size constraint inherently
imposes an upper bound on the shortest distance between

two vertices 𝑢 and 𝑣 in 𝐻 . This is because if the distance

between 𝑢 and 𝑣 becomes too large, it implies that 𝑢 and

𝑣 must be connected through a significant number of in-

termediate vertices, which will cause 𝐻 to exceed the size

constraint. Thus, it is possible for us to limit the search

space with a distance upper bound.

• Optimized vertex selection order. In each iteration, we

select a vertex from 𝐺 ′ and remove it. As the removal

of one vertex has a cascading effect on all subsequent

vertices that will be removed, the choice of which vertex

to remove can significantly impact the remaining subgraph

𝐺 ′. Therefore, it is essential to devise a proper strategy for
vertex ordering.

Improvement 1: Distance-based reduction. To enhance the

efficiency and restrict the search space, we propose a distance-

based reduction to identify and prune unpromising verticeswithin

a given bipartite graph. Let 𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑣) denote the shortest dis-
tance between vertices 𝑢 and 𝑣 in the bipartite graph 𝐺 . The

diameter of a graph 𝐺 is defined as the maximum shortest dis-

tance between any two vertices, i.e.,𝑚𝑎𝑥{𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑣)}. We can

calculate the value of a diameter 𝐷 and obtain a subgraph based

on 𝐷 that can cover all the possible results. To determine the ap-

propriate diameter upper bound, we first introduce the following

lemma, which establishes the relationship between diameter 𝐷

and the given degree constraints 𝛼 , 𝛽 .

Lemma 3.2. Consider a connected bipartite graph 𝑔, in which
𝑑𝑒𝑔𝑔 (𝑢) ≥ 𝛼 for each𝑢 ∈ 𝑈 (𝑔) and 𝑑𝑒𝑔𝑔 (𝑣) ≥ 𝛽 for each 𝑣 ∈ 𝐿(𝑔).
Let 𝐷 denote the diameter of 𝑔. When 𝛼 > 1, 𝛽 > 1, and 𝐷 > 1,
we must have |𝑈 (𝑔) | ≥ ⌊𝐷−1

4
⌋ (𝛽 − 2) + ⌊𝐷

2
⌋ + 𝛽 − 1 and |𝐿(𝑔) | ≥

⌊𝐷−1
4
⌋ (𝛼 − 2) + ⌊𝐷

2
⌋ + 𝛼 − 1.

Proof. Let 𝑔 be a connected bipartite graph with 𝑑𝑒𝑔𝑔 (𝑢) > 1

for each 𝑢 ∈ 𝑈 (𝑔), 𝑑𝑒𝑔𝑔 (𝑣) > 1 for each 𝑣 ∈ 𝐿(𝑔), and 𝐷 > 1.

Let 𝑝 be a path in the graph 𝑔 such that the shortest distance

between the head vertex and the tail vertex in 𝑝 is𝐷 . 𝑝 must exist

323

as the diameter of 𝑔 is 𝐷 . Let 𝑢0, 𝑢1, ...𝑢𝑥 denote the upper layer

vertices in 𝑝 , and 𝑣0, 𝑣1, ..., 𝑣𝑦 denote the lower layer vertices in

𝑝 . Let 𝑁𝑈𝑠 be the set of 𝑢𝑖 ’s neighbors that are not in 𝑝 , 𝑠 = ⌊ 𝑖
2
⌋,

i.e. 𝑁𝑈⌊ 𝑖
2
⌋ = 𝑁𝑔 (𝑢𝑖) ∪ 𝑁𝑔 (𝑢𝑖+1), where 𝑁𝑔 (𝑢) denotes the set

of neighbors of 𝑢 in 𝑔. Let 𝑁𝐿𝑡 be the set of 𝑣 𝑗 ’s neighbors that

are not in 𝑝 , 𝑡 = ⌊ 𝑗
2
⌋, i.e. 𝑁𝐿⌊ 𝑗

2
⌋ = 𝑁𝑔 (𝑣 𝑗) ∪ 𝑁𝑔 (𝑣 𝑗+1). Note that,

the number of upper layer vertex and the lower layer vertex

in 𝑝 may not be divisible by 2. In such cases, the last neighbor

set only includes the neighbors of the last vertex in 𝑝 . Since 𝑝

is the shortest distance between the head vertex and the tail

vertex of this diameter, we must have 𝑁𝐿𝑡
⋂
𝑁𝐿𝑡 ′ = ∅,∀𝑡 ≠ 𝑡 ′

and 𝑁𝑈𝑠
⋂
𝑁𝑈𝑠′ = ∅,∀𝑠 ≠ 𝑠′. Otherwise, there must exist a

shorter path between the head vertex and tail vertex of 𝑝 with a

length smaller than 𝐷 . In a bipartite graph, 𝑝 falls into one of the

following 4 cases.

• Case 1: Start with an upper layer vertex and end with an upper

layer vertex.

• Case 2: Start with an upper layer vertex and end with a lower

layer vertex.

• Case 3: Start with a lower layer vertex and end with a lower

layer vertex.

• Case 4: Start with a lower layer vertex and end with an upper

layer vertex.

Without loss of generality, we focus on discussing Case 1 andCase

2. Case 3 and Case 4 can be proved similarly by interchanging

upper vertices and lower vertices. In both Case 1 and Case 2, we

have 𝑥 = ⌊𝐷
2
⌋, 𝑦 = ⌊𝐷−1

2
⌋, 𝑠 = ⌊𝐷

4
⌋, 𝑡 = ⌊𝐷−1

4
⌋.

v1 v2v0 v3

u0 u1 u2 u3

NL1

vy-1 vy

ux

NL0 NLt-1 NLt

…

NU1NU0 NUs-1 NUs

ux-1ux-3

(a) Case 1 (b) Case 2

𝐷𝐷𝑈𝑈 = 𝐷𝐷
2

+ 1, 𝑖𝑖 = 𝐷𝐷
4

𝐷𝐷𝐿𝐿 = 𝐷𝐷
2

, 𝑗𝑗 = 𝐷𝐷−2
4

Upper vertex num:

|𝑁𝑁𝑁𝑁𝑗𝑗| ≥ 𝛽𝛽 − 2, for 0 ≤ 𝑗𝑗 ≤ 𝐷𝐷−1
4

𝑈𝑈 = 𝐷𝐷−2
4

𝛽𝛽 − 2 + 𝐷𝐷
2
− 1 + 𝛽𝛽

Lower vertex num:
|𝑁𝑁𝑈𝑈0| ≥ 𝛼𝛼 − 1

|𝑁𝑁𝑈𝑈𝑖𝑖| ≥ 𝛼𝛼 − 2, for 0 < 𝑖𝑖 < 𝐷𝐷
4

𝑁𝑁 = 𝐷𝐷
4

𝛼𝛼 − 2 − 1 + 𝐷𝐷
2

+ 𝛼𝛼

|𝑁𝑁𝑈𝑈 𝐷𝐷
4

| ≥ 𝛼𝛼 − 1

𝐷𝐷𝑈𝑈 = 𝐷𝐷+1
2

, 𝑖𝑖 = 𝐷𝐷
4

𝐷𝐷𝐿𝐿 = 𝐷𝐷+1
2

, 𝑗𝑗 = 𝐷𝐷
4

Upper vertex num:
|𝑁𝑁𝑁𝑁0| ≥ 𝛽𝛽 − 1

|𝑁𝑁𝑁𝑁𝑖𝑖| ≥ 𝛽𝛽 − 2, for 0 < 𝑗𝑗 ≤ 𝐷𝐷
4

𝑈𝑈 = 𝐷𝐷
4

𝛽𝛽 − 2 + 𝐷𝐷+1
2

+ 𝛽𝛽 − 1

Lower vertex num:

|𝑁𝑁𝑈𝑈𝑗𝑗| ≥ 𝛼𝛼 − 2, for 0 ≤ 𝑗𝑗 < 𝐷𝐷
4

𝑁𝑁 = 𝐷𝐷
4

𝛼𝛼 − 2 + 𝐷𝐷+1
2

+ 𝛼𝛼 − 1

|𝑁𝑁𝑈𝑈 𝐷𝐷
4

| ≥ 𝛼𝛼 − 1

v1 v2v0 v3

u0 u1 u2 u3

NL1

ux-2 ux-1 ux

vy-1 vyvy-2

NL0 NLt-1 NLt

…

NU1NU0 NUs-1 NUs

ux-2

vy-2

Figure 2: Proof of Lemma 3.2 - Case 1

For Case 1, 𝑝 = (𝑢0, 𝑣0, 𝑢1, 𝑣1, ..., 𝑣 ⌊ 𝐷−1
2
⌋ , 𝑢⌊ 𝐷

2
⌋). For the vertex

sets 𝑁𝑈0, 𝑁𝑈1, ..., 𝑁𝑈𝑠 , we have the following observations.

• 𝑁𝑈0 ≥ 𝛼 − 1.
• 𝑁𝑈𝑠 ≥ 𝛼 − 2, for 0 < 𝑠 < ⌊𝐷

4
⌋.

• 𝑁𝑈⌊ 𝐷
4
⌋ ≥ 𝛼 − 1.

Thus, we can have the number of lower layer vertices in 𝑔 in Case

1 is lower bounded by the number of vertices in𝑁𝑈0, 𝑁𝑈1, ..., 𝑁𝑈𝑠

and the lower layer vertices in path 𝑝 , i.e., |𝐿(𝑔) | ≥ ⌊𝐷−1
2
⌋ + 1 +∑⌊ 𝐷

4
⌋

𝑠=0
|𝑁𝑈𝑠 | ≥ ⌊𝐷

4
⌋ (𝛼 − 2) + ⌊𝐷−1

2
⌋ + 𝛼+1.

For the vertex sets 𝑁𝐿0, 𝑁𝐿1, ..., 𝑁𝐿𝑡 , we observe that:

• 𝑁𝐿𝑡 ≥ 𝛽 − 2, for 0 ≤ 𝑡 ≤ ⌊𝐷−1
4
⌋.

Following the logic applied to the lower layer vertices, the num-

ber of upper layer vertices in 𝑔 in Case 1 is lower bounded by

the number of vertices in 𝑁𝐿0, 𝑁𝐿1, ..., 𝑁𝐿𝑡 and the upper layer

vertices in path 𝑝 , i.e., |𝑈 (𝑔) | ≥ ⌊𝐷
2
⌋ + 1 + ∑⌊ 𝐷−1

4
⌋

𝑡=0
|𝑁𝐿𝑡 | ≥

⌊𝐷−1
4
⌋ (𝛽 − 2) + ⌊𝐷

2
⌋ + 𝛽 − 1.

For Case 2, 𝑝 = (𝑢0, 𝑣0, 𝑢1, 𝑣1, ..., 𝑢⌊ 𝐷
2
⌋ , 𝑣 ⌊ 𝐷−1

2
⌋). For the vertex

sets 𝑁𝑈0, 𝑁𝑈1, ..., 𝑁𝑈𝑠 , we have the following observations.

v1 v2v0 v3

u0 u1 u2 u3

NL1

vy-1 vy

ux

NL0 NLt-1 NLt

…

NU1NU0 NUs-1 NUs

ux-1ux-3

(a) Case 1 (b) Case 2

𝐷𝐷𝑈𝑈 = 𝐷𝐷
2

+ 1, 𝑖𝑖 = 𝐷𝐷
4

𝐷𝐷𝐿𝐿 = 𝐷𝐷
2

, 𝑗𝑗 = 𝐷𝐷−2
4

Upper vertex num:

|𝑁𝑁𝑁𝑁𝑗𝑗| ≥ 𝛽𝛽 − 2, for 0 ≤ 𝑗𝑗 ≤ 𝐷𝐷−1
4

𝑈𝑈 = 𝐷𝐷−2
4

𝛽𝛽 − 2 + 𝐷𝐷
2
− 1 + 𝛽𝛽

Lower vertex num:
|𝑁𝑁𝑈𝑈0| ≥ 𝛼𝛼 − 1

|𝑁𝑁𝑈𝑈𝑖𝑖| ≥ 𝛼𝛼 − 2, for 0 < 𝑖𝑖 < 𝐷𝐷
4

𝑁𝑁 = 𝐷𝐷
4

𝛼𝛼 − 2 − 1 + 𝐷𝐷
2

+ 𝛼𝛼

|𝑁𝑁𝑈𝑈 𝐷𝐷
4

| ≥ 𝛼𝛼 − 1

𝐷𝐷𝑈𝑈 = 𝐷𝐷+1
2

, 𝑖𝑖 = 𝐷𝐷
4

𝐷𝐷𝐿𝐿 = 𝐷𝐷+1
2

, 𝑗𝑗 = 𝐷𝐷
4

Upper vertex num:
|𝑁𝑁𝑁𝑁0| ≥ 𝛽𝛽 − 1

|𝑁𝑁𝑁𝑁𝑖𝑖| ≥ 𝛽𝛽 − 2, for 0 < 𝑗𝑗 ≤ 𝐷𝐷
4

𝑈𝑈 = 𝐷𝐷
4

𝛽𝛽 − 2 + 𝐷𝐷+1
2

+ 𝛽𝛽 − 1

Lower vertex num:

|𝑁𝑁𝑈𝑈𝑗𝑗| ≥ 𝛼𝛼 − 2, for 0 ≤ 𝑗𝑗 < 𝐷𝐷
4

𝑁𝑁 = 𝐷𝐷
4

𝛼𝛼 − 2 + 𝐷𝐷+1
2

+ 𝛼𝛼 − 1

|𝑁𝑁𝑈𝑈 𝐷𝐷
4

| ≥ 𝛼𝛼 − 1

v1 v2v0 v3

u0 u1 u2 u3

NL1

ux-2 ux-1 ux

vy-1 vyvy-2

NL0 NLt-1 NLt

…

NU1NU0 NUs-1 NUs

ux-2

vy-2

Figure 3: Proof of Lemma 3.2 - Case 2

• 𝑁𝑈0 ≥ 𝛼 − 1.
• 𝑁𝑈𝑠 ≥ 𝛼 − 2, for 0 < 𝑠 ≤ ⌊𝐷

4
⌋.

Same as Case 1, the number of vertices in 𝑁𝑈0, 𝑁𝑈1, ..., 𝑁𝑈𝑠 ,

along with the lower layer vertices in the path 𝑝 , serves as the

minimum value for the number of vertices in 𝐿(𝑔). Thus, we can
have |𝐿(𝑔) | ≥ ⌊𝐷−1

2
⌋+1+∑⌊ 𝐷4 ⌋

𝑠=0
|𝑁𝑈𝑠 | ≥ ⌊𝐷

4
⌋ (𝛼−2)+ ⌊𝐷−1

2
⌋+𝛼 .

For the vertex sets 𝑁𝐿0, 𝑁𝐿1, ..., 𝑁𝐿𝑡 , we observe that:

• 𝑁𝐿𝑡 ≥ 𝛽 − 2, for 0 ≤ 𝑡 < ⌊𝐷−1
4
⌋.

• 𝑁𝐿⌊ 𝐷−1
4
⌋ ≥ 𝛽 − 1.

In line with Case 1, the number of upper layer vertices of 𝑔 in

Case 2 is at least ⌊𝐷
2
⌋ +1+∑⌊ 𝐷−14

⌋
𝑡=0

|𝑁𝐿𝑡 | ≥ ⌊𝐷
4
⌋ (𝛽−2) + ⌊𝐷

2
⌋ +𝛽 .

Following the same logic, the same inequalities hold true in

Case 3 and Case 4 as well. Thus, lemma 3.2 holds. □

Following the above lemma,we can know that if a vertex 𝑣 with

𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑞) satisfies ⌊𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑞) − 1/4⌋ (𝛽 − 2) + ⌊𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑞)/2⌋ +
𝛽 − 1 > S𝑈 and ⌊𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑞) − 1/4⌋ (𝛼 − 2) + ⌊𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑞)/2⌋ +
𝛼 − 1 > S𝐿 , then it can be deemed unpromising since it cannot

be included in any SABC. Thus, to reduce the search space of

Shrink, we can compute the minimum 𝐷 value to remove such

unpromising vertices while preserving all the valid SABC. To
compute the minimum 𝐷 value, when 𝛼 > 1 and 𝛽 > 1, we can

incrementally increase 𝐷 from 2, and check whether the size

computed using Lemma 3.2 exceeds the given size constraints.

Once ⌊𝐷−1
4
⌋ (𝛽 − 2) + ⌊𝐷

2
⌋ + 𝛽 − 1 or ⌊𝐷−1

4
⌋ (𝛼 − 2) + ⌊𝐷

2
⌋ +𝛼 − 1

exceeds the given size constraints, the 𝐷 value is the minimum

value that can let 𝐺𝐷,𝑞 cover all the possible SABC. Here 𝐺𝐷,𝑞

denotes the subgraph containing 𝑞 and each vertex 𝑣 in 𝐺𝐷,𝑞

satisfies 𝑑𝑖𝑠𝑡𝐺 (𝑣, 𝑞) ≤ 𝐷 . Note that, when 𝛼 = 1 and 𝛽 = 1, the

minimum possible value of 𝐷 is 1. In this case, we only keep

vertex 𝑣 having 𝑑𝑖𝑠𝑡𝑔 (𝑣, 𝑞) = 1. When 𝑞 ∈ 𝑈 (𝐺), 𝛽 = 1 or 𝑞 ∈
𝐿(𝐺), 𝛼 = 1, we only keep vertex 𝑣 having 𝑑𝑖𝑠𝑡𝑔 (𝑣, 𝑞) = 1. And

when 𝑞 ∈ 𝑈 (𝐺), 𝛼 = 1 or 𝑞 ∈ 𝐿(𝐺), 𝛽 = 1, we keep vertex 𝑣

having 𝑑𝑖𝑠𝑡𝑔 (𝑣, 𝑞) = 2.

Example 3.3. Let’s consider the bipartite graph 𝐺 shown in

Figure 1. Given 𝑞 = 𝑢1, 𝛼 = 2, 𝛽 = 3, S𝑈 = 4, and S𝐿 = 3, we

apply the distance-based reduction technique. To begin, we first

obtain the minimum 𝐷 value using Lemma 3.2. First, we set 𝐷 as

2, we can get |𝑈 (𝐺) | ≥ 3, |𝐿(𝐺) | ≥ 2. Since the size of𝐺 does not

satisfy the size constraints, we increase 𝐷 to 3. At this point, we

still have |𝑈 (𝐺) | ≥ 3 and |𝐿(𝐺) | ≥ 2. Continuing, we increase 𝐷

to 4, then we have |𝑈 (𝐺) | ≥ 4, |𝐿(𝐺) | ≥ 3, which can cover the

given size constraints. Thus, we can safely remove the vertices

having distances larger than 4. To compute the distance of each

vertex to 𝑞, we employ the BFS algorithm. Since 𝑑𝑖𝑠𝑡𝐺 (𝑣6, 𝑢1) =
𝑑𝑖𝑠𝑡𝐺 (𝑣7, 𝑢1) = 5 and 𝑑𝑖𝑠𝑡𝐺 (𝑢7, 𝑢1) = 6, we can remove 𝑣6, 𝑣7,

and 𝑢7 from 𝐺 .

324

Improvement 2: Degree-based vertex ordering. In the shrink-

based approach, it removes one vertex from 𝐺 ′ in each iteration.

If a vertex 𝑣 is required to be included in the resulting community

and be removed during the process, it must be added back after

the algorithm completes all subsequent recursions. Thus, the

time consumption in the subsequent recursions can be reduced

if we postpone the removal of 𝑣 and remove some unpromising

vertices first. To achieve this, we propose a function to mea-

sure the "goodness" of each unvisited vertex and select the most

promising one to explore as follows.

Definition 3.4. Degree-based vertex scoring function.Given
a graph 𝐺 ′ and a vertex set 𝐶 , the score function for a vertex

𝑢 ∈ 𝑉 (𝐺 ′) \𝐶 is defined as

𝑓 (𝑢) = 𝑑𝑒𝑔𝐺 ′ (𝑢)

Intuitively, to meet the cohesiveness constraints, the vertices

with higher degrees are more likely to be retained since they have

more connections with other vertices. Thus, the degree-based

vertex scoring function mainly considers the vertices degree in

the remaining subgraph𝐺 ′. By applying the degree-based vertex

scoring function, in each iteration, we can select the vertex having

a minimum degree in 𝐺 ′ \𝐶 , and the most unpromising vertex

can be removed first.

Algorithm 3: Shrink-SP
Input:𝐺 , 𝑞, 𝛼 , 𝛽 , S𝑈 , and S𝐿 ;
Output: 𝐻 ;

1 𝐶 ← {𝑞};
2 Compute distance from 𝑞 to each vertices in𝐺 \ 𝑞;
3 𝐷 ← the minimum 𝐷 value computed using Lemma 3.2;

4 𝐺 ′ ← the connected subgraph in𝐺𝐷,𝑞 satisfying the

cohesiveness constraint and 𝑞 ∈ 𝐺 ′; ⊲ /* Distance-based
reduction */

5 Run Algorithm 1 Lines 3 - 7;

6 Function SSearch(𝐺 ′ ,𝐶)
7 if a valid solution 𝐻 is found then
8 return 𝐻 ;

9 foreach 𝑣 has the lowest score in𝑉 (𝐺 ′) \𝐶 do
10 ⊲ /* Degree-based vertex ordering */

11 Run Algorithm 1 Lines 12 - 20;

The Shrink-SP algorithm. Based on the techniques discussed

above, we propose the Shrink-SP algorithm for solving the SABC
problem. The pseudocode is shown in Algorithm 3, which is sim-

ilar to Algorithm 1 but incorporates the distance-based reduction

(Line 2) and the vertex scoring function (Line 9). Before initial-

izing 𝐺 ′, it first applies Lemma 3.2 to obtain a minimum value

of 𝐷 (Line 3). Then it initializes 𝐺 ′ as the connected subgraph

in𝐺𝐷,𝑞 satisfying the cohesiveness constraint and containing 𝑞

(Line 4). Then in the SSearch function, we select the vertex with

the lowest score in 𝑉 (𝐺 ′) \ 𝐶 as 𝑣 , so that the vertex with the

smallest degree can be removed from 𝐺 ′ first (Line 9).

4 EXPAND-BASED APPROACHES
The shrink-based approaches proposed in the above section can

find the exact result correctly. Nevertheless, when processing

queries with relatively small size constraints, they may need to

execute the Peeling algorithm many times to meet the size con-

straints. It may lead to more back-track operations until a SABC
is found. Additionally, the Peeling algorithm takes 𝑂 (|𝐸 (𝐺 ′) |)

times, which can be time-consuming to execute in each recursion.

Motivated by this, we explore expand-based approaches in this

section.

4.1 A basic expand-based approach
The expand-based approach aims to explore the local subgraph

around the query vertex 𝑞. It enumerates all possible combina-

tions of vertices that the subgraph induced by them can satisfy

the size constraints and evaluates whether the subgraph is con-

nected and satisfies the cohesiveness constraint. Let𝐶 denote the

candidate vertex set and𝐺 ′ denote the remaining graph. For each

unvisited vertex in𝑉 (𝐺 ′) \𝐶 , there are two choices: (1) the vertex
belongs to the resulting community, in which case we add it to

𝐶; (2) otherwise, we remove it from 𝐺 ′. Considering these two
situations, we create two instances for each vertex 𝑣 : (𝐶∪{𝑣},𝐺 ′)
and (𝐶,𝐺 ′ \𝑣). The algorithm continues the enumeration process

and returns when encounters a subgraph induced by 𝐶 that can

meet the constraints of SABC.

Algorithm 4: Expand
Input:𝐺 , 𝑞, 𝛼 , 𝛽 , S𝑈 , and S𝐿 ;
Output: 𝐻 ;

1 𝐶 ← {𝑞};
2 𝐺 ′ ← the connected component of (𝛼, 𝛽)-core containing 𝑞 in𝐺 ;

3 𝐻 ← ∅;
4 if 𝐺 ′ is not empty then
5 𝐻 ← ESearch(𝐶,𝐺 ′) ;
6 return 𝐻 ;

7 Function ESearch(𝐶 ,𝐺 ′)
8 if |𝑈 (𝐶) | > S𝑈 or |𝐿 (𝐶) | > S𝐿 then
9 return ∅;

10 𝐻 ′ ← the subgraph induced by𝐶 ;

11 if 𝐻 ′ is a SABC then
12 return 𝐻 ′;

13 𝑣 ← an vertex in𝑉 (𝐺 ′) \𝐶 ;
14 ESearch(𝐶 ∪ {𝑣},𝐺 ′) ;
15 ESearch(𝐶,𝐺 ′ \ 𝑣) ;

The pseudo-code of the basic expand-based approach is given

in Algorithm 4. It first initializes a set𝐶 as a candidate set (Line 1).

Then 𝐺 ′ is initialized as the connected component of (𝛼, 𝛽)-core

that contains the query vertex 𝑞 (Line 2). 𝐻 is initialized as an

empty set (Line 3). If 𝐺 ′ is not empty (Line 4), the algorithm

invokes the ESearch function to recursively maintain the candi-

date set 𝐶 and a subgraph 𝐺 ′ (Line 5). In the ESearch function,
if 𝐶 is still under the size constraints (Lines 8 - 9), it obtains the

subgraph induced by 𝐶 as 𝐻 ′ (Line 10). If 𝐻 ′ can meet the con-

straints of SABC then it returns (Lines 11 - 12). Here we check

whether 𝐻 is a SABC by first checking the degree constraints for

each vertex. If all the vertex in 𝐻 can meet the degree constraint

we then further check the connectivity. If 𝐻 is still not a valid

result, ESearch continues to visit other combinations and selects

an unvisited vertex 𝑣 , i.e. 𝑣 ∈ 𝑉 (𝐺 ′) \𝐶 (Line 13). For the selected

vertex 𝑣 , ESearch first considers the possibility of including 𝑣 in

the resulting community and visits the branch where 𝑣 is added

to 𝐶 (Line 14). If a valid solution is not found when 𝑣 is included

in 𝐶 , the algorithm proceeds to explore the branch where 𝑣 is

removed from 𝐺 ′ (Line 15).

Example 4.1. Consider the bipartite graph𝐺 shown in Figure 1.

Suppose the query is 𝑞 = 𝑢1, 𝛼 = 2, 𝛽 = 3, S𝑈 = 4, and S𝐿 = 3. In

325

the algorithm, we select vertices at Line 15 following the order of

their IDs and alternating between the two layers. Figure 4 shows

part of the search process of the ESearch function. The candidate
set𝐶 in each reduction is shown as the tree node. The dashed part

is not visited since the algorithm visits the left subtree first, and

a result is already found and returned by the algorithm. Initially,

𝐶 = 𝑢1 and 𝐺
′ = 𝐺 . For the first branch, we choose 𝑣1, and we

visit the left as 𝐶 = 𝑢1, 𝑣1. Then we process forward by selecting

the next unvisited vertices in𝑉 (𝐺 ′) \𝐶 . The search continues in

a similar way until a result is obtained.

u1

u1
v1

u1
v1

u1
v1

u1 u2
v1

u1 u2
v1

u1
v1

u1 u2
v1 v2

+u2

+v1

+𝑣𝑣2

u1 u2
v1

u1
v1 v2

u1
v1

u1 u2
v2

u1 u2
v1 v2

u1
v2

u1
v1

−v1

−u2 +u2 −u2

−v2 +v2 −v2 +v2 −v2 +v2 −u2

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

u1 u2 u3 u4
v1 v2 v3

+u4

v3 v4v2v1 v5 v6 v7

u1 u3u2 u4 u5 u6 u7 u8

Figure 4: An example of Expand algorithm

Correctness Analysis. The Expand algorithm determines the

result by exploring all possible combinations of candidates that

meet the specified size constraints. For each candidate set, it

verifies whether a subgraph induced by the candidate can also

satisfy the prescribed cohesiveness constraints. When a subgraph

induced by the candidate set fulfills the cohesiveness constraints,

the algorithm returns the result. Therefore, as long as a valid

result exists, the Expand algorithm is capable of identifying it

through its exhaustive search approach.

ComplexityAnalysis.The time complexity of Expand is𝑂 (𝑛S𝑈 +S𝐿)
since the depth of recursion is bounded by𝑂 (S𝑈 + S𝐿). Here 𝑛 is
the number of vertices in 𝐺 and S𝑈 ,S𝐿 are the size constraints.

4.2 Improving the expand-based approach
In this part, we propose techniques to enhance the performance

of the basic expand-based algorithm presented in Section 4.1.

The expand-based approach can also be improved by limiting the

search space and selecting appropriate vertices to visit in each

iteration. Thus, the improvements proposed in Section 3.2 are also

applicable to the expand-based approach as well. Furthermore,

there exist additional opportunities for improvement to examine

the existence of an SABC in the candidate graph 𝐺 ′.

• Prune the unpromising vertices. In our expand-based

approach, the goal is to quickly extend the candidate set.

Peeling the candidate subgraph 𝐺 ′ to a connected sub-

graph that satisfies the cohesiveness constraint and con-

tains 𝑞 can be time-consuming. Therefore, we need to find

a more efficient method to prune the unpromising vertices.

• Reduce the search branches. In each recursion, our

expand-based approach selects one vertex in 𝑉 (𝐺 ′) \ 𝐶
and generates two branches. This can result in a significant

number of recursions. Effective techniques to reduce the

number of generated branches will help mitigate this issue.

• Optimized vertex selection order. In the expand-based

approach, the candidate sets do not satisfy the given cohe-

siveness constraints until a result is obtained. Therefore,

it becomes crucial to develop an appropriate vertex or-

der that not only considers the cohesiveness constraints

but also takes into account the contribution of each ver-

tex in forming a subgraph that satisfies the cohesiveness

constraint.

Improvement 1: Degree-based reduction. We propose the

degree-based reduction to prune the unpromising vertices during

the search process. In the expand-based approach, after removing

an invalid vertices 𝑣 from the candidate subgraph 𝐺 ′, 𝐺 ′ may

no longer satisfy the cohesiveness constraint. To optimize the

prune effectiveness, an intuitive way is to execute the Peeling
process on𝐺 ′ and keep𝐺 ′ as a connected subgraph that satisfies

the cohesiveness constraint and contains 𝑞. However, peeling

𝐺 ′ requires 𝑂 (|𝐸 (𝐺 ′) |) times. While it effectively reduces the

graph size for the subsequent iteration, it does not improve the

efficiency of the whole algorithm. Thus, to compromise the effec-

tiveness and efficiency, here we only remove the vertices that do

not have enough degree, i.e. 𝑢 ∈ 𝑈 (𝐺 ′) \𝐶 with 𝑑𝑒𝑔𝐺 ′ (𝑢) < 𝛼 ,

or 𝑣 ∈ 𝐿(𝐺 ′) \𝐶 with 𝑑𝑒𝑔𝐺 ′ (𝑣) < 𝛽 .

The above observation can be proved as follows. As the de-

gree of a vertex exhibits a monotonically increasing property

in the expand-based approach, it is guaranteed that 𝑑𝑒𝑔𝐻 ′ (𝑣) ≤
𝑑𝑒𝑔𝐺 ′ (𝑣) for all feasible communities 𝐻 ′. According to the def-
inition of SABC, it is imperative that any vertex 𝑢 ∈ 𝑈 (𝐻 ′) \𝐶
satisfies 𝑑𝑒𝑔𝐻 ′ (𝑢) ≥ 𝛼 , and any vertex 𝑣 ∈ 𝐿(𝐻 ′) \ 𝐶 satisfies

𝑑𝑒𝑔𝐻 ′ (𝑣) ≥ 𝛽 . Consequently, all upper layer vertices in𝐺 ′ must

possess degree at least 𝛼 , while lower layer vertices in𝐺 ′ must

have degree at least 𝛽 .

Improvement 2: Size and structure-based reductions. Give a
subgraph𝐺 ′ and a subgraph𝐻 ′ induced by candidate set𝐶 . Let𝛼 ′

denote the minimum degree value among all the degree values of

the upper layer vertex in𝐻 ′, i.e., 𝛼 ′ =𝑚𝑖𝑛{𝑑𝑒𝑔𝐻 ′ (𝑢) |𝑢 ∈ 𝑈 (𝐻 ′)},
and 𝛽′ denote the minimum degree value among all the degree

values of the lower layer vertex in𝐻 ′, i.e., 𝛽′ =𝑚𝑖𝑛{𝑑𝑒𝑔𝐻 ′ (𝑣) |𝑣 ∈
𝐿(𝐻 ′)}. We can safely prune the brunch if 𝛽−𝛽′ > S𝑈 − |𝑈 (𝐻 ′) |
or 𝛼 − 𝛼 ′ > S𝐿 − |𝐿(𝐻 ′) |. If 𝐻 ′ satisfies S𝑈 − |𝑈 (𝐻 ′) | ≥ 𝛽 − 𝛽′,
we can further prune the brunches if it does not have 𝛽−𝛽′ upper
vertices having degree larger than 𝛼 − 𝛼 ′. Also, If 𝐻 ′ satisfies
S𝐿 − |𝐿(𝐻 ′) | ≥ 𝛼 − 𝛼 ′, we can further prune the brunches if it

does not have 𝛼 − 𝛼 ′ upper vertices having degree larger than

𝛽 − 𝛽′.
According to Definition 2.2, a feasible community 𝐻 ′ must

adhere to both size and degree constraints. Consequently, the

minimum degree value for the upper-layer vertices, denoted as

𝛼 ′, should reach at least 𝛼 , and the minimum degree value for

the lower-layer vertices, denoted as 𝛽′, should reach at least

𝛽 . Considering that there can be at most S𝑈 − |𝑈 (𝐻 ′) | upper-
layer vertices and S𝐿 − |𝐿(𝐻 ′) | lower-layer vertices that can
still be added to 𝐻 ′, the increments of 𝛼 ′ and 𝛽′ are, at most,

S𝐿 − |𝐿(𝐻 ′) | and S𝑈 − |𝑈 (𝐻 ′) |, respectively. Therefore, in order

to satisfy the specified constraints, 𝐻 ′ must fulfill the conditions

𝛽 − 𝛽′ ≤ S𝑈 − |𝑈 (𝐻 ′) | and 𝛼 − 𝛼 ′ ≤ S𝐿 − |𝐿(𝐻 ′) |.
Improvement 3: Neighbor-based vertex ordering. Similar to

the shrink-based algorithm, to form a subgraph that satisfies the

cohesiveness constraint, vertices with high degrees should be

given priority to add into the candidate set since they have more

connections with other vertices and are more likely to be included

in a subgraph that satisfies the cohesiveness constraint. Thus,

the degree-based vertex scoring function proposed in Section

3.2 also applies to the expand-based approach. The difference is

the expand-based approach needs to explore the most promising

vertex first, and the vertex with the highest score is selected in

each recursion.

326

For the expand-based approach, given a candidate set 𝐶 , the

selected vertex should be closely connected to the vertices in 𝐶 ,

so that these vertices can form a feasible community quickly. The

intuition that vertices with a large degree are more likely to be

included in a subgraph that satisfies the cohesiveness constraint

is generally correct. However, it is not always the case that keep-

ing only high-degree vertices will result in a SABC. For instance,
if a large degree vertex 𝑣 is all connected to some "peripheral"

vertices, then it also can not help with forming a resulting commu-

nity. By considering this, we propose the neighbor-based vertex

scoring function as follows.

Definition 4.2. Neighbor-based vertex scoring function.
Give a subgraph 𝐺 ′ and a candidate set 𝐶 , the score function for

a vertex 𝑢 ∈ 𝑈 (𝐺 ′) \𝐶 is defined as

𝑓 (𝑢) =𝑚𝑖𝑛{𝑑𝑒𝑔𝐺 ′ (𝑢),S𝐿} + {𝑣 ′ |𝑣 ′ ∈ 𝑁𝐺 ′ (𝑢) ∧ 𝑑𝑒𝑔𝐺 ′ (𝑣 ′) ≥ 𝛽}

the score function for a vertex 𝑣 ∈ 𝐿(𝐺 ′) \𝐶 is defined as

𝑓 (𝑣) =𝑚𝑖𝑛{𝑑𝑒𝑔𝐺 ′ (𝑣),S𝑈 } + {𝑢′ |𝑢′ ∈ 𝑁𝐺 ′ (𝑣) ∧ 𝑑𝑒𝑔𝐺 ′ (𝑢′) ≥ 𝛼}

We focus on two criteria in the neighbor-based vertex scoring

function. The first criterion measures the number of edges that

the selected vertex itself can contribute to the resulting com-

munity. We consider this criterion because if the degree of the

selected vertex exceeds the size constraint of the other layer, the

number of neighbors that the selected vertex can introduce to

the resulting community is still limited by the size constraint.

The second criterion assesses the number of additional vertices

that the selected vertex can add to set 𝐶 to help form a subgraph

satisfying the cohesiveness constraint. Specifically, it counts the

number of neighbors of the selected vertex that can meet the

degree constraints. By employing the neighbor-based vertex scor-

ing function to determine the vertex with the highest score, we

can identify the vertex that is most likely to constitute a subgraph

that satisfies the cohesiveness constraint.

The Expand-SP algorithm. Based on the improvements intro-

duced in Section 4.2, we propose the Expand-SP algorithm as

shown in Algorithm 5. The difference from Algorithm 4 are as

follows. Firstly, when initializing𝐺 ′, we apply the distance-based
reduction to narrow down the search space (Lines 2 - 3). Secondly,

in the ESearch function, we further prune unpromising branches

using the size and structure-based reduction. So that it returns

to the previous recursion if the current instance and it following

brunches are not able to generate a result (Lines 7 - 8). Then we

apply Degree-based reduction, where we remove all the vertices

that do not meet the degree constraints and record them in the

set 𝑅𝑉 (Lines 9 - 13). To determine the next vertex to explore,

we select a vertex with the highest score in 𝑉 (𝐺 ′) \𝐶 using the

neighbor-based vertex scoring function (Line 14). After returning

from the following recursion, we add the vertex stored in 𝑅𝑉

back to 𝐺 ′ (Line 17).

5 EXPERIMENTS
In this section, we conduct experiments to evaluate the effec-

tiveness of the SABC model and the efficiency of our proposed

algorithms.

Algorithms. To the best of our knowledge, no existing work

investigates the SABC search problem and corresponding algo-

rithms. We mainly evaluate the algorithms of both the shirk-

based approach and the expand-based approach with all the im-

provements. We denote our proposed improvements as follows.

• P1: Distance-based reduction in Section 3.2.

Algorithm 5: Expand-SP
Input:𝐺 , 𝑞, 𝛼, 𝛽 , S𝑈 and S𝐿 ;
Output: 𝐻 ;

1 𝐶 ← 𝑞;

2 𝐷 ← the diameter upper bound computed using Lemma 3.2;

3 𝐺 ′ ← the connected subgraph in𝐺𝐷,𝑞 satisfying the

cohesiveness constraint and containing 𝑞; ⊲ /*
Distance-based reduction */

4 Run Algorithm 4 Lines 3 - 5;

5 Function ESearch(𝐶 ,𝐺 ′)
6 Run Algorithm 4 Lines 8 - 12;

7 if not satisfy the size and structure-based reduction then
8 return; ⊲ /* Size and structure-based reduction

*/
9 𝑅𝑉 ← ∅;

10 foreach 𝑣′ ∈ 𝑉 (𝐺 ′) \𝐶 do
11 if 𝑣′ does not have enough degree then
12 Remove 𝑣′ from𝐺 ′;

13 𝑅𝑉 .𝑝𝑢𝑠ℎ (𝑣′) ; ⊲ /* Degree-based reduction */

14 𝑣 ← the vertex in𝑉 (𝐺 ′) \𝐶 with the highest score; ⊲ /*
Neighbor-based vertex ordering */

15 ESearch(𝐶 ∪ {𝑣},𝐺 ′) ;
16 ESearch(𝐶,𝐺 ′ \ 𝑣) ;
17 Add vertices in 𝑅𝑉 back to𝐺 ′; ⊲ /* Degree-based

reduction */

• P2: Degree-based reduction in Section 4.2.

• P3: Size and structure-based reduction in Section 4.2.

• S1: Degree-based vertex scoring function in Definition 3.4.

• S2: Neighbor-based vertex scoring function in Definition 4.2.

Our experiments are conducted against the following algorithms.

• Shrink: Basic shrink-based algorithm in Algorithm 1.

• Expand: Basic expand-based algorithm in Algorithm 4.

• Shrink-P: Shrink + P1.
• Expand-P: Expand + P1 + P2+ P3.
• Shrink-S: Shrink + S1.
• Expand-S: Expand + S2.
• Shrink-SP: Improved shrink-based algorithm in Algorithm 3,

i.e., Shrink + P1 + S1.
• Expand-SP: Improved expand-based algorithm in Algorithm

5,i.e., Expand +P1 + P2 + P3 + S2.
All algorithms are implemented in C++ and the experiments

are run on a Linux server with an Intel Xeon E3-1231 processor

(3.40GHz, 4 Cores) and 16GB main memory.

Table 2: Summary of Datasets

Dataset |𝑈 | |𝐿 | |𝐸 | 𝑑𝑒𝑔𝑎𝑣𝑔 density

YouTube 94.24 K 30.09 K 293.36 K 4.72 5.51

Github 56.52 K 120.87 K 440.24 K 4.96 5.33

Teams 901.13 K 34.46 K 1.37 M 2.92 7.75

Citeseer 337.12 K 196.13 K 1.75 M 6.57 6.81

Livemocha 61.45 K 104.10 K 2.19 M 21.07 27.42

MovieLens 162.54 K 59.05 K 25.00 M 225.64 255.18

Wikipedia 1.85 M 1.67 M 39.95 M 22.68 22.71

BagPubmed 1.00 M 624.96 K 256.80 M 115.92 449.54

YahooSong 8.2M 14.1 K 483.45 M 315.88 324.68

Datasets. In our experiments, we use 9 real-world datasets, which

can be found in KONECT (http://konect.cc/). Table 2 shows the

statistics of datasets. |𝑈 | and |𝐿 | denote the number of vertices

in the upper and lower layers, and |𝐸 | represents the number of

edges. 𝑑𝑒𝑔𝑎𝑣𝑔 denotes the average degree, which is computed as

2×|𝐸 (𝐺) |
|𝑈 (𝐺) |+|𝐿 (𝐺) | . Density is computed as

|𝐸 (𝐺) |√
|𝑈 (𝐺) | |𝐿 (𝐺) |

[36].

327

Parameters. For each experiment, we randomly generate 19

queries. The query vertex is randomly selected from the (𝛼, 𝛽)-
core to ensure that there is a meaningful community containing

the query vertex. The default values of the query parameters are

𝛼 = 4, 𝛽 = 4, S𝑈 = 9, and S𝐿 = 9. The average result quality

and processing time of the 19 queries are reported. For each test,

we set the time limit as 1000 seconds, and we record its running

time as 1000 seconds if it does not finish within the time limit.

5.1 Effectiveness Evaluation
In this subsection, we validate the effectiveness of our proposed

model. Here we compare our model with the (𝛼, 𝛽)-core model

on MovieLens which contains 25M ratings from 162K users (𝑈)

on 59K movies (𝑀).

10 20 30 40 50
t

101

102

103

104

105

106

Av
er

ag
e

ve
rte

x
nu

m
be

r

187K 181K 150K 130K 115K

30.95
65.71 101.96 137.12 169.61

(α, β)-core SABC

(a) Average vertex number

10 20 30 40 50
t

102
103
104
105
106
107
108
109

Av
er

ag
e

ed
ge

 n
um

be
r

49.78M 49.62M 48.12M 46.78M 45.49M

107.19
477.80 1161.212090.883196.55

(α, β)-core SABC

(b) Average edge number

Figure 5: Effect of the community size, setting 𝛼, 𝛽 = 𝑡

Evaluation of the community quality. We conduct a com-

parison between the (𝛼, 𝛽)-core model and our SABC model in

terms of size. The degree constraints for both models were set

in the range of 10 to 50, with increments of 10. Moreover, the

size constraint was defined as 1.2 times the value of the degree

constraint. The statistics of 20 query results are presented in

Figure 5, which demonstrates our SABC model can effectively

limit the size of the resulting community. As we can see, since

the (𝛼, 𝛽)-core model only adopts the degree constraints, the size

of an (𝛼, 𝛽)-community can become exceptionally large, mak-

ing it unpredictable for some applications that have capacity

constraints. By incorporating size constraints, our SABC model

can identify communities with fewer vertices and edges com-

pared to the (𝛼, 𝛽)-core model. This makes the SABC model more

apt for tackling real-world challenges that come with capacity

limitations.

Case study. We conduct queries using the movie "Richard III"

(ID: 41) with degree constraints 𝛼 = 6, 𝛽 = 6 and size constraints

S𝑈 = 12, S𝐿 = 12. The community generated by the Shrink-SP
algorithm is denoted as 𝑆𝐴𝐵𝐶𝑠 , while the one generated by the

Expand-SP algorithm is denoted as 𝑆𝐴𝐵𝐶𝑒 . Additionally, commu-

nity derived from the Shrink-SP algorithm utilizing the vertex

scoring function as maximum average movie rating is denoted

as 𝑆𝐴𝐵𝐶𝑚 . Table 3 presents the statistics of all query results. In

the table, |𝑈 | and |𝑀 | represent the total number of users and

movies in the community, respectively, while |𝐸 | denotes the
total number of ratings in the community. As shown in Figure

6, the (𝛼, 𝛽)-core community encompasses all query results. The

average movie rating of each movie is marked in blue. It can

be observed that Shrink-SP and Expand-SP can obtain different

communities. The communities obtained by Shrink-SP are more

likely to have a large size than the communities obtained by

Expand-SP. That is because the shrink-based algorithm keeps

peeling the subgraph until the size shrinks to the size constraints,

while the expand-based algorithm expands the candidate sub-

graph and terminates when it meets the degree constraints. This

inherent flexibility allows users to select an algorithm that aligns

with their specific requirements. Moreover, by incorporating addi-

tional evaluation criteria, the SABC model is capable of returning

a more refined selection compared to the (𝛼, 𝛽)-core model. For

example, as illustrated in Figure 6, when we apply the maximum

average movie rating as the vertex selection function, all the

movies in the 𝑆𝐴𝐵𝐶𝑚 community, except for the query vertex,

have an average rating greater than 4.25. In contrast, for 𝑆𝐴𝐵𝐶𝑠 ,

the average rating is 3.35, and for 𝑆𝐴𝐵𝐶𝑒 , it is 3.41.

Table 3: Statistics of query results, 𝑞 = 41

Models |𝑈 | |𝑀 | |𝐸 |
𝑆𝐴𝐵𝐶𝑒 8 9 68

𝑆𝐴𝐵𝐶𝑠 12 12 144

𝑆𝐴𝐵𝐶𝑚 12 12 126

(𝛼, 𝛽)-core 162,541 30,207 24,933,300

𝜶𝜶,𝜷𝜷 -core

414

167

229

325

986

360

1748

2082

Richard III

Toy Story

Heat

Leaving Las Vegas

Rumble in the Bronx

Dead Man Walking

Birdcage

Star Wars: Episode IV

Fargo

140838

131341

135543

137198

143049

139114

152107

145626

147752

148115

159606

150928

Catch Me If You Can

Richard III

Bourne Identity

Minority Report

X2: X-Men United

Lord of the Rings: The Two Towers

Lord of the Rings

Matrix Reloaded

Pirates of the Caribbean

Lost in Translation

Spider-Man 2

Kill Bill: Vol. 1

𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨𝒔𝒔 𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆

59398

20917

36883

39950

72315

57548

134404

92046

94154

107650

156183

132651

Godfather: Part II

Richard III

Usual Suspects

Shawshank Redemption

Seven Samurai

Godfather

Cosmos

Planet Earth

Over the Garden Wall

Band of Brothers

Blue Planet II

Planet Earth II

3.84

4.28

4.41

4.32

4.26

4.25

4.46

4.26

4.40

4.48

4.33

4.29

3.89

3.85

3.68

3.92

3.84

3.41

3.51

4.12

4.11

3.84

3.91

3.69

4.07

3.93

3.60

3.35

3.79

3.79

3.86

4.09

3.44

𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨𝒎𝒎

𝒒𝒒

𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆

𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨𝒎𝒎

𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨𝒔𝒔

Figure 6: Case study

5.2 Performance Evaluation
Here we evaluate the processing time and success ratio of our

proposed algorithms. We also investigate the query time with

different 𝛼 , 𝛽 , S𝑈 , and S𝐿 values. Furthermore, we validate the

reduction rules and vertex scoring functions. Due to the NP-

hardness of the SABC problem, there is a slight portion of hard

cases with a huge search space that cannot be computed within

the time limit. Thus we also report the success ratio, which is the

number of queries successfully returned before timeout over the

total number of queries.

YouTube
Github

Teams
Citeseer

Livemocha
MovieLens

Wikipedia
BagPubmed

Yahoo

Datasets

100

101

102

103

Ti
m
e(
s)

Shrink Expand Shrink-SP Expand-SP

Figure 7: Evaluation of SABC query time

Exp1: Processing time and success ratio on all datasets.
In this experiment, we report the average processing time and

success ratio of query algorithms (Shrink, Shrink-SP, Expand,

328

Table 4: Success ratio of queries
DataSet Shrink Expand Shrink-SP Expand-SP

YouTube 5.26% 0.00% 89.47% 63.16%

Github 10.53% 0.00% 73.68% 52.63%

Teams 5.26% 0.00% 57.89% 42.11%

Citeseer 5.26% 0.00% 52.63% 52.63%

Livemocha 0.00% 0.00% 89.47% 36.84%

MovieLens 47.37% 0.00% 100.00% 100.00%

Wikipedia 10.53% 0.00% 47.37% 42.11%

BagPubmed 0.00% 0.00% 0.00% 78.95%

YahooSong 21.05% 0.00% 0.00% 100.00%

Expand-SP) to retrieve SABCwith degree constraints 𝛼 = 4, 𝛽 = 4,

and size constraints S𝑈 = 9, S𝐿 = 9. The query time of each

dataset is shown in Figure 7 and the success ratios are reported in

Table 4. In general, with the help of our proposed reduction rules

and vertex scoring function, Expand-SP outperforms Expand and
Shrink-SP outperforms Shrink in both processing time and

success ratio. Additionally, it is observed that Shrink usually

performs better on smaller datasets, whereas Expand performs

better on larger datasets. This trend can be attributed to two pri-

mary factors. Firstly, Shrink-SP requires more time to gradually

peel the entire graph and is more likely to encounter unpromis-

ing branches on larger datasets. Secondly, larger datasets tend

to contain a higher number of vertices with large degrees. By

leveraging our proposed vertex scoring function, Expand-SP can
prioritize visiting these high-degree vertices, facilitating the for-

mation of an (𝛼, 𝛽)-core more efficiently. In certain special cases,

we can observe that Shrink and Expand outperform Shrink-SP
and Expand-SP. The reason for this is that both Shrink-SP and
Expand-SP utilize the vertex ordering improvements, which pri-

oritizes the removal of unpromising vertices, as they are less

likely to appear in the result. Although these improvements gen-

erally expedite result formation, there exist cases where low-

degree vertices do end up in the result. Removing these vertices

can cause the search to venture into unpromising branches, po-

tentially causing the algorithm to exceed the time limit.

0.1 0.2 0.3 0.4 0.5100

101

102

103

104

Ti
m
e(
s)

57.9% 42.1% 21.1% 0.0% 0.0%

100.0%

73.7%
21.1% 26.3% 0.0%

Expand-SP Shrink-SP

(a) GitHub

0.1 0.2 0.3 0.4 0.5101

102

103

104

Ti
m
e(
s)

94.7%

84.2% 84.2%

0.0% 0.0%

100.0%

78.9%
94.7%

52.6%
15.8%

Expand-SP Shrink-SP

(b) MovieLens

0.1 0.2 0.3 0.4 0.5102

103

Ti
m
e(
s)

73.7%

52.6% 47.4% 57.9% 63.2%

94.7%

42.1%
52.6%

63.2%
52.6%

Expand-SP Shrink-SP

(c) Citeseer

Figure 8: Effect of 𝛼 and 𝛽 , setting 𝛼, 𝛽 = 𝑐 · 𝛿

Exp2: Evaluation of varying 𝛼, 𝛽 . In this experiment, we report

the average processing time and success ratio of query algorithms

Shrink-SP and Expand-SPwith both 𝛼 and 𝛽 from 0.1 ·𝛿 to 0.5 ·𝛿
and S𝑈 = 𝛿 , S𝐿 = 𝛿 . Figure 8 illustrates the results of our experi-

ment. The graph shows that, in general, increasing the degree

constraints leads to longer query times for both the Shrink-SP
and Expand-SP algorithms. Nevertheless, the query time for each

individual query depends on the graph’s structure and the neigh-

bors of the query vertices. It should be acknowledged that our

selection of query vertices only represents a small portion of the

entire graph, and therefore, experimental results may slightly

deviate from the overall trend in certain cases.

Exp3: Evaluation of varying S𝑈 ,S𝐿 . In this experiment, we

report the average processing time and success ratio of query

algorithms Shrink-SP and Expand-SP with both S𝑈 and S𝐿

(3,3) (6,6) (9,9) (12,12) (15,15)
(U, L)

10−2

10−1

100

101

102

103

Ti
m

e(
s)

100.0% 100.0% 100.0% 100.0% 100.0%

100.0%
100.0% 100.0% 100.0% 100.0%

Expand-SP Shrink-SP

(a) MovieLens

(3,3) (6,6) (9,9) (12,12) (15,15)
(U, L)

102

103

Ti
m

e(
s)

68.4%
73.7%

84.2%
89.5%

94.7%

77.8%
100.0% 100.0% 100.0% 100.0%

Expand-SP Shrink-SP

(b) Livemocha

(3,3) (6,6) (9,9) (12,12) (15,15)
(U, L)

100

101

102

103

104

Ti
m

e(
s)

100.0% 100.0% 100.0% 100.0% 100.0%

52.6%
0.0% 0.0% 0.0% 0.0%

Expand-SP Shrink-SP

(c) BagPubmed

Figure 9: Effect of S𝑈 and S𝐿

from 3 to 15 and 𝛼 = 2, 𝛽 = 2. We chose this set of parame-

ters based on practical considerations, as in real-world applica-

tions, size-bounded community search tends to favor smaller

sizes. The results are shown in Figure 9. As a general trend, both

the Shrink-SP and Expand-SP Algorithms tend to have shorter

query times as the size constraints increase. This is because larger

size constraints make it easier for the algorithms to find results

that satisfy the degree constraints. This pattern is more pro-

nounced in smaller graphs, such as Livemocha in Figure 9(b). In

Figure 9(c), we observe a decline in the success rate with increas-

ing size constraints. This can be attributed to the distance-based

reduction improvement. As the size constraints grow, the search

space also expands accordingly, possibly leading the search into

less promising branches and increasing the risk of exceeding the

time limit.

Table 5: Effect of different optimization techniques
DataSet Expand +S2 +S2+P1 +S2+P1+P2 +S2+P1+P2+P3

time 1000 789.48 672.80 646.88 474.74

YouTube rate 0% 21.05% 36.84% 36.84% 52.63%

num 13.37 M 8.76 M 5.80 M 3.04 M 3.00 M

time 1000 842.11 634.10 580.59 528.02

Citeseer rate 0% 15.79% 36.84% 42.11% 47.37%

num 3.14 M 1.93 M 1.60 M 681.76 K 606.29 K

time 1000 947.37 768.17 756.64 581.34

Teams rate 0% 5.26% 26.32% 26.32% 42.11%

num 1.76 M 1.17 M 1.09 M 505.37 K 480.71 K

Exp4: Evaluation of different optimization techniques. In
this experiment, we aim to assess the efficiency of various re-

duction rules and vertex scoring functions in improving the per-

formance of the Expand algorithm. We have chosen the Expand
algorithm for this experiment because it allows us to implement

all the optimization techniques we have proposed. To simplify

the discussion, we refer to the three reduction rules being eval-

uated as P1, P2, and P3. As for the vertex selection techniques,

we focus on S2 in this experiment, as it has been specifically

designed for the Expand algorithm. Table 5 presents the results

in terms of running time, success rate, and the number of gen-

erated branches. The data in the table clearly demonstrates that

the implementation of our optimization techniques leads to a

significant reduction in the number of iterations and running

time, while simultaneously increasing the success rate.

Exp5: Evaluation of different vertex selection strategies.
In this experiment, we validate the vertex scoring functions S1
and S2 on Shrink-P and Expand-P, respectively. The results of
different scoring functions applied on Expand-P and Shrink-P
are shown in Figure 10. The results show that, across most of the

datasets, S2 outperforms S1 in Expand-P. Regarding Shrink-P,
S1 performs better than S2. This is because S1 considers the

vertex’s degree while S2 examines the vertex’s contribution in

forming a subgraph that satisfies cohesiveness constraints, and

they are suitable for different approaches.

329

YouTube
Github

Teams
Citeseer

Livemocha
MovieLens

Wikipedia
BagPubmed

Yahoo

Datasets

10−1
100
101
102
103
104

Ti
m
e(
s)

74% 89%

89%

58% 53%

100%

47%

0% 0%74% 89%

89%

63% 53%

0%

16% 0% 0%68%

63%

32% 26%

47%

100%

11% 42%

100%

53%

63%

37%

42%

53%

100%

42% 79%

100%

Shrink-P+S1 Shrink-P+S2 Expand-P+S1 Expand-P+S2

Figure 10: Effect of Different Vertex Selection Strategies

Exp6: Evaluation of scalability. In this experiment, we study

the scalability of Expand-SP and Shrink-SP algorithms by alter-

ing the graph size on datasets Wikipedia, Teams, and Citeseer.
When varying graph size, we randomly sample 20% to 100%

edges of the original graphs. Figure 11 demonstrates that both

Expand-SP and Shrink-SP algorithms are scalable. The compu-

tational cost trends on the Citeseer dataset generally rise with

an increase in the percentage of edges. This can be attributed to

the fact that increasing the graph size will increase the number

of vertex that need to be considered and also increase the peeling

time of the (𝛼, 𝛽)-core. However, the computational costs remain

relatively stable for the Wikipedia and Teams datasets. The rea-

son is that, in certain instances, enlarging the graph size can

increase the number of neighborhoods of some vertices, making

them more likely candidates for inclusion in the final result. As a

result, the algorithm can more efficiently construct the desired

outcome.

20% 40% 60% 80% 100%
Percentage

102

103

104

Ti
m
e(
s)

52.6%
26.3%

57.9%
47.4% 42.1%

21.1% 10.5% 15.8% 31.6% 15.8%

Expand-SP Shrink-SP

(a) Wikipedia

20% 40% 60% 80% 100%
Percentage

102

103

104

Ti
m
e(
s)

47.4% 42.1% 36.8% 42.1% 47.4%

68.4%
78.9%

47.4%
63.2% 52.6%

Expand-SP Shrink-SP

(b) Teams

20% 40% 60% 80% 100%
Percentage

101

102

103

104

Ti
m
e(
s)

94.7%

68.4% 63.2% 73.7% 57.9%

94.7%

78.9%
89.5%

78.9%
52.6%

Expand-SP Shrink-SP

(c) Citeseer

Figure 11: Effect of graph size

6 RELATEDWORK
To the best of our knowledge, this paper is the first to study

size-bounded community search over bipartite graphs. Below

we review three closely related areas, size-bounded community

search on unipartite graphs, cohesive subgraph models on bipar-

tite graphs, and community search on bipartite graphs.

Size-bounded community search on unipartite graphs. On unipar-

tite graphs, size-bounded community search is conducted based

on different cohesiveness models such as 𝑘-core and 𝑘-truss.

Based on the 𝑘-core model and taking the size constraint into

consideration, Yao et al. [41] study the size-bounded 𝑘-core com-

munity search problem, with a query vertex 𝑞 and size constraint

[𝑙, ℎ] and aims to find a community with an optional degree. Li et

al.[14] present the minimum 𝑘-core model, which aims to find the

smallest 𝑘-core subgraph containing the query set. For the truss-

based model, a size-bounded community search model is first

proposed in [20], incorporating both shrink-based and expand-

based algorithms. In addition, the authors of [43] introduce a

size-constrained truss community model that aims to maximize

the cohesiveness of the resulting community and provide an effi-

cient solution for handling the hard case. These models cannot

be applied to solve our problem due to the intrinsic differences

between unipartite graphs from bipartite graphs.

Cohesive model on bipartite graphs. On bipartite graphs, several

existing studies explore the (𝛼, 𝛽)-core model [7, 10, 18, 21, 38].

Ding et al. [7] propose an efficient algorithm with linear time

complexity for querying the (𝛼, 𝛽)-core in an online manner. Liu

et al. [18] design a BiCore-Index to store and retrieve the (𝛼, 𝛽)-

core. The BiCore-Index maintenance technique is presented in

[19] to handle dynamic bipartite graphs. Additionally, the authors

of [28, 33, 39, 47] focus on the 𝑘-bitruss model in bipartite graphs,

which is the maximal subgraph where each edge is contained in

at least 𝑘 butterflies [40]. In these works, zou et al. [47], is the first

to propose the 𝑘-bitruss model. By adding a butterfly connectivity

constraint, Sariyuce et al. [28] further introduce the 𝑘-tip/𝑘-wing

model and provide efficient peeling algorithms. Here, 𝑘-tip is

the maximal butterfly-connected subgraph where each vertex

is contained in at least 𝑘 butterflies, and 𝑘-wing is the maximal

butterfly-connected subgraph where each edge is contained in

at least 𝑘 butterflies. The parallel tip decomposition algorithm

is also recently studied in [11]. Wang et al. [33] propose a novel

online index and a new bitruss decomposition algorithm. Biclique

is a complete subgraph of a given bipartite graph [22]. Based on

the biclique model, the maximal biclique enumeration problem

was studied in many recent works [5, 25, 32, 44, 46], which aims

to find all the maximal bicliques. In addition, various variants

of the maximal biclique model have been investigated recently,

including maximum vertex biclique [12], maximum edge biclique

[27], and maximum balanced biclique [4].

Community search on bipartite graphs. Community search aims to

search a subgraph that consists of internally connected vertices

based on a query vertex and specific query parameters [8, 9].

While various community search algorithms have been proposed

for bipartite graphs, these works often overlook the consideration

of size constraints. Wang et al. [36] study the (𝛼, 𝛽)-community

search problem and provide both online and index-based ap-

proaches. In [37], the authors propose an index maintenance

technique to support searching (𝛼, 𝛽)-core communities on dy-

namic bipartite graphs, allowing efficient updating of the index

after the insertion and deletion of an edge. The authors of [2]

study the community search problem following the𝑘-wingmodel

and further provide solutions for the 𝑘-wing community search

on the dynamic bipartite graph [1]. The authors of [34] inves-

tigate the personalized maximum biclique search problem and

proposed the PMBC-Index enabling both efficient construction

and query processing.

7 CONCLUSION
In this paper, we study the SABC search problem that aims to

find an (𝛼, 𝛽)-core-based community containing the query ver-

tex with the number of the upper and lower layer verities in

the subgraph not exceeding a given size threshold. We prove

the problem is NP-hard. Practically efficient exact solutions are

developed that employ novel pruning rules and effective search

strategies. Extensive experiments verify the effectiveness of SABC
and the superiority of the techniques. In the future, we will ex-

plore approximate solutions to address the extreme cases caused

by the hardness of the problem and explore the possibility of

applying Graph Nural Network to solve the extreme cases.

8 ACKNOWLEDGMENT
Kai Wang is supported by NSFC U2241211 and NSFC 62302294.

Wenjie Zhang is supported byARC FT210100303 andARCDP230101445.

Xuemin Lin is supported by NSFC U2241211 and NSFC U20B2046.

Kai Wang is the corresponding author.

330

REFERENCES
[1] Aman Abidi, Lu Chen, Rui Zhou, and Chengfei Liu. 2021. Searching Personal-

ized k-wing in Large and Dynamic Bipartite Graphs. CoRR abs/2101.00810

(2021). arXiv:2101.00810 https://arxiv.org/abs/2101.00810

[2] Aman Abidi, Lu Chen, Rui Zhou, and Chengfei Liu. 2022. Searching Personal-

ized 𝑘-wing in Bipartite Graphs. IEEE Transactions on Knowledge and Data
Engineering (2022).

[3] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. 2013. CopyCatch: Stopping Group Attacks by Spotting

Lockstep Behavior in Social Networks. In Proceedings of the 22nd Interna-
tional Conference on World Wide Web (WWW ’13). Association for Computing

Machinery, New York, NY, USA, 119–130.

[4] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2021. Efficient

Exact Algorithms for Maximum Balanced Biclique Search in Bipartite Graphs.

In SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh

Srivastava (Eds.). ACM, 248–260.

[5] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2022. Efficient

maximal biclique enumeration for large sparse bipartite graphs. Proceedings
of the VLDB Endowment 15, 8 (2022), 1559–1571.

[6] Apurba Das and Srikanta Tirthapura. 2018. Incremental maintenance of

maximal bicliques in a dynamic bipartite graph. IEEE Transactions on Multi-
Scale Computing Systems 4, 3 (2018), 231–242.

[7] Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. 2017. Efficient

Fault-Tolerant Group Recommendation Using alpha-beta-core. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management,
CIKM 2017, Singapore, November 06 - 10, 2017. ACM, 2047–2050.

[8] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. VLDB
J. 29, 1 (2020), 353–392.

[9] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Jiafeng

Hu. 2018. Effective and efficient community search over large directed graphs.

IEEE Transactions on Knowledge and Data Engineering 31, 11 (2018), 2093–2107.
[10] Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021.

Exploring cohesive subgraphs with vertex engagement and tie strength in

bipartite graphs. Inf. Sci. 572 (2021), 277–296.
[11] Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna, and César A. F. De Rose.

2020. RECEIPT: REfine CoarsE-grained IndePendent Tasks for Parallel Tip

decomposition of Bipartite Graphs. Proc. VLDB Endow. 14, 3 (2020), 404–417.
[12] Harry R Lewis. 1983. Michael R. ΠGarey and David S. Johnson. Computers

and intractability. A guide to the theory of NP-completeness. WH Freeman

and Company, San Francisco1979, x+ 338 pp. The Journal of Symbolic Logic
48, 2 (1983), 498–500.

[13] Michael Ley. 2002. The DBLP Computer Science Bibliography: Evolution,

Research Issues, Perspectives. In String Processing and Information Retrieval,
9th International Symposium, SPIRE 2002, Lisbon, Portugal, September 11-13,
2002, Proceedings (Lecture Notes in Computer Science), Alberto H. F. Laender
and Arlindo L. Oliveira (Eds.), Vol. 2476. Springer, 1–10.

[14] Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.

2019. Efficient Progressive Minimum k-core Search. Proc. VLDB Endow. 13, 3
(2019), 362–375.

[15] Jianxin Li, Taotao Cai, Ke Deng, Xinjue Wang, Timos Sellis, and Feng Xia.

2020. Community-diversified influence maximization in social networks. Inf.
Syst. 92 (2020), 101522.

[16] Jinyan Li, Guimei Liu, Haiquan Li, and LimsoonWong. 2007. Maximal biclique

subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one

correspondence and mining algorithms. IEEE Transactions on Knowledge and
Data Engineering 19, 12 (2007), 1625–1637.

[17] Bingkai Lin. 2018. The Parameterized Complexity of the K-Biclique Problem.

J. ACM 65, 5, Article 34 (aug 2018), 23 pages.

[18] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2019. Efficient (𝛼 , 𝛽)-core computation: An index-based approach. In The
World Wide Web Conference. Association for Computing Machinery, New York,

NY, USA, 1130–1141.

[19] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2020. Efficient (𝛼 , 𝛽)-core computation in bipartite graphs. VLDB J. 29, 5
(2020), 1075–1099.

[20] Boge Liu, Fan Zhang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021.

Efficient community search with size constraint. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021.
IEEE, 97–108.

[21] Qing Liu, Xuankun Liao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2023.

Distributed (𝛼 , 𝛽)-Core Decomposition over Bipartite Graphs. In 2023 IEEE
39th International Conference on Data Engineering (ICDE). IEEE, 909–921.

[22] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren

Zhou. 2020. Maximum Biclique Search at Billion Scale. Proc. VLDB Endow. 13,
9 (2020), 1359–1372.

[23] Yuliang Ma, Ye Yuan, Feida Zhu, Guoren Wang, Jing Xiao, and Jianzong Wang.

2019. Who Should Be Invited to My Party: A Size-Constrained k-Core Problem

in Social Networks. J. Comput. Sci. Technol. 34, 1 (2019), 170–184.
[24] Ziyi Ma, Yuling Liu, Yikun Hu, Jianye Yang, Chubo Liu, and Huadong Dai.

2021. Efficient maintenance for maximal bicliques in bipartite graph streams.

World Wide Web (2021), 1–21.

[25] Arko Provo Mukherjee and Srikanta Tirthapura. 2017. Enumerating Maximal

Bicliques from a Large Graph Using MapReduce. IEEE Trans. Serv. Comput.
10, 5 (2017), 771–784.

[26] Georgios A Pavlopoulos, Panagiota I Kontou, Athanasia Pavlopoulou, Costas

Bouyioukos, Evripides Markou, and Pantelis G Bagos. 2018. Bipartite graphs

in systems biology and medicine: a survey of methods and applications. Giga-
Science 7, 4 (2018), giy014.

[27] René Peeters. 2003. The maximum edge biclique problem is NP-complete.

Discrete Applied Mathematics 131, 3 (2003), 651–654.
[28] Ahmet Erdem Sariyüce and Ali Pinar. 2018. Peeling Bipartite Networks for

Dense Subgraph Discovery. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA,
USA, February 5-9, 2018. ACM, 504–512.

[29] Mauro Sozio and Aristides Gionis. 2010. The community-search problem

and how to plan a successful cocktail party. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010. ACM, 939–948.

[30] Amos Tanay, Roded Sharan, Martin Kupiec, and Ron Shamir. 2004. Revealing

modularity and organization in the yeast molecular network by integrated

analysis of highly heterogeneous genomewide data. Proceedings of the National
Academy of Sciences 101, 9 (2004), 2981–2986.

[31] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. 2006. Unifying user-

based and item-based collaborative filtering approaches by similarity fusion. In

SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Seattle, Washington,
USA, August 6-11, 2006. ACM, 501–508.

[32] Jianhua Wang, Jianye Yang, Ziyi Ma, Chengyuan Zhang, Shiyu Yang, and

Wenjie Zhang. 2023. Efficient Maximal Biclique Enumeration on Large Uncer-

tain Bipartite Graphs. IEEE Transactions on Knowledge and Data Engineering
(2023).

[33] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient

Bitruss Decomposition for Large-scale Bipartite Graphs. In 36th IEEE Interna-
tional Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24,
2020. IEEE, 661–672.

[34] Kai Wang, Wenjie Zhang, Xuemin Lin, Lu Qin, and Alexander Zhou. 2022.

Efficient Personalized Maximum Biclique Search. In 38th IEEE International
Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May
9-12, 2022. IEEE, 498–511.

[35] Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Shunyang Li. 2022.

Discovering Hierarchy of Bipartite Graphs with Cohesive Subgraphs. In 38th
IEEE International Conference on Data Engineering, ICDE 2022, Kuala Lumpur,
Malaysia, May 9-12, 2022. IEEE, 2291–2305.

[36] Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, Lu Qin, and Yuting Zhang.

2021. Efficient and Effective Community Search on Large-scale Bipartite

Graphs. In 37th IEEE International Conference on Data Engineering, ICDE 2021,
Chania, Greece, April 19-22, 2021. IEEE, 85–96.

[37] KaiWang,Wenjie Zhang, Ying Zhang, Lu Qin, and Yuting Zhang. 2023. Discov-

ering Significant Communities on Bipartite Graphs: An Index-Based Approach.

IEEE Trans. Knowl. Data Eng. 35, 3 (2023), 2471–2485.
[38] Kai Wang, Gengda Zhao, Wenjie Zhang, Xuemin Lin, Ying Zhang, Yizhang He,

and Chunxiao Li. 2023. Cohesive Subgraph Discovery over Uncertain Bipartite

Graphs. IEEE Transactions on Knowledge and Data Engineering (2023).

[39] Yue Wang, Ruiqi Xu, Xun Jian, Alexander Zhou, and Lei Chen. 2022. Towards

distributed bitruss decomposition on bipartite graphs. Proceedings of the VLDB
Endowment 15, 9 (2022), 1889–1901.

[40] Yixing Yang, Yixiang Fang, Maria E Orlowska, Wenjie Zhang, and Xuemin Lin.

2021. Efficient bi-triangle counting for large bipartite networks. Proceedings
of the VLDB Endowment 14, 6 (2021), 984–996.

[41] Kai Yao and Lijun Chang. 2021. Efficient Size-Bounded Community Search

over Large Networks. Proc. VLDB Endow. 14, 8 (apr 2021), 1441–1453.
[42] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2017. Index-

based densest clique percolation community search in networks. TKDE 30, 5

(2017), 922–935.

[43] Fan Zhang, Haicheng Guo, Dian Ouyang, Shiyu Yang, Xuemin Lin, and Zhi-

hong Tian. 2023. Size-constrained Community Search on Large Networks:

An Effective and Efficient Solution. IEEE Transactions on Knowledge and Data
Engineering (2023).

[44] Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler,

and Michael A Langston. 2014. On finding bicliques in bipartite graphs: a

novel algorithm and its application to the integration of diverse biological

data types. BMC bioinformatics 15, 1 (2014), 110.
[45] Yuting Zhang, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021.

Pareto-optimal community search on large bipartite graphs. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Manage-
ment. 2647–2656.

[46] Yiwei Zhao, Zi Chen, Chen Chen, Xiaoyang Wang, Xuemin Lin, and Wenjie

Zhang. 2023. Finding theMaximum𝑘-Balanced Biclique onWeighted Bipartite

Graphs. IEEE Transactions on Knowledge and Data Engineering 35, 8 (2023),

7994–8007.

[47] Zhaonian Zou. 2016. Bitruss Decomposition of Bipartite Graphs. In Database
Systems for Advanced Applications - 21st International Conference, DASFAA
2016, Dallas, TX, USA, April 16-19, 2016, Proceedings, Part II (Lecture Notes in
Computer Science), Vol. 9643. Springer, 218–233.

331

