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ABSTRACT
Entity matching is a crucial data integration process as it iden-
tifies whether two records refer to the same real-world object.
Since shared identifiers are not always available, learning to
match based on entity descriptions is an important task. While
deep learning methods based on pre-trained transformers have
been proposed to automate the entity matching process, these
models only utilize the special token representation (i.e., [CLS])
to predict matches. However, this can ignore rich and nuanced
contextual information in the descriptions, thereby yielding sub-
optimal matching performance. We propose EMBA, a multi-task
learning method with an attention-over-attention mechanism
that leverages the individual token representations for the down-
stream tasks to better capture the information present in the
descriptions of the two entities. Our evaluation across 7 entity
matching benchmark datasets shows that EMBA achieves state-of-
the-art performance, including up to an 8% improvement in F1
performance, over the existing dual-objective model. Our abla-
tion study highlights the importance of using individual token
representations. We also analyze the matching decision using
both LIME explanations and attention score visualizations on a
case study to illustrate the potential of EMBA.

1 INTRODUCTION
Entity matching (EM) is a data integration problem that identifies
whether two data entries refer to the same real-world entity. It
is an essential process for cleaning and fusing data across single
or distributed data sources [11, 19, 23, 31, 39]. Matching entities
accurately and quickly has enormous practical implications in
commercial, scientific, and security applications [14] and is a
longstanding problem in both data integration [9, 26] and data
cleaning [1]. Figure 1a illustrates EM for different entries from
two data sources. Unfortunately, the process of determining the
pairs ofmatching entries can be time-consuming, especially in the
presence of heterogeneous and large data sources. EM remains
a challenging automation task because it requires a depth of
language understanding and domain knowledge to match and
distinguish entity information [25].

Existing EM approaches can be categorized by the level of
comparisons made: attribute-centric, token-centric, and hybrid-
centric [10]. An attribute-centric approach usually follows the
alignment-comparison-summarization paradigm. This approach
compares aligned attributes and aggregates the similarity vec-
tors to determine the input for a binary classification system.
Although these methods are generally successful, they may fail
in real-world applications, when encountered with situations
like schema heterogeneity, an extremely common occurrence.
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Accordingly, most recent research has been token-centric [24]
or hybrid-centric [12], which incorporates token-level matching
information into EM signals. Deep learning (DL) methods have
become the de facto standard for tackling EM. By posing EM
as semantic similarity matching, pre-trained natural language
processing (NLP) models can serve as token-centric solutions to
achieve impressive performance [7, 25, 27, 28, 32, 43]. These DL
algorithms leverage popular transformer models such as BERT
to automatically identify important entity description features
using labeled examples without extensive engineering [37]. The
pair-wise semantic similarity of two entity records, RECORD1
and RECORD2, is calculated by adapting BERT’s input format
(i.e., [CLS] RECORD1 [SEP] RECORD2 [SEP] as shown in Figure
1b) and using the [CLS] special token representation to predict
the match.

While the vanilla transformermodel has the potential to be use-
ful for EM classification tasks, it suffers from several limitations.
First, the self-attention mechanism was originally designed for
capturing semantic interactions at the token level. Nevertheless,
researchers usually construct entity descriptions by concatenat-
ing all attribute values, which introduces semantic discontinuity,
deconcentrates the attention score, and impedes performance.
One existing solution is serializing the entity with extra special
tokens such as [COL] and [VAL] [25, 43]. Experimental results
indicate that injecting special tokens for delimiting the attributes
achieves better performance [31]. However simple fine-tuning
will not fully utilize the data itself or may reach a sub-optimal
point. Another limitation is that the masked language model
(MLM) training objective optimizes token-level predictions but
randomly masking some crucial information (i.e., the similar
segments) can hamper the relatedness understanding for the
entity pair. As such, introducing other sub-tasks can enrich the
pragmatic knowledge encoded by BERT (as shown in [31]) and
improve performance.

Multi-task learning techniques can obtain more general rep-
resentations by complementing the main task objective with
auxiliary training tasks [45]. One EM model has adopted the
multi-task learning paradigm and proposed auxiliary multi-class
classification problems to identify the individual entity identifier
(or ID) from the descriptions to pair with the main EM classifi-
cation problem [32]. While the model achieves state-of-the-art
performance across some of the datasets, one major drawback
is the failure to fully leverage the token representation power
as only [CLS] special token is used for all 3 downstream tasks.
Although the [CLS] token can be used to represent the meaning
of the entire sentence, it may not be appropriate for all kinds
of tasks (e.g., sequence tagging, or question answering). This
ignores the rich semantic information from the individual tokens
(e.g., the sub-word and character embeddings for the RECORD1)
that potentially capture nuances in the entity description. Recent
NLP work regarding sentence representation has highlighted the
limitations of the special tokens [3, 20].
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(a) Examples of EM to determine the matching entries from two sources

(b) An example of the input to the BERT-based models and the prediction results from JointBERT and EMBA, where the entity IDs are
computer cluster groups.

Figure 1: Illustrations of EM and results from the multi-task learning models

In this paper, we posit that individual token representations
should be exploited in the multi-task formulation to improve
the overall matching performance. We present EMBA, an entity
matching multi-task learning model that uses the BERT individ-
ual tokens and attention-over-attention mechanism, to combine
the binary EM and entity ID prediction. The main EM classifica-
tion captures fine-grained relationships between the individual
attribute values across the entity pair by utilizing an attention-
over-attention (AOA) mechanism [5].

For the multi-class entity ID prediction module, EMBA learns
the aggregation weights from the entity tokens, and provides
flexibility to highlight task-specific aspects in the description.
In this fashion, EMBA can identify the subword and character
embeddings that are important for each task without requiring
significant amounts of training data.

We compare our model against the existing multi-task learn-
ing EM model, JointBERT [32], a numerical-aware EM model,
JointMatcher [43], and several transformer-based EM models
[7, 25, 27, 28] on 7 EM benchmark datasets. Our results demon-
strate that EMBA generally outperforms both models with multi-
task objectives and those with single-task objectives with im-
provements ranging from 1-8%. We also conduct a detailed anal-
ysis of the attention weights to demonstrate the limitations of
existing BERT-based EM models as the attention scores focus on
a few words with contextual semantics that appear in both entity
pairs. Our code is publicly available in GitHub.1 In summary, our
contributions are as follows:

• We propose EMBA, to utilize the individual BERT token
representations for both the auxiliary entity ID prediction
and main EM tasks.

• We align the individual token representations between the
entity pairs using the AOA mechanism to capture cross-
entity token interactions to better capture the similarity.

• We compare the performance of EMBA with existing state-
of-the-art EM methods across 7 different datasets.

1https://github.com/JZCS2018/EMBA

• We conduct a detailed ablation study to demonstrate the
importance of using the individual token representations
and our AOA module.

• We analyze matching decisions of EMBA and JointBert us-
ing LIME explanations [35] and attention visualizations to
gain an understanding of the strengths of the token-based
approach.

The paper is organized as follows. Section 2 introduces sev-
eral previous related works about DL-based matchers. Section 3
illustrates our EMBA framework to tackle this matching problem.
Section 4 describes the statistics of the datasets, the experiment
design, and the results. It also contains the case study and ablation
study to investigate the importance of the AOA mechanism and
utilization of different token representations. Finally, in Section
5, we discuss conclusions from our results and potential future
directions.

2 RELATEDWORK
The three most common approaches to entity matching can be
broadly categorized as rule-based [6], crowd-based [40], and
machine-learning-based [15]. The traditional approach has been
to handcraft string similarity metrics to produce similarity fea-
ture vectors and then utilize a classical off-the-shelf machine
learning model such as SVM or random forest to classify them
[22]. The two main drawbacks of this approach are the necessary
manual tinkering and poor performance on dirty data. Recently,
entitymatching solutions usedDL and achieved promising results
[28, 47]. Since DL-based entity matchers offer state-of-the-art
performance on the entity matching task, this paper focuses on
these models.

2.1 Single-Task Models for EM
Most of the DL-based EM systems approach matching as a binary
classification problem. DeepER [10] trains EM models based on
the LSTM [18] neural network architecture with word embed-
dings such as GloVe [33]. DeepMatcher takes two data entries
of the same quality as input and aligns their attributes before
passing them on to the matching algorithm [28]. In contrast to
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DeepMatcher, the BERT [7] and RoBERTa-based [27] EM models
eliminate both the attribute embedding and similarity represen-
tation components of the architecture in favor of a single pre-
trained language model and offer a simpler design. As shown in
Figure 1b, the pair-wise semantic similarity of two entity records,
RECORD1 and RECORD2, is calculated by serializing both en-
tries into a single input using the [CLS] and [SEP] tokens. The
[CLS] is then used to determine whether the two entities match
[2, 37, 46]. DITTO further builds on this idea by introducing
two structural tags, [COL] and [VAL], to tackle the semantic
discontinuity problem. Auto-EM [47] improves DL-based EM
models by pre-training the model on an auxiliary task of en-
tity type detection. JointMatcher [43] separates the records into
two inputs to embed the features using a pre-trained language
model and then introduces two encoders to identify similar and
number-contained segments of the entity pair.

2.2 Multi-Task Learning Models for EM
The performance gains of multi-task learning in NLP illustrate
the potential benefit of adopting this paradigm for the EM task.
The idea is to integrate multiple tasks into the training of the
DL architecture to yield improved, more general representations.
JointBERT [32] introduces a dual-objective function to train the
model and achieve a better performance compared with the
single-task models. JointBERT uses the [CLS] token for both
the main EM task and a multi-class classification problem to
predict the entity identifier of each of the two entity descrip-
tions. Although JointBERT can achieve better performance in
some cases than the single-task, it uses the [CLS] token for its
multi-class objective which can be suboptimal. Instead, we utilize
the individual tokens to better differentiate the representation
between the first entity description and the second entity de-
scription. Related to multi-task learning for EM is the multi-label
setting where entities may have multiple intents which is nec-
essary for user-personalization. To tackle the multiple intents
entity resolution, FlexER [13] utilizes a graph neural network to
learn intents through their relationships and improves upon the
current state-of-the-art for universal entity resolution.

3 EMBA: MULTI-TASK LEARNING OF BERT
WITH ATTENTION-OVER-ATTENTION

3.1 Problem Definition
Given two entity records, RECORD1 and RECORD2, their respec-
tive entity IDs, 𝐼𝐷𝑒1 and 𝐼𝐷𝑒2 , and their respective descriptions
𝐷𝑒1 = {𝐷1

𝑒1 , 𝐷
2
𝑒1 , · · · , 𝐷

𝑚
𝑒1 } and 𝐷𝑒2 = {𝐷1

𝑒2 , 𝐷
2
𝑒2 , · · · , 𝐷

𝑛
𝑒2 }, where

𝐷1
𝑒1 , 𝐷

2
𝑒1 · · · , 𝐷

𝑚
𝑒1 are the attributes, the multi-task learning para-

digm seeks to learn (1) whether RECORD1 and RECORD2 refer
to the same object (i.e., EM binary classification task) based on
the descriptions (i.e., 𝐷𝑒1 and 𝐷𝑒2 ) and (2) predict the entity ID
(𝐼𝐷𝑒𝑖 ) based on the description 𝐷𝑒𝑖 . The latter auxiliary tasks are
known as multi-class classification problems where the entity ID
serves as the class. The entity ID is user-specified and represents
a grouping of objects within the dataset. Examples of entity ID
prediction tasks include the publisher of the book (Figure 1a) or
the computer cluster group (Figure 1b). It is important to note the
two entities are not required to share the same schema. As shown
in Figure 1a, RECORD1 contains the attributes title, page count,
rating, description, and publisher whereas RECORD2 has the
attributes title, author, sales rank, price, pages, and publication
date.

Figure 2: EMBA framework

3.2 BERT-based Token Embedding
EMBA follows the common BERT input format used for EM. The
two entity descriptions are concatenated together as follows:
[CLS] {𝐷1

𝑒1 , 𝐷
2
𝑒1 , · · · , 𝐷

𝑚
𝑒1 } [SEP] {𝐷

1
𝑒2 , 𝐷

2
𝑒2 , · · · , 𝐷

𝑛
𝑒2 } [SEP].

In JointBERT, the pooled output representation of the [CLS]
token is used to train both the EM binary classification task
and the auxiliary entity ID prediction tasks. However, since the
[CLS] token denotes the representation for the sequence pair,
it is hard to untangle the representation of the two individual
entities. Moreover, the [CLS] token may not properly capture
the interactions between the pair of entities. While [CLS] is com-
monly used in NLP for many downstream classification tasks,
recent work suggests that it may not always yield the best per-
formance for all downstream tasks. Choi et al. illustrated the
limitation of [CLS] for sentence embeddings [3]. Another recent
work demonstrated that simply averaging the individual tokens
provides better representations than the [CLS] token for seman-
tic textual similarity tasks [20]. Furthermore, enforcing the same
shared representation for multiple tasks can be beneficial with
limited training data, but restricts the weights to be the same for
all tasks. This scenario is suboptimal especially if the same token
is used to predict two different entity identifiers, as the second
entity description may not be fully reflected when using [CLS].
Therefore, EMBA uses the individual BERT token representations
and learns task-specific weights.

3.3 Entity ID Prediction
A major motivation for moving away from the [CLS] token is
recent NLP work that suggests that aggregating the token embed-
dings themselves may offer better sentence embeddings [3, 20].
One naïve approach is to use a different special token (e.g., [SEP]
token) for the second entity ID prediction task, as the original
[CLS] special token may not fully capture this entity description.
However, as we will demonstrate in the ablation study, this offers
marginal improvement as the [CLS] token remains a subopti-
mal representation for the first entity. Thus, for the entity ID
prediction task, we propose the use of the token embeddings
themselves as the input representation for the cross-entropy loss,
as shown in Figure 2.
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Figure 3: AOA module

Let 𝐸𝑒𝑖 denote the output representations of the different
entity tokens of the last encoder layer from BERT such that
𝐸𝑒1 = {𝐸𝐷1

𝑒1
, · · · , 𝐸𝐷𝑚

𝑒1
} and 𝐸𝑒2 = {𝐸𝐷1

𝑒2
, · · · , 𝐸𝐷𝑛

𝑒2
}. EMBA uses

the token embeddings from the entity description, 𝐸𝑒𝑖 , directly
for both auxiliary tasks. The token embeddings are passed to a
linear layer that learns the task-specific weights to aggregate the
representation and feeds it to the softmax layer. In this manner,
each task can identify the subset of tokens that are indicative of
the entity identifier. Since each entity description has different
lengths,𝑚 and 𝑛 for entities 1 and 2, respectively, the learned
weights will be task-specific. We briefly note the definition of
the entity ID task can impact the main EM task performance. An
appropriate auxiliary task should be used where the classes are
approximately balanced and there are sufficient samples for each
class to train a model (i.e., predicting the primary key of an entity
is unlikely to be a good auxiliary task).

3.4 AOA for EM
For the EM task, we again use the entity token representations,
𝐸𝑒1 and 𝐸𝑒2 . These representations are fed to an attention-over-
attention (AOA) module to model the token-level interactions
between these two pairs. AOAwas first proposed for the question-
answering task, as placing another attention over the primary
attention can capture the importance of the original attention
weights [5]. This is important as the dot product or the difference
between the two entity representations can fail to capture the fine-
grained relations between the individual attribute values. As such,
the AOA module introduces mutual attention to simultaneously
capture the relationships between the specific values of the first
entity description to other values of the second entity description.

Our AOA module, illustrated in Figure 3, captures the corre-
lations between the entity description using two mechanisms.
Notice that 𝐸𝑒1 ∈ 𝑅𝑚×ℎ denotes the RECORD1 representation,
where𝑚 is the first entity token length and ℎ is the BERT token
dimension. Similarly, 𝐸𝑒2 ∈ 𝑅𝑛×ℎ denotes the RECORD2 repre-
sentation, where 𝑛 is the second entity token length. The module
first calculates the pair-wise interaction matrix 𝐼 = 𝐸𝑒1 · 𝐸𝑇

𝑒2,
where the value of each entry represents the correlation of each
token pair between RECORD1 and RECORD2. A column-wise
softmax is applied to the interaction matrix 𝐼 to obtain 𝛼 , a proba-
bility distribution for each column, where each column represents
the individual token-level level distribution for RECORD2 when
considering the RECORD1. A row-wise softmax is applied to
interaction matrix 𝐼 to obtain 𝛽 , the attention from the second

Algorithm 1 Multi-task learning for EMBA

1: Initialize:
Model parameters 𝜃 :
a. Shared layer parameters by BERT;
b. Task-specific layer parameters randomly;

2: Generate B by merging mini-batches for each dataset;
3: while epoch < Epoch_Num do
4: Shuffle B;
5: for Element in B do
6: Compute loss 𝐿 from Eq. (3);
7: Compute gradient: ∇(𝜃 );
8: Update model: 𝜃 = 𝜃 − 𝜂∇(𝜃 );
9: end for
10: end while

entity description to the first entity description. Thus for the 𝑘𝑡ℎ

token embedding from RECORD1 and the 𝑡𝑡ℎ token embedding
from RECORD2, the associated attentions 𝛼 (𝑡) and 𝛽 (𝑘) are:

𝛼 (𝑡) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐼 (1, 𝑡), 𝐼 (2, 𝑡), · · · , 𝐼 (𝑚, 𝑡)) (1)
𝛽 (𝑘) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐼 (𝑘, 1), 𝐼 (𝑘, 2), · · · , 𝐼 (𝑘, 𝑛)) (2)

Then, the averaged second entity attention 𝛽 is calculated
using a column-wise averaging of 𝛽 . Finally, the AOA 𝛾 ∈ 𝑅𝑚

is obtained as a weighted sum of the averaged second entity
attention, 𝛽 , to 𝛼 . By considering the contribution of each token
explicitly, the AOAmodule learns the important weights for each
token in the two different embeddings.

𝛽 =
1
𝑛

∑︁
𝑘

= 1𝑛𝛽 (𝑘)

𝛾 = 𝛼 · 𝛽𝑇

The resulting AOA vector, 𝛾 is then multiplied with the entity 1
representation, 𝐸𝑒1, to yield a vector representation, 𝑥 ∈ 𝑅ℎ×1

that is sent to the final classification layer which consists of
a linear layer and a softmax layer to predict whether or not
RECORD1 and RECORD2 refer to the same object.

3.5 Dual Objective Training
EMBA uses the binary cross-entropy loss (BCEL) for the main EM
task and the cross-entropy loss (CEL) for the entity ID prediction
tasks. Let 𝑦𝑒𝑚𝑖

, 𝑦𝑒1𝑖 , 𝑦𝑒2𝑖 denote the EM label, and the two entity
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Table 1: Statistics about the datasets

Dataset Size # Pos. Pairs # Neg. Pairs LRID # Classes # Test Set

WDC
computers

Xlarge 9690 58771 0.399

745 1100Large 6146 27213 0.189
Medium 1762 6332 0.135
Small 722 2112 0.149

WDC
cameras

Xlarge 7178 35099 0.764

562 1100Large 3843 16193 0.403
Medium 1108 4147 0.223
Small 486 1400 0.228

WDC
watches

Xlarge 9264 52305 0.518

615 1100Large 5163 21864 0.287
Medium 1418 4995 0.185
Small 580 1675 0.186

WDC
shoes

Xlarge 4141 38288 0.372

562 1100Large 3482 19507 0.261
Medium 1214 4591 0.208
Small 530 1533 0.194

abt-buy Default 822 6837 0.791 1013 1916

dblp-scholar Default 4277 18688 4.548 52 5742

companies Default 22560 67569 0.653 28200 22503

baby products Default 108 292 1.008 132 40

bikes Default 130 320 2.314 21 45

books Default 92 305 1.865 2882 40

identifiers respectively, then we define the loss L as follows,

𝐿𝑖 = 𝐵𝐶𝐸𝐿(𝑦𝑒𝑚𝑖
, 𝑦𝑒𝑚𝑖

) +𝐶𝐸𝐿(𝑦𝑒1𝑖 , 𝑦𝑒1𝑖 ) +𝐶𝐸𝐿(𝑦𝑒2𝑖 , 𝑦𝑒2𝑖 ) (3)

where 𝑖 stands for each pair. Algorithm 1 illustrates the process
of applying multi-task learning to EMBA in which all layers in
the model are refined. As a first step, similar to JointBERT, we
initialize the parameters of the pre-trained BERT model and then
randomly initialize the parameters of the task-specific layers,
including EM classification, first entity ID prediction, and second
entity ID prediction. During the training stage, both objectives
are jointly optimized, so that the EM task will be improved by
other two multi-class classification tasks training simultaneously.

4 EXPERIMENTS
We designed the experiments to answer three key questions: (1)
How accurate is EMBA in automating the entity matching? (2) How
important are the different components of EMBA? (3) What are
the important words that are learned for the matching decisions?

4.1 Datasets
We compare the performance of EMBA with several existing base-
linemethods on 7 existing EMbenchmark datasets. These datasets
have already been split into non-overlapping training, validation,
and test sets. The dataset statistics are provided in Table 1.

4.1.1 WDC datasets. The WDC Product Data Corpus for
Large-scale Product Matching [34], was built by extracting prod-
uct offers from Common Crawl. The WDC datasets serve as a
popular benchmark and have been used for evaluation in DITTO,
JointBERT, and the Semantic Web Challenge on Mining the Web
of HTML-embedded Product Data at ISWC2020 [46]. WDC con-
tains the titles, descriptions, and product identifiers from the e-
shops’ HTML pages. We utilize the same training, validation, and
test configuration as JointBERT across four categories: comput-
ers, cameras, shoes, and watches. The training sets are available
in four sizes, labeled small, medium, large and xlarge, ranging
from 2,000 to 70,000 product offer pairs. All entities that are con-
tained in the test sets are also represented with different entity
descriptions in the training set.

For our experiments, we used the attributes brand, title, de-
scription, and specTableContent which are predominantly text
and contain long sequences of words. The attribute values were
gathered from the Web and may contain noise as a result of
extraction errors. We limit the number of words used for each
attribute to the 512-token maximum length limit for BERT-based
transformer models. We predict the encoded product IDs, such
as GTIN or MPN numbers, using both entity descriptions in a
pair for the task of entity ID prediction.

4.1.2 abt-buy, dblp-scholar, companies datasets. Each dataset
represents a match between two mostly deduplicated datasets
from products (abt-buy), scientific texts (dblp-scholar), and com-
panies. We use the same preprocessed splits as in JointBERT and
DeepMatcher. Unlike the WDC datasets, these 3 EM datasets
have a limited number of entity descriptions for the described
entities (e.g., < 5 number of samples for many of the classes of
the auxiliary task). The datasets only include matching labels
for each pair of entities. We leverage these labels along with the
transitive relationships that emerge from the pairs marked as
matches to allocate unique identifiers to the descriptions of all the
entities in each pair. For illustration purposes, if (A, B) and (B, C)
are matches, then the group will include A, B, C. A unique cluster
identifier is assigned for each group. As dblp-scholar includes
specific information on venue and year, we use these attributes
as the target for predicting entity IDs.

4.1.3 Magellan datasets. We use 3 more EM datasets, baby
products, bikes, and books, from [22]. Baby products contain the
baby products from Babies ‘R’ Us and Buy Buy Baby website and
apply the same schema to the two tables title, ext_id, SKU, colors,
and category. Bikes contain bike re-sale information from India’s
leading sources Bikedekho and Bikewale. The common schema
contains color, bike_name, price, and km_driven. Books contain
the book information from Goodreads and Barnes & Noble. The
common schema of these two tables contains the page count,
title, publisher, ISBN13, and format. Our dataset configuration
excludes the ISBN13 attribute since it can be considered as the
unique ID of each entity. The entity ID label is assigned for each
of the datasets as category, brand, and publisher, respectively.

4.1.4 Likelihood ratio imbalance degree. Standard learning
algorithms often assume relatively balanced class distributions.
However, imbalanced data with unequal class distributions, can
pose significant practical costs when the minority classes are
incorrectly classified [48]. The class-imbalance extent is com-
monly measured using the imbalance ratio [16]. Unfortunately,
the imbalance ratio is unable to capture detailed information for
multi-class data as it relies only on the largest majority class
and the smallest minority class for calculation, neglecting the
nuances present in the remaining class distribution. The imbal-
ance degree has been proposed to address the limitations for
multi-class data [30]. However, improper use of distance metrics
in these calculations can have harmful effects on the results.

Likelihood ratio imbalance degree (LRID) was proposed in
[48] to measure imbalanced data:

𝐿𝑅𝐼𝐷 = −2
𝐶∑︁
𝑐=1

𝑛𝑐 ln( 𝑁

𝐶𝑛𝑐
)

where𝐶 is the number of classes, 𝑛𝑐 is the observations of class 𝑐 ,
and 𝑁 is the data size. A balanced multi-class dataset has an LRID
of 0 and larger values of LRID denote higher degrees of imbalance.
In Table 1, we present the LRID for the entity ID prediction tasks.
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From the statistics, we observe that WDC datasets are almost
balanced for different classes and dblp-scholar dataset is the most
imbalanced.

4.2 Baseline Models
EMBA is evaluated against six baseline models and 3 pre-trained
embedding variants. This section summarizes each of the models,
along with their specific training settings. For the models using
BERT (e.g., EMBA, DITTO, JointBERT), we generally use the pre-
trained BERT-base model which consists of 12 layers and 768
dimensions. Any deviation from BERT-base is specified in the
model description.

• DeepMatcher [28]: An EM solution that customizes the
Recurrent Neural Network (RNN) architecture to aggre-
gate the attribute values and then compares the aggre-
gated representations of attribute values. It fixes the batch
size at 16 and sets the positive-negative ratio, which con-
trols the class weighting, to the actual distribution of each
training set. It keeps the default values for all other hyper-
parameters and uses fastText embeddings pre-trained on
the English Wikipedia as input.

• BERT-based Models: Both uncased BERT and RoBERTa
models are presented as in [32]. The attributes of each
entity description are concatenated into a single string
with any further preprocessing omitted and left to the tok-
enizer of the respective models. Both BERT and RoBERTa
models use the full input length of 512 tokens.

• DITTO [25]: A state-of-the-art EM model that cast the
problem as a sequence-pair classification and fine-tunes
RoBERTa, a pre-trained Transformer-based languagemodel
[27]. We report the results from [32] which injected do-
main knowledge via the offered spans for the product or
general domain according to the datasets. To make it com-
parable with JointBERT, the authors use the pre-trained
BERT model rather than RoBERTa and set the batch size
to 8 due to memory constraints with warmup.

• JointMatcher [43]: It is a novel EM method that forces
the transformer model to learn the contextual information
from the textual records. It contains a relevance-aware
encoder and the numerically-aware encoder to pay more
attention to similar segments and segments with numbers,
respectively. It does not inject any domain knowledge
when small or medium size training sets are used. Since its
implementation is not accessible publicly, we summarize
the results on the WDC datasets.

• JointBERT [32]: A dual-objective training method for
BERT that combines binary matching and multi-class clas-
sification. The model uses the [CLS] token to predict the
entity identifier based on each entity description in a train-
ing pair in addition to the matching decision. It achieved
state-of-the-art results on the WDC datasets in large and
xlarge settings.

• EMBA (FT): fastText [21] was developed by Facebook’s AI
Research lab as an efficient tool for learning word embed-
dings and conducting text classification. By leveraging
subword details, fastText can create precise word vectors
for infrequently occurring or even unknown words. We
pre-trained a fastText model using all of the 7 EM datasets.
The BERT-based embedding was then replaced with our
pre-trained fastText model.

• EMBA (SB): There are several different embedding dimen-
sions and layers offered by the BERT framework. BERT-
small is a more compact version with 4 layers and 512
dimensions. This scaled-down version demands less com-
putational power than the base and allows it to operate ef-
fectively on less robust hardware. We replaced the existing
BERT-based component (BERT-base) with a pre-trained
BERT-small model.

• EMBA (DB): Similar to the EMBA (SB) variant, we investigate
the use of distilBERT [36] instead of the pre-trained BERT-
base model. distilBERT reduced the model by 40% using
knowledge distillation and contains 6 layers and has an
embedding size of 768 dimensions.

We train all models on a single NVIDIA Tesla V100 GPU with
16GB VRAM. The attributes of each entity description are con-
catenated into a single string. Any further preprocessing is omit-
ted and left to the tokenizer of the respective models. EMBA and
JointBERT use the full input length of 512 tokens. We fix the
batch size at 32 and use the Adam optimizer to train the models
for 50 epochs using a linearly decaying learning rate with one
epoch warmup. A learning rate sweep is done over the range
[1e-5, 3e-5, 5e-5, 8e-5. 1e-4]. We also apply the early stopping
strategy if the model performance on the validation set does not
increase over 10 consecutive epochs.

For all 7 datasets, EMBA and JointBERT are trained 5 times and
we report the average performance with its standard deviation.
For WDC, abt-buy, dblp-scholar, and companies, we present the
best result for the other 5 models from either the JointMatcher
or JointBERT paper [32, 43]. For the remaining 3 Magellan EM
datasets, we report the average across the 5 trails for all but
JointBERT and EMBA to maintain consistency.

4.3 Predictive Performance
4.3.1 EM Task. Table 2 summarizes the F1 results for the

main EM binary task across all models and datasets. EMBA gener-
ally achieves the best performance on the computers, cameras,
watches, and shoes categories for WDC. The lone exceptions
are for the small training size setting where JointMatcher and
RoBERTa achieve a higher F1 score. Our model also offers a per-
formance improvement over the single-objective models such as
BERT and RoBERTa by 1-11% and DITTO by 1-8% in the medium
to xlarge settings.

For the other 6 smaller benchmark datasets, EMBA achieves the
best performance on the companies and baby products datasets
and the second-highest performance on the abt-buy dataset.
RoBERTa offers the best F1 performance for abt-buy, dblp-scholar,
and bikes, and second-best for baby products and books. DITTO
achieves the best on books and second-best on bikes. As can be
seen from Table 1, dblp-scholar, bikes, and books have a higher
LRID (> 1.5) and limited number of entity descriptions for each
entity ID class. This suggests that improperly designed auxiliary
tasks can hinder the performance of the main EM task.

Among the variants of EMBA (e.g., FT, SB, DB), we observed
variability in the performance. EMBA (SB), where the number of
trainable parameters is only a quarter of EMBA, offers compa-
rable performance and in some cases outperforms the original
(BERT-case) version for some small datasets. This suggests that
employing a simpler embedding model (with fewer layers and
dimensions) can potentially lead to improved performance on
datasets with limited training data. However, we note that this is
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Table 2: Comparison of F1 performance on the EM task for the different datasets. The best performance is bolded and the
second best performance underlined. Statistical significance analysis of the F1 performance between EMBA and JointBERT.
The mean and standard deviation (in parenthesis) are shown, as well as the result of the t-test. * denotes if 𝑝 < 0.05, ** if
𝑝 < 0.01, *** if 𝑝 < 0.001, **** if 𝑝 < 0.0001, and ns if 𝑝 ≥ 0.05.

Dataset Size JointBERT EMBA EMBA (FT) EMBA (SB) EMBA (DB) DeepMatcher BERT RoBERTa DITTO JointMatcher

WDC computers

xlarge 95.88(±0.96) 98.44(±0.82)** 87.21 96.61 67.91 88.95 94.57 94.73 96.53 95.73
large 94.16(±1.49) 97.73(±0.37)** 84.46 94.11 71.11 84.32 92.11 94.68 93.81 94.03

medium 86.00(±0.98) 93.03(±0.27)**** 71.78 90.23 58.88 69.85 89.31 91.90 88.97 90.10
small 75.66(±0.97) 81.89(±2.06)*** 65.91 80.47 51.44 61.22 80.46 86.37 81.52 86.95

WDC Cameras

xlarge 95.31(±2.00) 99.16(±0.47)** 79.47 95.78 67.83 84.88 91.42 94.39 94.74 93.57
large 93.02(±0.91) 97.84(±0.01)*** 76.15 93.52 65.89 82.16 91.02 93.91 94.41 92.00

medium 84.40(±1.94) 91.90(±0.79)*** 68.41 89.95 59.18 69.34 87.02 90.20 87.97 89.26
small 76.88(±0.86) 80.69(±0.81)**** 60.26 78.74 48.70 59.65 77.47 85.74 78.67 84.15

WDC watches

xlarge 96.23(±1.38) 99.11(±0.15)** 82.15 97.19 68.22 88.34 95.76 94.87 97.05 96.61
large 95.59(±2.08) 98.97(±0.30)* 80.32 95.87 63.12 86.03 95.23 93.93 97.17 95.89

medium 84.72(±1.96) 92.63(±1.87)**** 62.34 90.11 47.51 67.92 89.00 92.28 89.16 93.18
small 72.79(±2.72) 83.28(±1.33)*** 56.68 81.99 42.84 54.97 78.73 87.16 81.32 91.31

WDC shoes

xlarge 93.75(±3.48) 98.47(±0.49)* 80.23 96.63 61.60 86.74 87.44 88.88 93.28 90.22
large 90.78(±3.14) 97.16(±0.96)** 78.21 95.13 62.18 83.17 87.37 86.60 90.07 89.01

medium 77.48(±2.08) 88.47(±0.32)*** 69.29 83.55 55.58 74.40 79.82 81.12 83.20 85.63
small 67.42(±2.39) 73.42(±2.68)** 65.84 75.47 54.08 64.71 74.49 80.29 75.13 78.42

abt-buy default 82.13(±1.11) 84.81(±1.37)** 63.12 79.36 62.29 62.80 84.64 91.05 82.11 -

dblp-scholar default 93.25(±1.73) 94.71(±0.23)ns 87.48 93.28 58.17 94.70 95.27 95.29 94.47 -

companies default 90.98(±0.70) 92.74(±0.39)** 81.25 91.17 73.20 92.70 91.70 91.81 90.68 -

baby products default 73.00(±1.13) 74.21(±1.70)ns 68.14 75.19 61.07 70.12 72.25 73.49 72.12 -

bikes default 67.18(±1.40) 71.76(±0.73)*** 73.52 73.26 59.23 72.00 76.17 77.21 77.03 -

books default 68.21(±2.35) 73.47(±0.93)** 72.19 75.25 61.39 74.00 74.42 75.17 76.81 -

not always the case as EMBA (DB) and EMBA (FT) generally expe-
rience a performance drop. Surprisingly, distilBERT, which has
fewer layers but the same dimension as BERT-case, performs
even worse than fastText. The performance variations among
these three BERT variants and fastText highlight the impact of
the underlying language model.

4.3.2 Comparison with JointBERT. Across the 7 datasets, EMBA al-
ways offers a better performance than JointBERT. The perfor-
mance improvement ranges from 1-8%. We briefly note that since
we evaluate JointBERT as the average of 5 runs, the F1 score is
lower for the WDC datasets, abt-buy, dblp-scholar, and compa-
nies than those reported in [32]. However, EMBA still provides
better performance compared to the scores in the original paper.
This illustrates that using the [CLS] token for all three tasks is
suboptimal, as it restricts the representation power of the embed-
ding. By adopting the token-based representation for all three
tasks, EMBA has more flexibility to learn a better overall represen-
tation without constraining the [CLS] token to generalize to all
three tasks.

We also conduct an analysis to determine whether EMBA pro-
vides a statistically significant improvement over JointBERT and
assess the stability of the two models. The null hypothesis (𝐻0)
and alternative (𝐻𝑎) hypotheses are as follows:

𝐻0 : 𝜇EMBA ≤ 𝜇 𝐽 𝑜𝑖𝑛𝑡𝐵𝐸𝑅𝑇

𝐻𝑎 : 𝜇EMBA > 𝜇 𝐽 𝑜𝑖𝑛𝑡𝐵𝐸𝑅𝑇

Table 2 presents the results of the one-tailed t-tests between
EMBA and JointBERT using the * symbol next to EMBA. We notice
that for all but dblp-scholar and baby-products, we can reject
the null hypothesis suggesting that EMBA provides statistically
significant improvements over JointBERT. For both datasets, the
null hypothesis cannot be rejected as the largest F1 score from
JointBERT is greater than the smallest of five F1 scores from
EMBA.

Table 2 also illustrates the stability of EMBA. As the WDC train-
ing size increases, we can observe that there is less variation
(i.e., standard deviation shown in parenthesis is smaller) in the
performance of our model. However, this trend is not necessarily
observed in JointBERT as can be seen by the standard devia-
tion for the camera category and the xlarge training size setting.
Moreover, EMBA consistently has smaller standard deviations than
JointBERT, which suggests a more stable performance.

4.3.3 Entity ID Tasks. We further explore the performance of
JointBERT and EMBA on the auxiliary entity ID prediction tasks.
Table 3 shows the results rounded to two decimal points for ac-
curacy and micro F1. Acc1 and Acc2 represent the accuracy for
the first and second entity ID prediction, respectively. EMBA and
EMBA (SB) outperform JointBERT over all datasets. And we
notice EMBA (SB) also outperforms EMBA on small datasets. Al-
though for the companies dataset, JointBERT seemingly does
not identify anything, this due to rounding. JointBERT correctly
matches a small number, with scores around ∼ 0.002. When fo-
cusing on the smaller benchmark datasets, EMBA improves the
results at most 67% compared with JointBERT. The results demon-
strates the benefit of allowing flexibility to learn the task-specific
weights from the individual tokens instead of the single [CLS]
token for the two entity ID prediction tasks.

Table 3 also illustrates the potential limitation of multi-task
learning when there are insufficient samples to appropriately
train the auxiliary prediction models. The entity ID F1 perfor-
mance on the small sizes for the WDC datasets, abt-buy, and
bikes are considerably lower than the other values and in these
situations, the single-task models perform better on the main
EM task. This is exacerbated as the two auxiliary tasks together
provide more weight on the dual objective than the main EM
task. The lone exception occurs for companies, where the low
entity ID prediction model still improves the overall EM F1 score.
This is potentially because companies dataset is larger and more
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Table 3: Comparison of accuracy (Acc) and micro F1 on the entity ID prediction tasks for the different datasets. The best
performance is bolded.

Dataset Size JointBERT EMBA EMBA (SB) EMBA (DB) EMBA (FT)

Acc1 Acc2 F1 Acc1 Acc2 F1 Acc1 Acc2 F1 Acc1 Acc2 F1 Acc1 Acc2 F1

WDC computers

xlarge 95.09 90.73 91.82 98.73 98.82 98.82 98.73 98.90 98.48 98.71 96.45 95.18 97.31 96.56 96.12
large 94.18 88.27 87.01 98.91 99.09 98.66 98.73 98.91 98.48 96.91 94.55 92.25 96.28 93.18 90.01

medium 51.36 44.09 52.31 97.18 96.55 96.87 96.36 94.55 93.40 84.18 80.09 73.13 86.32 80.14 83.02
small 7.45 5.27 3.16 54.09 43.00 44.11 62.73 59.82 62.11 50.27 40.82 42.53 51.90 50.41 49.27

WDC cameras

xlarge 95.45 91.45 92.58 100.00 98.18 99.67 99.82 98.18 99.33 99.36 95.00 97.28 98.78 95.19 96.34
large 92.09 87.55 87.13 99.91 97.73 99.33 99.45 97.09 98.49 96.82 92.64 93.81 84.23 86.65 82.11

medium 49.27 44.09 53.45 96.55 94.00 96.10 90.10 87.82 88.22 78.82 75.45 74.58 79.54 76.12 76.30
small 3.91 7.55 17.56 71.27 60.00 62.82 71.82 62.00 68.11 57.45 43.27 48.44 55.41 57.12 45.56

WDC watches

xlarge 96.00 86.64 89.53 100.00 98.27 99.33 99.91 97.45 99.00 95.91 91.91 91.26 89.16 87.90 89.23
large 92.64 85.82 87.33 99.91 98.64 99.34 100.00 97.91 99.01 94.00 88.45 85.97 88.96 84.17 86.68

medium 56.09 46.64 53.94 92.91 91.64 88.16 93.73 91.18 88.37 77.27 70.91 59.63 75.63 73.78 71.26
small 4.09 4.18 2.30 21.18 18.27 19.20 66.82 57.18 61.91 40.64 37.09 30.00 35.96 30.01 32.12

WDC shoes

xlarge 97.73 90.35 94.59 99.91 98.09 99.17 100.00 97.73 98.67 94.54 90.81 90.51 89.71 84.22 85.46
large 95.36 88.44 89.43 99.91 98.18 98.52 99.72 97.36 98.38 92.99 89.63 89.57 87.28 84.13 84.02

medium 40.67 24.84 46.74 95.45 90.63 91.22 94.18 89.17 89.07 44.68 45.95 47.13 58.73 65.26 64.19
small 0.18 0.55 0.66 11.92 12.10 9.83 73.34 55.69 63.33 9.10 6.10 4.76 9.87 5.62 6.13

abt-buy default 10.44 14.70 15.01 84.19 79.28 57.53 95.41 95.20 77.96 89.66 85.65 67.02 86.26 82.41 85.63

dblp-scholar default 10.14 2.61 10.80 94.81 53.13 73.68 92.13 47.81 70.26 80.13 76.19 79.28 82.12 79.28 81.90

companies default 0.00 0.00 0.00 12.13 19.28 17.97 15.27 26.12 25.69 9.28 11.21 11.33 11.23 15.27 15.32

baby products default 90.12 92.89 92.56 98.26 96.11 96.93 98.74 96.92 97.18 89.56 87.45 88.64 91.14 90.10 90.45

bikes default 47.07 42.23 44.92 67.45 69.18 68.73 72.13 75.98 76.56 61.30 65.36 65.12 70.21 71.37 73.56

books default 67.17 62.36 66.89 82.84 86.53 87.21 84.98 88.24 89.15 76.82 70.35 72.80 79.69 78.15 79.42

Figure 4: JointBERT-S where the [SEP] token used for the
second entity IDprediction task and the [CLS] token is used
for the binary classification and first entity ID prediction.

balanced than other small datasets, which can help mitigate a
bad auxiliary task.

4.4 Ablation Study
To gain further insights of the various components in EMBA, we
conducted an ablation study. In particular, we examined the ef-
fectiveness and contributions of the AOA module, and token
representation strategy for the auxiliary (i.e., first and second
entity ID prediction) and main (i.e., entity matching) tasks across
the four benchmark datasets.

• JointBERT with [SEP] token (JointBERT-S): This is the
naïve extension of JointBERT to use a different special
token, [SEP], for the second entity ID prediction task as

shown in Figure 4. Note that the [CLS] token is used for
the entity matching and first entity ID prediction task.

• JointBERT with word-tokens representations (JointBERT-
T): We utilize the average token representations for all the
tasks. For the entity ID prediction task, the average of the
token representations from the entity description is passed
to a softmax layer. Similarly, for the entity matching task,
we average the two entity token representation.

• JointBERT with [CLS] token and word-tokens representa-
tions (JointBERT-CT): We utilize the word-token repre-
sentations for the two auxiliary tasks (same average token
representation as JointBERT-T) but keep the [CLS] special
token for the entity matching task.

• EMBA only with [CLS] token (EMBA-CLS): The [CLS] spe-
cial token is used for the two auxiliary tasks but the AOA
module is used for the binary matching problem.

• EMBAwith SurfCon [41] (EMBA-SurfCon): The SurfCon
framework proposed an encoding component and a context-
matching component to capture sequence-level and token-
level similarity. We substitute the AOA module with the
SurfCon framework while maintaining the same configu-
ration as EMBA for all the other parts.

The results of the ablation study are summarized in Table 4.
Unsurprisingly, EMBA outperforms the other models, suggesting
that all the components are needed for better matching perfor-
mance. We can observe that simply swapping the representa-
tion to the [SEP] token for the second entity ID prediction task
(JointBERT-S) improves the performance and in some cases pro-
vides the second-best performance. This demonstrates that using
the [CLS] token for all three tasks is suboptimal, as it restricts
the representation power of the special token embedding to fit 3
tasks.

Table 4 also highlights the importance of using individual to-
ken representations. Even using a simple average of the tokens
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Table 4: Comparison of F1 performance on EM for the ablation experiments. The best performance is bolded and the
second best performance underlined.

Dataset Size JointBERT JointBERT-S JointBERT-T JointBERT-CT EMBA-CLS EMBA-SurfCon EMBA

WDC computers

xlarge 96.37 98.83 97.49 97.65 97.48 96.86 99.03
large 94.81 97.83 96.68 97.50 95.52 97.33 97.96

medium 86.55 92.33 89.86 90.65 89.48 89.34 93.06
small 76.15 81.74 76.47 80.18 77.31 67.52 83.15

WDC cameras

xlarge 96.34 98.32 98.00 99.01 98.19 98.60 99.33
large 93.55 97.66 95.44 97.04 96.03 97.34 97.84

medium 85.36 91.13 86.46 88.44 86.11 84.07 91.88
small 77.33 80.24 74.66 75.80 78.12 57.92 80.98

WDC watches

xlarge 96.99 98.32 98.35 98.84 98.01 97.79 99.18
large 96.66 98.84 97.87 98.33 98.02 97.84 99.05

medium 85.66 93.23 89.03 91.22 87.44 84.42 93.8
small 74.16 83.77 75.10 79.65 79.37 57.38 83.91

WDC shoes

xlarge 95.49 98.67 97.81 97.99 96.99 97.46 98.72
large 92.40 97.50 97.84 96.88 96.11 93.07 97.83

medium 78.73 85.67 80.65 87.50 81.63 71.74 88.65
small 68.84 73.73 68.89 69.94 71.64 57.20 74.79

abt-buy default 82.76 85.17 81.35 81.72 83.29 79.86 85.42

dblp-scholar default 94.12 94.58 94.40 93.17 94.13 94.01 94.83

companies default 91.39 91.94 91.54 91.15 89.17 90.69 92.73

baby products default 73.63 74.17 73.98 73.63 72.49 73.89 75.12

bikes default 67.96 69.21 68.47 68.92 65.71 68.14 72.23

books default 69.58 72.32 69.93 71.24 67.28 67.21 74.07

(JointBERT-T) does not hinder the performance and even in some
cases provides a slight benefit, which is consistent with the find-
ings for semantic textual similarity in [20]. This suggests that
the [CLS] token may not provide the best entity representation.
This phenomenon can also be observed when comparing results
between EMBA and EMBA-CLS. Notably, the main difference is
that [CLS] token is used in the latter model for the two auxil-
iary tasks. However, this change results in a significant drop in
performance for EMBA-CLS, especially for the smaller training
sizes.

To identify the impact of the AOA module, we first compare
the results of JointBERT with EMBA-CLS. We observe that AOA
alone is often insufficient without using the token representation
for the auxiliary tasks. However, in conjunction with the token
representation (i.e., EMBA), the AOA module can better tease out
important attention weights as the embedding is fine-tuned to
better reflect the task. The results also illustrate that the AOA
module is necessary as swapping it out for the average or even
the SurfCon framework does not yield better results than EMBA.

In addition, we compared the model performance on the other
multi-class classification tasks (i.e., entity ID prediction). The ac-
curacy andmicro F1 for JointBERT-S, JointBERT-T, and JointBERT-
CT are presented in Table 5. These are the models that exhibit
superior performance. When using [SEP] token for second entity
ID prediction (i.e., JointBERT-S), or averaging each entity token
for 1st/2nd entity ID prediction respectively, F1 scores on small
datasets are improved by 30%, while on large datasets they are
improved by 20% compared with JointBERT. We also observe that
a simple average of the tokens, JointBERT-T, often provides an
improvement over JointBERT with the lone exceptions on baby
products and books.

We do note that since the lengths of entity pairs are different,
it is hard to simply batch the outputs from BERT. We apply the
sample-wised computation to the AOA module, which will be
slower than batched computation. Based on this, we also tried a
simple padding strategy to enable batching of the outputs from
BERT, which will expedite the computation of AOA module.
However, traditional padding is applied before the model, so
that it can learn the zero paddings to avoid the skewness. We
experiment on small and xlarge datasets of WDC computers,
and the F1 scores on small and xlarge datasets are 79.16 and
96.68, which is much lower than those in EMBA. It means the
intermediate padding for the AOA will skew the representation
for the downstream tasks.

4.5 Impact of Imbalanced Datasets
We explored the impact of class imbalance on the EM models.
Based on Table 1, the WDC datasets do not exhibit a severe class
imbalance in terms of the ratio between the positive and negative
pairs. Thus, we created three variations of the WDC computers
dataset by sampling the number of positive samples from 9690 to
6146, 1762, and 722while leaving the negative samples unchanged
for the xlarge dataset. In this manner, the overall dataset size is
not significantly altered by reducing the positive samples as it is
one of the largest samples. Table 6 presents the F1 scores for the
5 of the models. We omit JointMatcher, DeepMatcher, RoBERTa,
and EMBA (DB) based on their performance in Table 2 for theWDC
computers xlarge dataset. We observe that EMBA and EMBA (SB)
did not experience large performance drops in comparison with
the other models. However, there is still a performance drop as
the class imbalance becomes more noticeable. This suggests that
imbalanced datasets are not necessarily problematic but may
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Table 5: Comparison of accuracy (Acc) and micro F1 on the
entity ID prediction tasks for the different datasets. The
dataset size order matches that of the others. The superior
performance compared to EMBA is highlighted in bold,
and it is underscored as the best among the three models
presented.

Dataset JointBERT-S JointBERT-T JointBERT-CT

Acc1 Acc2 F1 Acc1 Acc2 F1 Acc1 Acc2 F1

WDC
computers

98.36 98.45 98.49 98.09 98.27 98.13 98.72 98.63 98.48
98.09 96.27 96.27 96.81 94.91 93.74 98.36 99.09 98.47
96.18 93.25 92.76 93.90 94.28 93.33 96.81 94.91 93.74
21.54 21.18 30.84 11.36 15.91 15.09 48.36 37.00 44.12

WDC
cameras

100.00 98.27 99.83 100.00 97.91 99.33 100.00 98.36 100.00
99.63 97.73 99.16 99.91 97.45 99.33 99.79 98.18 99.08
90.72 87.82 86.93 93.45 91.82 93.98 92.90 91.91 92.31
62.45 55.27 56.08 10.27 12.00 8.59 59.00 49.36 47.62

WDC
watches

99.09 98.09 98.51 98.17 96.98 96.53 99.12 99.09 98.73
99.63 98.82 99.50 99.22 98.54 99.14 99.81 98.63 99.61
94.18 92.64 89.15 95.54 91.45 88.26 96.11 92.62 89.19
19.64 12.82 12.65 15.54 12.73 13.28 20.28 13.64 15.52

WDC
shoes

99.78 97.82 99.00 99.81 98.09 99.00 100.00 97.91 99.17
99.91 98.36 98.68 99.91 98.27 98.52 99.91 97.99 98.36
95.18 92.08 91.20 93.54 89.35 89.97 92.72 90.71 90.88
10.85 9.04 6.38 8.38 6.47 5.34 11.77 10.94 8.62

abt-buy 78.31 71.12 52.86 43.53 37.11 16.62 79.62 70.98 44.23

dblp-scholar 92.71 51.94 67.05 46.49 32.91 31.50 90.18 50.11 62.56

companies 0.47 0.22 0.63 0.14 0.57 0.35 0.15 1.31 0.82

baby products 92.45 94.51 94.87 90.19 92.36 92.18 93.12 92.87 90.26

bikes 52.63 55.96 50.28 49.87 52.56 49.12 50.50 52.62 18.79

books 69.24 65.69 69.58 62.78 63.90 60.26 69.17 64.56 60.23

Table 6: Results for unbalanced datasets experiments on F1
for the EM task. The number in parenthesis, (Δ), denotes
the change in F1 when compared with the result on the
WDC computers xlarge dataset.

Pos./Neg.
Ratio JointBERT EMBA EMBA (SB) BERT DITTO

0.104 92.23
(-3.65)

98.12
(-0.32)

95.39
(-1.22)

91.44
(-3.13)

94.71
(-1.82)

0.030 89.37
(-6.51)

96.56
(-1.88)

92.63
(-3.98)

87.10
(-7.47)

91.69
(-4.84)

0.012 86.12
(-9.76)

93.41
(-5.03)

91.87
(-4.74)

86.23
(-8.34)

90.15
(-6.38)

require other mechanisms to improve robustness for datasets
with smaller training samples.

4.6 Computational Efficiency
Given the dependence on DL frameworks for the EM tasks, it
is crucial to assess their computational efficiency given the in-
creasing model complexities and parameter spaces. To gauge
the computation requirements across various models, we assess
their performance speeds during both the training and infer-
ence phases. Table 7 summarizes the computational speed of the
EM models using the metric of entity pairs (or items) processed
per second. EMBA (FT) emerges as the front-runner, managing
44 items per second in training and an impressive 121 items
per second in inference. DITTO also performs well, particularly
in the inference stage, processing 33 items per second, a boost

Table 7: Computational efficiency of the different EMmod-
els (pairs/second) for the two stages, training and inference.

Model Training Inference

JointBERT 10 20
EMBA 9 19
EMBA (FT) 44 121
EMBA (SB) 28 52
EMBA (DB) 16 30
BERT 10 24
RoBERTa 8 20
DITTO 12 33

attributed to its use of mixed precision optimization. The base
version of EMBA demonstrates efficiency on par with models like
JointBERT, BERT, and RoBERTa. Notably, EMBA (SB) offers better
speed as only the fastText variant is faster, excels on smaller
datasets, and still maintains comparable performance relative to
the state-of-the-art EMBA. These results suggest that if memory
and computational speed are important factors for deployment,
EMBA (SB) is more suitable.

4.7 Case Study
To better understand the potential benefit of EMBA in terms of
explaining the matching decision, we investigate the word and
token importance between our model and JointBERT. We use an
example where a non-match is classified incorrectly by JointBERT
but correctly by EMBA to illustrate the differences. The entity
descriptions for two entities are shown in Figure 5a. As can be
seen, the brand names of these two entities are different and thus
should not match. However, we can also observe that they share
many similar attribute values such as 4gb, 50p, cf, CompactFlash,
card, and retail.

4.7.1 LIME Explanations. We first analyze the word impor-
tance using the same methodology used for JointBERT [32]. In
particular, we utilize the Mojito framework [8] which is based on
the LIME algorithm [35] and has been used to explain deepmatch-
ing decisions [32]. LIME perturbs all pairs of entity descriptions
by randomly dropping words and then labels for all perturbed in-
stances are queried from the model. A surrogate linear regression
model is then trained using this set of instance/label pairs and
serves as a local approximation for the original model. The result-
ing linear regression coefficients then provide the importance of
the individual word in determining the matching decision.

Figure 5 illustrates the LIME explanations generated with Mo-
jito for a matching decision by JointBERT (see Figure 5b) and by
EMBA (see Figure 5c). Orange-colored words push the model to-
ward a non-match whereas blue-colored words have the opposite
effect (pushing toward a match). As can be seen from the figure,
JointBERT considers the brand transcend as a match signal, while
EMBA identifies the same attribute as a non-match. We can also
observe that the non-match words identified from EMBA have a
higher negative weight (darker orange color), whereas the match
words identified by JointBERT display a higher positive weight
(darker blue color). The figure highlight some of the benefits of
using the individual token representations to make the entity pre-
diction and matching decision, as too much similarity between
the entity descriptions can drown out the non-match signal from
a small but important subset of attribute values.
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(a) Two entity descriptions

(b) LIME explanation by the JointBERT model

(c) LIME explanation by the EMBA model

Figure 5: LIME explanations for a non-match classified
incorrectly by the JointBERT and correctly by the EMBA.

4.7.2 Attention Visualizations. To demonstrate the intuitive
benefits of token-level representation, we visualize the variation
in the attention score of similar segments in the same entity
pair using JointBERT and EMBA. Figure 6 illustrates the attention
scores of each word in the entity description. We note that in
some cases, the record pair is split into token sequences by the
WordPiece tokenizer to deal with out-of-vocabulary words like
"sdcfh-004g-a11". For a split-upword, we sum the attention scores
over its tokens based on the multi-head attention in the last layer
as suggested by [42]. It can be seen that in JointBERT, most of the
attention scores focused on a few words with contextual seman-
tics, such as "compactflash" and "sdcfh-004g-a11" in entity 1, and
"compactflash" and "ts4gcf300" in entity 2. The high attention
to "compactflash" in both entities lead JointBERT to incorrectly
conclude that there is a match. The brand name "sandisk" in
entity 1, and "transcend" in entity 2 did not obtain enough atten-
tion in JointBERT. Also, JointBERT gives low attention scores
for several alignments on the parameters, such as "4gb 50p" and
"300x", which could provide other evidence of a non-match. In
contrast, EMBA enhanced the attention scores of the brand name,
“transcend" and “sandisk". Moreover, both "sdcfh-004g-a11" and
"ts4gcf300" have higher attention along with some of the other
attributes. These higher weights help EMBA focus on the small
subset of attributes to achieve the correct label for the entity
pairs.

We hypothesize that one potential reason why the attention
loses focus on some important words in JointBERT is that the
[CLS] token denotes the representation for the sequence pair. As
such, it is hard to untangle the representation of the two indi-
vidual entities, and there are no strong signals to give feedback
to optimize the model parameters. In contrast, EMBA feeds the
token representations rather than special tokens to the tasks and
obtains appropriate feedback from different tasks to optimize the
attention weights. Therefore, the attention weights can better
focus on the crucial tokens such as the brand names and model
numbers and improve the results.

We also explored the case where EMBA incorrectly predicts a
non-match but JointBERT correctly predicts a match. For exam-
ple, consider the two entities, 1. corsair cmso4gx3m1a1333c9 4gb
ddr3 1333mhz sodimm unbuff cl9 for laptops laptops for $38.54.;
2. corsaer 4gb (1x4gb) ddr3 1333 mhz (pc3 10 666) laptop memory
blank media - page 2 | all tech toys. The golden standard indicates
that these two are the same entity. In the datasets, if the entity
pair is the same, their pre-defined entity IDs are also the same.
When we analyze its entity ID prediction tasks, both of them
belong to the same pre-defined entity ID, and JointBERT predicts

them right, but the results of EMBA are different. We posit this is
because we aggregate the word token of each entity, which can
integrate noisy information especially when the entity contains
a long description. This suggests that there are cases where ag-
gregating over long token sequences can be harmful in which
case the [CLS] special token offers a better representation.

5 CONCLUSION
Our paper highlights that using the [CLS] token for both the aux-
iliary entity ID prediction and main EM tasks is suboptimal, as it
restricts the representation power of the embedding. Instead, we
introduce EMBA, to fully utilize the BERT token representations
for the multi-task formulation. We align the individual token rep-
resentations between the pairs of entities using the AOA mecha-
nism to capture cross-entity token interactions to better capture
the semantic similarity. We also propose to learn the aggregation
weights from the individual tokens for the entity ID prediction
task. The experiments on 7 benchmark datasets demonstrate
that EMBA can achieve state-of-the-art performance for EM. The
results also demonstrate that our model provides a statistically
significant performance improvement when compared with the
other dual-objective model, JointBERT. The experiments high-
light the importance of appropriate auxiliary tasks to achieve
better performance. We explored a different auxiliary task for
dblp-scholar (i.e., venue instead of venue and year for the ID
prediction) which improved the performance.

Our detailed ablation study illustrates that both the individ-
ual token representation and the AOA module are necessary to
achieve the best performance. We also perform a case study anal-
ysis to better understand the general word importance from the
two dual-objective models. Using LIME, we observe that Joint-
BERT can fail when there is too much similarity between entity
descriptions which can drown out the non-match signal from a
small but important subset of attribute values. In contrast, our
AOA module identifies these essential words as demonstrated
by analyzing the attention weights from the individual token
embeddings. In addition, our results suggest that involving other
sequence representation strategies to deal with the long textual
descriptions can potentially improve the subtask performance.

Since most of the current models yield excellent performance
on the larger training sizes, it may be desirable to explore other
strategies to improve on the smaller datasets or zero-shot learning
settings (i.e., no training samples). For example, a semi-supervised
approach that uses a small portion of the training labels can be ex-
plored. Similarly, self-learning or contrastive learning approaches
may yield generalizable representations that improve EM perfor-
mance with fewer or no labeled data. As entity matching spans
various domains, we have the option to employ domain adapta-
tion techniques [17, 44] to enhance the resilience of our models.
Another potential avenue for further improvement is incorporat-
ing the attribute description and attribute name with EM. Our
preliminary results indicate introducing description structures
instead of relying on special tokens (e.g., [COL]) can improve the
robustness and performance of the EM model. Since the perfor-
mance is sufficiently high (F1 > 95) for our experiments, we will
explore the development of more challenging datasets, especially
in the healthcare domain.

At last, large language models (LLMs) are capable of interpret-
ing and generating sequences across a wide range of domains, in-
cluding natural language, computer code, and protein sequences.
There also are numerous LLMs for question and answering, such
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Figure 6: Attention visualization of an entity pair

as FLAN-T5 [4], LLaMA [38], and GPT-4 (backbone model of
ChatGPT) [29]. We briefly explored larger language models such
as ChatGPT for EM. However, given that the performance is
already quite high for BERT-based models, the use of ChatGPT
and GPT-4.0 has yet to yield significant improvements, especially
in light of their higher computational requirements. We plan
to further assess these LLMs for EM problems, such as how to
apply the sequences to the LLMs efficiently, the utilization of the
tokenization, and prompt design.
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