
MCF-KV: Multi-Cuckoo-Filter Index based Key-Value Store
with Persistent Memory

Hongjia Zou
Zhejiang University
zouhj@zju.edu.cn

Lidan Shou
Zhejiang University
should@zju.edu.cn

Ke Chen
Zhejiang University
chenk@zju.edu.cn

Xuan Zhou
East China Normal University
xzhou@dase.ecnu.edu.cn

ABSTRACT
A Modern KV store typically employs log structured merge trees
(LSM-Tree) for organizing data and bloom filters to speed up
read. However, both the multi-layer structure and the boom fil-
ters come at a performance cost in certain scenarios. In this paper,
we leverage persistent memory (PM) devices to improve the per-
formance of LSMT based KV store. We present a novel KV store
engine, the Multi-Cuckoo-Filter KV (MCF-KV), which is a new
design that replaces in-memory Bloom filters with a multiple-
cuckoo-filter index stored in PM, and uses a single-level LSMT
to store real data on SSD. In MCF index, we store fingerprint and
location information of a key-value pair. While the MCF index
performs well in both read and write and has low write amplifi-
cation, its duplicate key update is costly as it does not distinguish
between items with hash collisions. To address this, we harness
Fast and Fair B+-tree, a b+-tree index specifically designed for
PM, to store key-value pairs that trigger hash collisions. Also,
MCF-KV performs overlap-based compaction to efficiently re-
claim storage space on disk while avoiding unnecessary write
amplification. Our extensive experiments demonstrate that MCF-
KV provides 2.1× and 4.9× higher random write throughput,
and 2.2× and 1.4× higher point query performance compared to
SLM-DB and LevelDB respectively. It also achieves much lower
read latency compared to the baselines.

1 INTRODUCTION
Key-value (KV) stores play an increasingly irreplaceable role
in modern data-intensive applications, such as cloud storage,
social networking and e-commerce. In write intensive workloads,
LSM-tree[25, 36] based KV stores like LevelDB[3], RocksDB[4],
BigTable[11] and Cassandra[30] are the main products as they
are well optimized for these scenarios.

A KV store with LSM-tree based index is able to achieve high
write throughput, which mainly benefits from in-memory data
buffer (like Memtable in LevelDB) and sequentially flushing of
these buffered data to persistent device. To enhance read perfor-
mance, most KV stores utilize in-memory Bloom filters to speed
up the read process. Specifically, a Bloom filter is built when a
file is flushed to persistent device, which enables KV store to
quickly decide if an item belongs to the flushed file in a number
of probing operations.

Today, most industrial and commercial KV store products are
deployed on machines with DRAM and persistent SSD devices to
provide powerful database services. However, the performance

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-094-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

of KV stores are still throttled in different ways. First, the in-
memory bloom filter is becoming a performance bottleneck as
the speed gap between SSD andDRAMdevices gradually narrows
[17, 38]. Moreover, bloom filter also introduces long tail latency
for read operations due to its probabilistic nature[17, 26, 38].
Second, high write amplification, which is mainly caused by
merge-sort operations (i.e, compaction) to reclaim storage space
and reorganize KV pairs’ physical locations for fast read, results in
unpredictable performance and great degradation of foreground
user experiences[33, 40, 42].

Byte-addressable persistent devices provide new opportuni-
ties to improve the performance of KV store systems. In the
past few years, a batch of works have emerged to employ persis-
tent memory (PM) devices to address the above problems. Some
works[19, 27, 32] followed traditional LSM-Tree architecture,
most of them place level-0 data and Memtable in the PM as an
extra storage layer. By placing hot data in a faster and persis-
tent medium and carefully optimizing the compaction scheme,
these works achieved remarkable results in performance. But
they failed to address the problem of high write amplification
and long tail latency in read operations. Some works tried to
replace traditional LSM-Tree architecture with their own opti-
mized index and place the index on PM device. They successfully
eliminate in-memory bloom filters and get rid of high write am-
plification. However, at the same time, they introduce new knotty
problems that cause severe performance fluctuation. For exam-
ple, SLM-DB[26] achieves high performance in read and random
write, but its sequential write performance is pretty weak due to
expensive maintenance on persistent B+-tree index.

In this paper, we leverage PM device to improve the perfor-
mance of LSM-Tree based KV stores. We present a novel KV
store called Multi-Cuckoo-Filter-KV (MCF-KV), which is care-
fully designed to achieve high performance in both reading and
writing with low write amplification. We propose an MCF index,
which is equipped with multiple Cuckoo filters[20], to provide
stable and consistent probing performance. Specifically, we use
multiple Cuckoo filters in our index, since a single Cuckoo filter
suffers from unpredictable load factor and long tail latency while
rehashing. However, multi-Cuckoo-filters do not secure high and
stable performance because of potential hash collisions.

A hash-based index needs to either do a read-before-write
operation to store a hash-collision item, or employ an append-
only strategy to first accept the item and then delay the checking
to a later read or rehash process, which leads to unpredictable
performance. To address this, we use a B+-tree index, which is
also placed in the persistent memory device, to store collision
items. In other words, the Cuckoo filter index only accepts items
that do not trigger hash collisions. (For clarity, we will refer to
the entire index as the MCF index.) Additionally, to maintain

 

 

Series ISSN: 2367-2005 255 10.48786/edbt.2024.23

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.23


high write throughput, we stage inserted KV pairs in a memory
buffer and flush them to SSD devices in an append-only manner.

In MCF-KV, KV pairs are stored on disk within a single-level
LSM-Tree organization. With the location information provided
by MCF index, there is no need for on-disk data to provide a
strictly sorted order, which enables MCF-KV to significantly re-
duce the write amplification caused by compaction, contributing
to better and stable system performance. However, we still need
some mechanism to ensuring some degree of locality of KV pairs
on disk to provide acceptable read performance. To address this,
we propose well-designed compaction scheme to reorganize the
KV pairs in the single level LSM-tree.

The main contributions of this work are as follows:
• We design a new index structure that integrates Cuckoo
filters and persistent B+-tree to achieve optimal overall
performance. We carefully design a hash-based index us-
ing multiple Cuckoo filters, which is placed in PM layer,
to store the fingerprint and location information of KV
pairs for fast read. Additionally, to overcome the unpre-
dictable performance caused by hash collisions, we intro-
duce a persistent B+-tree index as a fallback to store the
full information of keys that cause hash collision and thus
eliminate read-before-write or later check operations.

• We devise an overlap-based compaction scheme, which se-
lectively picks up files for compaction based on each file’s
overlapping ratio, a quantity that measures its overlap
with other files.

• We implement MCF-KV based on LevelDB. The main data
structures of MCF-KV, namely the multi-Cuckoo-filters
and the B+-tree in persistent memory, as well as the single-
level LSM-tree in SSD, are carefully designed to provide ro-
bust durability guarantees and maintain crash consistency.
We also carry out extensive evaluations on MCF-KV us-
ing microbenchmarks and YCSB for real-world workloads.
Our experimental results show thatMCF-KV achieves high
write and point query performance with low tail latency.

The rest of this paper is organized as follows: Section 2 dis-
cusses the challenging issues of LSM-Tree based KV store, includ-
ing high write amplification and slow in-memory bloom filter. We
also discuss PM technology in section 2. Section 3 demonstrates
the detailed design and implementation of MCF-KV. Section 4 dis-
cusses the compaction scheme of MCF-KV. Sections 5 talks about
the store operations and recovery process of MCF-KV. Section 6
gives evaluations on MCF-KV and presents the experimental re-
sults. Section 7 concludes the paper. The source code of MCF-KV
is available here 1.

2 BACKGROUND AND MOTIVATION
In this section, we first demonstrate the necessary information
and challenging issues of LSM-Tree based KV store by focusing
on LevelDB; then we introduce the background of PM device;
finally, we talk about related works that leverage PM to optimize
LSM-Tree based KV store and their deficiencies.

2.1 LSM-Tree Based KV Stores
LSM-Tree based KV stores typically batch write requests in mem-
ory and sequentially flush data to storage devices to fully utilize
the high sequential write bandwidth of the storage devices. For
read requests, these stores use in-memory bloom filters that

1https://github.com/dilab-zju/MCF-KV

are probed to conservatively decide if an item belongs to a file,
thereby mitigating actual lookups.

2.1.1 Background of LSMT-based KV Store. In this section, we
will focus on LevelDB, a well-studied LSM-Tree based KV store to
demonstrate the background of LSMT-based KV store. Figure 1(a)
illustrates the architecture of LevelDB, which includes a DRAM
component and an SSD component. The DRAM component is
composed of MemTable, Immutable Memtable and bloom filters.
The SSD component primarily consists of multi-level sorted SSTa-
bles. In addition, it utilizes write-ahead log (WAL) on SSDs to
safeguard KV store service against system crashes.

For DRAM component, MemTable and Immutable MemTable
are basically sorted skiplists. For write requests, LevelDB first
buffers incoming data (i.e., KV pairs) inMemTable. OnceMemTable
is full, LevelDB transfers MemTable into Immutable MemTable
and generates a new MemTable for future write operations. KV
pairs inside Immutable MemTable are flushed to SSD devices as
on-disk data structure SSTable, and at the same time, a bloom fil-
ter of this SSTable, which helps to tell if key exists in this SSTable,
is constructed to enable fast search for future read operations.
Note that deletion and update operations are treated as a special
case of write operation. Before actually inserting KV pairs into
MemTable, KV pairs must first be appended to the WAL for the
purpose of crash consistency. And after KV pairs are persisted
in SSTables on disk, the log containing their information can be
safely deleted.

For the SSD component, LevelDB maintains a multiple level
LSM-Tree of SSTables. In particular, from 𝐿0 to 𝐿𝑘 every level
has one or more sorted SSTable files. In each level (except 𝐿0),
the key range of a specific SSTable does not overlap with others.
Each level can only retain limited number of SSTables, but higher
level can keep more SSTable files than lower level.

To maintain such leveled architecture, SSTables are gradually
compacted from 𝐿0 to higher levels. When 𝐿𝑥 grows beyond its
limit or too many read and scan operations are performed in 𝐿𝑥 ,
LevelDB selects a qualified SSTable (called victim SSTable) in 𝐿𝑥
and multiple SSTables in 𝐿𝑥+1 that overlap (in key space) with
the victim SSTable. Then a merge sort is performed among these
SSTables to generate new ones. All of these new SStables will be
flushed into 𝐿𝑥+1. The process above is called Major Compaction.
Since 𝐿0 is not sorted, LevelDB does not perform merge sort in
𝐿0 compaction. Instead, it directly flushes the data in Immutable
MemTable to𝐿0. The compaction of𝐿0 is calledMinor Compaction.
Compaction mechanism helps reclaim storage spaces and makes
each level sorted (except 𝐿0), which reduces the overhead of
subsequent reads.

2.1.2 Challenges faced by LevelDB. While LevelDB is widely
adopted as KV store, it faces technical challenges. We focus on
the following issues.

HighWrite Amplification. The first issue of LevelDB is its high
write amplification (WA)[33, 42]. WA is defined as the ratio be-
tween the size of data written to disk and the size of data written
by users. To maintain fully sorted order of KV pairs in each level
(except level 0), LevelDB needs to conduct compaction operations
to move KV items to higher levels via background compaction.
As size of two adjacent levels grows by the amplification factor
(AF, default 10), the WA to compact an SSTable file from 𝑙𝑥 to
𝑙𝑥+1 equals to AF on average. Moreover, for a 𝑘-level LSM-Tree,
the WA ratio to compact a KV pair from 𝑙0 to 𝑙𝑘−1 can be higher
than 10 × 𝑘[33, 34, 40].

256



DRAM
SSD

Immutable
Table

MemTable

MANIFIST

WALLevel 0:

Level 1:

Level n:

compaction

compaction

SSTable file

Bloom filter

flush

(a) LevelDB architecture

PM

SSD

Level 0:

Immutable
Table

MemTable

compaction

SSTable file

MANIFIST

B+-tree Index

FlushUpdate 
after flush

(b) SLM-DB architecture

DRAM

PM

SSD

Immutable
Table

MemTable

WAL

MANIFIST

Cuckoo filters

B+-tree Index

compaction

Level 0:

Flush

Update 
after flush

If collision. 
Insert into B+
tree

(c) MCF-KV architecture

Figure 1: Architecture of different KV store

Slow Build/Read of bloom and Long Tail Latency. Another well
known issue of LevelDB is the performance of its per-SSTable
built-in bloom filter. (1) bloom filters are known to be slow in
both construction and lookup[23, 26, 31]. As the usage of SSD
dwarfs the cost of disk I/O operations in the KV store, the cost
of in-memory operations, particularly those on bloom filters,
emerge as the new bottleneck[7, 16, 35, 39]. The construction of
bloom filters in the compaction process of LevelDB takes 15%-70%
of the total compaction time[17, 23, 31]. In our own evaluation,
as shown in Table 1, bloom filters take about 20% of the total
query time. (2) bloom filters also cause long tail latency in read
operations due to high false positive rate. In our evaluation, nearly
1.5% read operations incur false positive query and require more
than one disk I/O, causing long tail latency that is 8× longer than
the average read latency. Such latency leads to unpredictable
read performance.

2.1.3 Motivation for Multiple Cuckoo Filters. In recent years,
a number of new data structures are proposed as alternatives
to bloom filter, such as Cuckoo filter[20], Morton filter[8], Xor
filter[21] and others. In this paper, we propose to use Cuckoo
filters instead of bloom filters, the reasons are as follows: First, a
Cuckoo filter requires lower building costs in memory accesses
and computation when compared to bloom filter[20]. Second,
Cuckoo filter maintains very good false positive rate[17, 20],
which is critical for reducing the long tail latency in read oper-
ations. Third, Cuckoo filter is able to achieve an average load
factor of 94% [17, 20, 41], which means it consumes storage space
efficiently.

Despite the above stated advantages, Cuckoo filters are limited
in the following aspects. First, due to the absence of efficient
rehashing mechanism, Cuckoo filters may still incur long tail
latency in write operations as the number of maintained keys
increases. Second, Cuckoo filters may probably suffer from poor
space utilization. A Cuckoo filter is considered full when an
unsuccessful insertion takes place. At this moment the load factor
(i.e. number of entries used in hash Table divided by the total
number of entries) reflects the space utilization of the filter. The

Table 1: LevelDB read cost breakdown

Operation time cost cost percentage
File search 0.71ms 6.1%
Index block search 6.47ms 56.0%
Bloom Filter check 2.31ms 20.0%
Data block read 2.07ms 17.9%

Figure 2: The cumulative distribution of the load factor
of 1000 random cuckoo filters, showing 10% of the filters
having load factor less than 0.9.

cumulative distribution of the load factors of random Cuckoo
filters reveals that a filter has the probability of 5% to have load
factor below 83%. To address the above mentioned problems, we
propose to use a set of Cuckoo filters as the global index for all
key-value pairs in the KV store. Such design statistically retains
high load factor and provides high and stable performance.

2.2 Persistent Memory Based LSM KV Stores
Persistent Memory (PM) is a type of storage technology that
deployed between traditional Random Access Memory (RAM)
and non-volatile storage in the memory hierarchy, such as hard
disks or flash memory. It can save data in the event of system
power loss or failure, making it more reliable and faster to access.
The demand for PM technology is objectively present because
it can significantly improve the performance and reliability of
computer systems, which make it a popular research object in
recent years.

PM such as phase-change memory[6, 37], spin transfer torque
MRAM[29] and 3DXPoint[24] provide database service providers
new opportunities to improve their quality of services. PM has
the following three attractive attributes: fast, byte-addressable
and persistent. On the one hand, PM is able to provide disk-like
persistence with higher capacity at a much lower cost when
compared to DRAM[2, 18, 28]. On the other hand, PM provides
30− 50× lower read/write latency and 6− 15× higher bandwidth
when compared to SSD[2, 5, 10, 18].

In recent years, a batch of works emerged to exploit PM to
improve the performance of LSMT-based KV store. But some
fail to address the problems mentioned above, some introduce
extra knotty problems that make the performance even worse;

257



and some even eliminate the SSD part and place all data in PM
device, such design reaches good performance but fails to provide
acceptable recovery performance, which makes it insufficient for
industrial use. The rest of this section will discuss related works
on PM and their deficiencies.

NoveLSM. NoveLSM[27] leverages PM to deliver high through-
put. Specifically, it employs PM device as an alternative DRAM to
enlarge the MemTable and immutable MemTable, which enables
direct update in MemTable and results in less compaction. How-
ever, such design only postpones the compaction as it merely
increases the size of data buffered in storage but fails to opti-
mize the compaction scheme. Besides, the enlarged MemTable
increases the data involved in compaction and leads to even more
severe problem of write amplification, which leads to great fluc-
tuation in throughout. Also, it fails to resolve the problem of slow
read and long tail latency caused by bloom filter.

SLM-DB. SLM-DB[26] exploits PM to optimize LSM-Tree based
KV store and reaches high throughput in both read and random
write. As shown in Figure1(b), it places MemTable and Immutable
Table on PM device to get rid of WAL, and maintains a persistent
B+-tree index to keep KV pairs’ meta information, which enables
SLM-DB to organize its SSTable files as a single level LSM-Tree.
Its high throughput is mainly delivered from the single level
structure of SSTable files and elimination of WAL. It also gains
benefits from keeping metadata in B+-tree index, which enables
it to skip bloom filter for fast and precise query. However, in
our evaluation, we find that the cost of maintaining the B+-tree
index could be of great expense that exerts a great impact on the
overall performance. In our evaluation, we write 40GB data set
of 1KB KV pair to SLM-DB. As shown in Figure 3(a), maintaining
B+-tree index on PM costs 28.7% cpu time in sequential writes
and 42.4% CPU time in random writes, which demonstrate that
the B+-tree index in SLM-DB is not efficient enough and turns
out to be the performance bottleneck.

Moreover, we also find that SLM-DB’s random read perfor-
mance deteriorates drastically with the data size growing up. In
our evaluation, we insert different volume of data into SLM-DB
and test its random read performance. As shown in Figure 3(b),
the read throughout drops near 4×when the payload grows from
1GB to 50GB.

uTree. uTree[12] differs from other works as it abandons the
conventional three-level-architecture (namely memory, persis-
tent memory, and SSD/HDD). uTree discards the SSD/HDD layer
and stores all data in the persistent memory. To efficiently search
for items in PM, it maintains a B+-tree in DRAM as a global index.
While uTree does achieve good performance in throughput and
latency, its recovery time after system failure could be unaccept-
able. It may also incur vast memory consumption when the size
of the database expands, since it maintains the entire B+-tree in
DRAM. Furthermore, since all data are placed in PM and indexed
in DRAM, the hardware price to build such storage scheme could
be prohibitive.

To summarize, while PM provides attractive properties and
enables potential performance improvement, a stable persistent
index to efficiently exploit PM device is still in absence. In this
paper, we present MCF index to better leverage PM device as a
global index in LSMT-based KV store to reach high and stable
throughput with low latency.

(a) Time breakdown for SLM-DB
under write workload

(b) SLM-DB random read performance
under different data size

Figure 3: SLM-DB performance analysis

0 1 2 3 …… 31 32 …… 61 62 63

32-bit finger print 32-bit file ID

0 1 2 3 …… ……n n+29 n+30 n+31

n-bit full key info 32-bit file ID

Cuckoo filter entry footprint

B+-tree index entry footprint

n-1

Figure 4: Entry footprint of Cuckoo filter and B+-tree index

3 MULTI-CUCKOO-FILTER KV(MCF-KV)
DETAILED DESIGN

In this section we present the design of Multi-Cuckoo-Filter KV
(MCF-KV). Figure 1(c) shows the overall architecture of the sys-
tem. In a nutshell, MCF-KV organizes SSTables as one-level LSM-
Tree and keeps the metadata of KV pairs in the PM layer. In
the following, we will focus on the MCF index (including multi-
Cuckoo filters and a B+tree), and the write/read processes of the
index. We also explain the reasons/justifications for the design
of the data structures and mechanisms.

3.1 The Design of MCF Index
In MCF-KV, instead of keeping one single Cuckoo filter in PM
layer, we maintain 𝑁𝑐 Cuckoo filters with different maximal load
factor, which store KV pairs’ finger prints (i.e. 32-bit hash values
of keys) and location information. The reasons for doing so would
be explained in section 3.1.

Moreover, we also encounter problems with hash collision.
When a filter accepts a key that causes a hash collision, it is un-
able to determine if the two entries are identical based solely on
fingerprint. In this situation, the filter must perform an additional
I/O operation to finish the check work, which is bound to incur
long tail latency and causes great impact on the system perfor-
mance. To address this, we introduce an auxiliary B+-tree index
to accept keys that cause hash collisions. Among the different
versions of persistent B+-tree implementations, we choose FAST
and FAIR B-tree[22] because of its excellent read and write per-
formance due to the ordering constraints on store instructions.
The reasons for such design would be discussed in section 3.1.

Multiple Cuckoo Filters. As shown in figure 1(c), we employ
several Cuckoo filters for the purpose of maintaining KV pair’s

258



meta information. We preserve, as shown in figure 4, a 32-bit fin-
ger print of the key and a 32-bit file ID of the SSTable containing
the key, which sum to 8 bytes and meet the the granularity de-
mands of PM device[2, 22]. The reasons for doing so are twofold.
1) A 32-bit finger print provides both low false positive rate and
low hash collision rate (theoretically 1

232 ); 2) 32-bit file number
sets the maximal file number to 232 − 1, which we believe is
sufficient for most scenarios.

The design of multiple Cuckoo filters is used to solve the
problem mentioned in section 2.1.2. The reasons are simple and
straightforward. First, using multiple Cuckoo filters contributes
to more stable and predictable load factor and less potential stor-
age space waste. Assuming the the variance of a single Cuckoo
filter’s load factor is𝑉 , the variance of MCF index’s load factor is
𝑉𝑚 , and the number of filters inside MCF-index is 𝑛, the variance
of each filter is 𝑉𝑖 , 𝑖 is from 1 to 𝑛, then we have

𝑉𝑚 =
𝑉1 +𝑉2 + ...... +𝑉𝑛

𝑛2
=
𝑛 ×𝑉
𝑛 × 𝑛 =

𝑉

𝑛

a smaller variance of load factor means we are more likely to
avoid extreme situations that make the whole filter full with low
load factor as we have on-average 94% load factor. Second, we
employ a family of Cuckoo filters to amortize the cost of rehash
process. Each filter can be regarded as a subassembly of a big
filter, therefore, instead of rehashing the big filter, we divide the
job into sub-jobs and assign them to each part of the filter and
finish the rehash job in different time period, which contributes
to lower the peak of tail latency caused by rehashing process.

However, the above mentioned mechanism is not sufficient
to avoid long tail latency caused by rehashing. Due to the even
distribution of entries, it is possible for most of the Cuckoo filters
to start rehashing process simultaneously, which means there
would not be enough filters for MCF-KV to use when inserting
items. This greatly deteriorates the overall performance of the
system.

To overcome such problem, MCF-KV introduces load factor
randomization technique. In detail, instead waiting for filters
to be full (i.e. reaches maximal Cuckoo count when inserting
an item) and starting rehashing process, we give each filter its
own maximal load factor, which is 𝑉𝑙 ± 𝑓𝑙 . In our implement, for
example, we set𝑉𝑙 to 0.92 and 𝑓𝑙 to 0.02, then each Cuckoo’s load
factor will be a value from 0.90 − 0.94. This helps MCF-KV to
successfully amortize the rehash cost at the price of little space
waste.

Auxiliary B+Tree Index. With themechanismmentioned above,
MCF is able to handle most write operations efficiently. However,
hash collision can exert great impact on the system performance.
While the probability of hash collisions caused by normal write
operation can be as low as 1

232 , certain operations (i.e. updates
and deletes) are bound to cause hash collisions. Some works[38]
leverage extra IO to handle hash collisions, some[17] delay the
IO and check the validity of items later, which both result in long
tail latency.

In our evaluation, we identified two types of operations that
result in hash collision. The first type includes write,update and
delete operations from foreground; the second type is performed
by compaction thread during background compaction. When the
compaction thread modifies the physical location of a valid KV
pair, it needs to update the corresponding metadata (i.e. file ID)
in the Cuckoo filters. This is a special case of update operation
and will be named as background update in the rest of this sec-
tion. Because of the low probability of hash collision between

different keys, nearly all hash collisions are caused by update
operations,including both foreground update and background
update, but Cuckoo filters still need to pay heavy price (i.e. actual
I/O) to do the check work.

Note that most hash collisions are caused by duplicate keys,
and the most appropriate method to handle these keys is in-place
update. Based on the observation above, to avoid incurring ex-
tra IO, MCF-KV introduces an auxiliary B+-tree index () as the
container of keys that cause hash collision from foreground op-
eration, and performance in-place update for background update
operation. As shown in figure 4, the B+-tree index preserves full
information of the key and its corresponding 32-bit file ID.

There are several reasons to justify such design. Primarily,
it effectively resolves the problem of hash collisions by main-
taining full information in a B+-tree index. Moreover, B+-tree
index provides efficient read and write performance when tree
size is small. As only frequently updated and accessed data is
stored in B+-tree index, MCF-KV is able to maintain it at low
cost while deriving significant benefits from both its high read
and write performance. The impact exerted by B+-tree index on
the performance will be discussed in section 7.2.

Algorithm 1: Insert algorithm
Input: 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠:Multi-Cuckoo filters

𝑓 𝑓 𝑡𝑟𝑒𝑒:B+-tree index
𝑞𝑢𝑒𝑢𝑒:key queue

/* start insertion */

while !queue.empty() do
𝑘𝑒𝑦 = 𝑞𝑢𝑒𝑢𝑒.𝑡𝑜𝑝 ();
𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 () ;
𝑓 _𝑖𝑑 = ℎ𝑎𝑠ℎ1 (𝑘𝑒𝑦);
𝑓 𝑝 = ℎ𝑎𝑠ℎ2 (𝑘𝑒𝑦);
if 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 [𝑓 _𝑖𝑑] .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑓 𝑝) then

𝑟𝑒𝑠 := 𝑓 𝑓 𝑡𝑟𝑒𝑒.𝐼𝑛𝑠𝑒𝑟𝑡 (𝑘𝑒𝑦) ;
𝐶𝐻𝐸𝐶𝐾 (𝑟𝑒𝑠.𝑜𝑘) ;

else
if 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 [𝑓 _𝑖𝑑] .𝐼𝑠𝑅𝑒ℎ𝑎𝑠ℎ𝑖𝑛𝑔 then

𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ(𝑘𝑒𝑦);
else

𝑟𝑒𝑠 := 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 [𝑓 _𝑖𝑑] .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑘𝑒𝑦);
if !𝑟𝑒𝑠.𝑜𝑘 or
𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 [𝑓 _𝑖𝑑] .𝑙𝑜𝑎𝑑 𝑓 𝑎𝑐𝑡𝑜𝑟 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 [𝑓 _𝑖𝑑] .𝑅𝑒ℎ𝑎𝑠ℎ();

end
end

end
end

3.2 Operations on MCF index
Now we will present the write/read process of MCF index. We
also discuss the rehashing process of Cuckoo filters in MCF index.

Write Process. In MCF-KV, when Immutable MemTable is
compacted to SSD, finger prints of keys in that table and the
corresponding file IDwill be encoded as an item and then inserted
into MCF index.

Specifically, in MCF-KV, a queue is used to preserve all keys
to be inserted. When MCF-KV attempts to insert a key into a
filter, it first decides which filter the item belongs to via a hash

259



Multi-Cuckoo Filters
B+-tree Index

③ Update global indices
Try to update B+-tree first; 
If failed, update cuckoo 
filters.

Seed 1

Heap 1 Heap 2 Heap m 

3 Kth fid in Heap 2 ……

Select seed 2 
with largest 
total OR in 
top-K entries.

File n……

① Pick-up files

② Merge-sort files

……

2 0.50

20 0.25

7 0.05

3 0.50

5 0.45

12 0.15

10 0.10

1 0.25

6 0.20

15 0.15

8 0.10

fid OR

Seed 2 Seed m

fid OR fid OR

5 12Seed 2

Compact seed and top-K files, and flush to disk.

File 2File 1 File flushed

……

Figure 5: Illustration of the three steps of compaction

function (line4 in Algorithm 1) and then calculates the finger
print of the key via another hash function (line5). Next, MCF-KV
checks if the finger print causes a hash collision. If so, it turns to
the auxiliary B+-tree and stores full information of the key and
it’s corresponding file ID in the tree (line6 - line8). If the finger
print does not cause a hash collision, MCF-KV checks if the filter
is being rehashed. If so, it moves the key to the tail of the queue
and continues with the next key to avoid waiting (line10 - line11).
If the filter is not being rehashed, MCF-KV then tries to insert the
key into the filter (line13), if it fails (i.e. reaches maximum Cuckoo
count ) or the load factor of this filter reaches the threshold, which
means this cuckoo filter needs to be rehashed, MCF-KV creates
an extra thread to do the rehashing job and moves on with next
key (line14 - line16).

Read Process. When searching for an item, MCF-KV first looks
in the auxiliary B+-tree since it always maintains the newer
version of an item if exist. If it fails to find the item in the B+-tree,
MCF-KV then turns to Multi-Cuckoo filters. MCF-KV first uses
hash function to locate the appropriate filter and then applies
the Cuckoo algorithm to find the target slot with at most two
access to the PM device. After locating the target slot, MCF-KV
then decodes the file ID read from the slot, which enables it to
fetch the value from the corresponding SSTable.

Rehashing Process of Cuckoo Filter. The hash table of a Cuckoo
filter has to be rehashed in two cases: 1) when an insertion into
this filter fails and 2) when the load factor of this filter reaches
threshold after insertion. To perform the rehash, MCF-KV will
generate an extra thread. During the rehash process, the thread
creates a new hash table, which is double size of the old hash table.
It then scans the whole original hash table and transfers all items
into the new one via Cuckoo algorithm. All write operations to
this filter are delayed during rehashing, but read operations can
still be performed normally.

4 COMPACTION SCHEME
In this section we present the compaction scheme of MCF-KV.
Since we employ a single-level organization of SSTables, the com-
paction process that reclaims the space occupied by obsolete KV
pairs has to be conducted among the SSTables in the same level.
In the remainder of this section, we shall refer to SSTables and
files interchangeably. We keep monitoring accesses to all files and
newly flushed files while maintaining their metadata. As shown
in Figure 5, the compaction process runs in the background in
three steps: (1) First, we select files eligible for compaction (also
referred to as compactees). (2) Second, we merge-sort (i.e. com-
pact) the compactees into new files. (3) Third, we update the
global indices (both the multi-Cuckoo filters and the B+-tree
index), so that they become consistent with the disk files. Since
the second step is straightforward and almost same as those in
other LSMT-indices, we shall focus on the first and third steps.

4.1 Pick-up Files For Compaction
Generally, the objective of compaction is to improve the data
locality and reduce the space consumption of files. Therefore, our
selection strategy aims at selecting: 1) files with high proportion
of obsolete keys, 2) files that are frequently accessed, and 3) files
that significantly overlap with others.

Files that satisfy the above criteria 1) or 2) are called seed files.
We can easily determine if a file is a seed file by checking its own
metadata as MCF-KV stores the live-key-ratio for every SStable
file.

Seed files are considered good candidates for compaction, but
do not guarantee an effective compaction can be undertaken
right away. We may need to consider other files on disk, which,
together with the seeds found so far, could possibly be compacted.
As shown in algorithm 2, given a set of 𝑚 seeds denoted by
𝑆 = {𝑠1, . . . , 𝑠𝑚}, we maintain for each seed 𝑠𝑖 a heap structure
ℎ𝑖 , and try to allocate the 𝑛 files to these𝑚 heaps based on how
much they overlap with the seed files (line1 - line13). We use
overlap ratio 𝑂𝑅(𝑓 1, 𝑓 2) to denote how much 𝑓 1 overlaps with
𝑓 2 in the rest of this section. The detailed process of computing
𝑂𝑅 and building ℎ𝑖 is given in Appendix A.

Next, for each heap ℎ𝑖 , we select its top-𝐾 tuples, and compute
their total OR as

∑
𝑓 ∈𝑡𝑜𝑝𝐾 𝑂𝑅(𝑓 , 𝑠𝑖 ) (line16 - line21). 𝐾 is an em-

pirical parameter chosen to bound the compaction cost. The seed
with its top-𝐾 tuples having the maximum total OR, denoted by
𝑠𝑚𝑎𝑥
𝑖

, is chosen as the compactee. The 𝐾 files in the respective
tuples are the other compactees. Subsequently, 𝑠𝑚𝑎𝑥

𝑖
and its top-

𝐾 heap files will undergo a compaction and get merge-sorted (i.e.
Step 2).

It should be noted that, during the compaction, the validity
of KV pair in these files are checked via the global index. Only
valid data will be flushed to new files (namely SSTables).

4.2 Index Update For Compaction
After a new file is flushed to disk through compaction, the meta-
data of these valid keys, namely the (key, file-ID) information,
has to be updated as well. As shown in Figure 5 part 3, we first
try to update the B+-index as it is supposed to contain the latest
file ID information of a KV pair if any collision has happened
on that key. If a certain key is not found in the B+-tree, then we
turn to the Multi-Cuckoo-Filter index and execute an in-place
update with the corresponding (fingerprint, file-ID) information.
Note that MCF-KV avoids hash collision via the B+-tree index,
therefore if a valid key is absent from B+-tree, its fingerprint is

260



Algorithm 2: Compactee pickup algorithm
Input: 𝑓 𝑖𝑙𝑒𝑠 : SSTable files in the current system

𝑆 : seed files selected due to low 𝑟𝑙 and too many
read operations.
𝐻 : heaps for each seed file.

Output: 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑒𝑠 : files to be compacted.

for 𝑓 ∈ 𝑓 𝑖𝑙𝑒𝑠 do
𝑀𝐴𝑋_𝑂𝑅 = 0;
𝐼𝐷 = −1;
for 𝑠 ∈ 𝑆 do

if 𝑟𝑎𝑡𝑖𝑜 (𝑓 , 𝑠) ≥ 𝑀𝐴𝑋_𝑂𝑅 then
𝑀𝐴𝑋_𝑂𝑅 = 𝑟𝑎𝑡𝑖𝑜 (𝑓 , 𝑠);
𝐼𝐷 = 𝑠 .𝑖𝑑 ;

end
end
if 𝐼𝐷 ≠ −1 then

ℎ[𝐼𝐷] .𝑎𝑑𝑑 (𝑀𝐴𝑋_𝑂𝑅, 𝑓 .𝑖𝑑);
end

end
𝑀𝑎𝑥𝑅𝑎𝑛𝑘 = −1;
/* id of best seed */

𝑚𝑎𝑥 = −1;
for ℎ ∈ 𝐻 do

if
∑𝑘
𝑗=0 ℎ[ 𝑗] ≥ 𝑀𝑎𝑥𝑅𝑎𝑛𝑘 then
𝑀𝑎𝑥𝑅𝑎𝑛𝑘 =

∑𝑘
𝑗=0 ℎ[ 𝑗];

𝑚𝑎𝑥 = ℎ.𝑖𝑑 ;
end

end
𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑒𝑠.𝑎𝑑𝑑 (𝑠𝑚𝑎𝑥 );
𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑒𝑠.𝑎𝑑𝑑 (top-K 𝑖𝑛 ℎ𝑚𝑎𝑥 );
return 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑒𝑠;

certain to appear in the MCF with no hash collision. After the
index update process and the creation of new files is complete,
MCF-KV commits the metadata of these changed files to the
MANIFEST and deletes the obsolete files.

5 IMPLEMENTATION
We implement MCF-KV based on Google’s popular open-source
KV store LevelDB [3]. We use LevelDB as the code base mainly
for two reasons: First, the main comparative works (SLM-DB and
NoveLSM) are both implemented based on LevelDB. Therefore it
would be more fair and rational to start the implementation from
LevelDB. Second, LevelDB is implemented in a highly concise
manner and works without much optimization. It would be easier
to extend LevelDB to study how our proposed designs influence
the system performance. Our code accesses the PM device via
the persistent memory development kit (PMDK)[1? ] in the APP
Direct (DAX) mode, and accesses the SSD via the Posix API. In the
following, we shall present the implementation of the write/read
processes and the recovery mechanism of MCF-KV.

Write. All KV pairs are written to MCF-KV via a foreground
thread. Each KV pair is first buffered in the MemTable in DRAM.
When the Memtable grows large enough, its KV pairs will be
flushed to an SSTable on disk, and meanwhile the location in-
formation of these KV pairs will be recorded in the MCF index
(specifically, in either one of the Cuckoo filters or the B+-tree

Merge-sort files

Files to 
be compacted:         

File 3, File 5, File 9     

MANIFEST

……

……
Max file ID: 15

Try to update global index, but a 
system failure occurs.

Get files to be compacted in 
the last round of compaction

① Crash

② Recovery

Delete all file with ID 
greater than 15

Check validity

File 3 File 16 File 17 File 18

File 16 File 17

File 3 File 5 File 9

Key File ID

……

k1 file 3

Key File ID

……

kn file 17

k4 file 9

k2 file 5

k3 file 16

k2 file 5

k1 file 3

k3 file 5

k4 file 9

kn file 3

File 5 File 9

Figure 6: MCF-KV recovery process when crashed during
compaction

index, depending on if the key generates a hash collision). The lo-
cation information of the KV pairs will be updated if the SSTable
containing them is compacted.

Read. To read the value of a given key, we first search for
the target key in the Memtable and the ImmutableTable. If the
key is not found, we shall search for the key in the MCF index.
We first look up the key in the B+-index as it always keeps the
newest version of the KV pairs. If it is not found, we then search
the multiple Cuckoo filters. If the key is found in one of these
indices, we read the respective value from disk via the file ID
obtained during the above search. If the target key is not found
in the MCF index, we return null to the read request.

Compaction. MCF-KV extends the compaction scheme to al-
low for multi-thread compaction. Specifically, we partition the
compaction task by key range into several disjoint jobs that can
run independently. For example, given a compaction task of keys
ranging from 𝑘1 to 𝑘𝑛 , we can spawn 𝑥 threads and divide the
whole compaction into 𝑥 independent jobs, where the key range
of each job does not overlap those of the others. In this way the
compaction task can be executed in a multi-thread manner.

Recovery. MCF-KV guarantees strong crash consistency for
data structures in PM during system failures[13, 14, 27, 32]. Apart
from the recovery mechanism inherited from LevelDB, the PM-
resident index ofMCF-KV requires additional design to guarantee
crash consistency. To address this issue, we need to consider the
write and update operations on PM, which may occur in two
cases in MCF-KV: namely 1) when flushing a file to disk, and 2)
when updating a file during compaction.

Case 1) For the first case, theMemTable is flushed to an SSTable
file and the respective index entry is inserted into the MCF index.
If a failure happens during the insertion of the index entry, MCF-
KV is able to re-process all insertions via WAL.

Case 2) If the system crashes when background update is
ongoing, MCF-KV can leverage the MANIFEST file to restart
the compaction as LevelDB does. Figure 6 illustrates the recov-
ery process of MCF-KV when there is a system failure during
compaction. In MCF-KV, the MANIFEST keeps the essential in-
formation of the target database, including the file IDs of the
seeds and the compactees. We also maintain in the MANIFEST
the maximum file ID𝑀 persisted so far. A file with an ID greater
than𝑀 is considered invalid (or not persisted).

261



The recovery for case 2 is processed as follows. First, MCF-
KV scans the whole file directory and deletes all files with IDs
greater than𝑀 . Then, MCF-KV retrieves the information of the
the compactee files stored in the MANIFEST and checks the file
IDs appearing in all entries of the compactee files via MCF index.
If any entry contains a file ID greater than 𝑀 , indicating that
it was updated in the last unsuccessful compaction, the file ID
is restored to the old one (i.e. the file ID of the compactee file
containing the key). Once all the KV pairs in the compactees are
checked and duly restored, the system reaches a previous consis-
tent state and is ready to restart the interrupted compaction.

File-ID Recycling. The above recovery scheme relies on an
ever-growing maximum file ID 𝑀 . Since we employ 32 bits to
store file IDs, it is possible that𝑀 overflows the integer space. To
address this issue, we adopt a file-ID recycling strategy. Specifi-
cally, we maintain a file ID range [𝑀𝑖𝑛,𝑀𝑎𝑥], which indicates
the valid file ID range of the current database. All valid file IDs
fall in this range. We can perform a permutation operation which
replaces the file IDs of𝑀𝑖𝑛 by𝑀𝑎𝑥+1 for all index entries contain-
ing𝑀𝑖𝑛. Then the valid range is updated to [𝑀𝑖𝑛𝑛𝑒𝑤 , 𝑀𝑎𝑥 + 1],
where𝑀𝑖𝑛𝑛𝑒𝑤 is the next valid file ID greater than𝑀𝑖𝑛. By per-
forming permutations at a reasonable rate, the invalid file IDs can
be recycled and the valid range is kept tight. More importantly,
if 𝑀𝑎𝑥 overflows, the new ID will start from 0 as it must have
been recycled. If a system crashes during file-ID recycling, we
can use the MANIFEST to redo the recycling.

Maintaining B+-tree in The Long Run. The B+-tree is inserted
mostly when a KV pair is updated for the first time. Further
updates to the same pair do not increase the B+-tree. The size of
the B+-tree will grow only when cold data are widely updated,
which is very rare in production environment 2. If the B+ tree
really grows too large, one possible solution is to freeze the large
B+-tree and create a new B+-tree (which replaces the role of the
old B+-tree in write path). Then we can move all entries in the
frozen B+ tree back into the existing Cuckoo filters. Although this
procedure may contend bandwidth with the flushing operations,
it results in a reduced B+-tree and frees the space occupied by
the old B+-tree.

6 COST ANALYSIS
To illustrate the superiority of MCF-KV, we conduct cost analysis
for read/write/update operations made by MCF-KV versus two
comparative schemes, namely LevelDB and SLM-DB, in terms
of the number of accesses to PM and SSD. Similar to SLM-DB,
we assume that the filter blocks and meta blocks of SSTables
are cached in DRAM, but the index blocks and data blocks are
not. Each of the three KV stores is assumed to have already
maintained 𝑁 KV-pairs before an operation starts.

6.1 Read Costs.
LevelDB first reads an index block to locate the target item and
then reads the data block to fetch the data if the bloom filter hits,
which incurs two I/Os. If a false positive occurs in the bloom
filter, it still conducts the above actions but fails to find target
value in the index block (i.e. wasting 2 I/Os) and then it continues
reading process in the next level. It is rare to have more than
one false positive query during a read operation. Therefore, the

2Previous work[9] shows that only 20% of data will be updated more than once in
most production scenarios

expected read cost of LevelDB when false positive happens is 4
I/Os.

SLM-DB and MCF-KV provide constant SSD I/O costs as they
avoid false positive query via specific data structures. SLM-DB
requires only 1 disk I/O as it stores the detailed location informa-
tion of KV pairs in the persistent B+-tree. MCF-KV locates the
specific SSTable and provides the query result in 2 accesses to
SSD.

On the PM part, SLM-DB maintains a persistent B+-tree with
height of 𝑙𝑜𝑔𝑓 𝑁 where 𝑓 denotes the fan-out of the tree (default
to 16 in SLM-DB), it takes 𝑙𝑜𝑔𝑓 𝑁 + 1 PM accesses to locate the
target value. As shown in Table 2, given a database of 10 million
pairs, it takes up to 8 accesses on PM to finally locate a target
item. In contrast, MCF-KV only makes one or two PM accesses
to fetch the location of the target value via the Cuckoo algorithm.
Hence its cost on the PM is significantly lower.

6.2 Write Costs.
For write operation, LevelDB first writes the item in the WAL
and then flushes the data into level-0 via minor compaction. The
data will be gradually compacted from level-0 to higher levels
to maintain its strict multi-leveled SSTable architecture, which
incurs great amount of rewriting. We denote by 𝑅 the average
percentage of data in level-𝑥 to be compacted with level-(𝑥 + 1),
then it takes 1

𝑅𝑡
I/Os to move a KV pair from level-0 to level-𝑡 . In

production scenarios, the actual number of I/Os to move a KV
pair to its final level may vary from 5 to 8.

MCF-KV and SLM-DB outperform LevelDB because of their
single-level SSTables and carefully designed compaction mecha-
nisms, which significantly reduce number of compactions and
hence results in 2 − 3 I/Os on SSD. The cost of PM accesses by
MCF-KVmay vary from 1 to𝑀 where𝑀 is the maximumCuckoo
count specified in the Cuckoo algorithm[20]. In the production
environment, most items require no more than three PM accesses
to find an empty slot. Therefore, the expected number of PM ac-
cesses in the write operation of MCF-KV is 3. The cost of PM
accesses by SLM-DB is same as that for read operations.

6.3 Update Costs.
For update operation, LevelDB and SLM-DB incur the same costs
as write operation. MCF-KV requires extra PM accesses to main-
tain the auxiliary B+-tree for the duplicate items. Given the num-
ber of 𝐷 × 𝑁 duplicate items, it takes 𝑙𝑜𝑔𝑓 (𝐷 × 𝑁 ) accesses to
update an item, where 𝑓 is the fan-out of the B+-tree. Consider
only a small portion of the data to be updated in production
environment[9], it may take on average 3 to 4 PM accesses to
update an item in MCF-KV.

The values of the estimated costs of various operations for
the three KV stores are presented in Table 2, assuming that the
database already contains 10 million KV pairs.

Table 2: Estimated costs of various operations with 10 mil-
lion items(* indicates false positive case in bloom filter)

Estimated read write update
# of accesses PM SSD PM SSD PM SSD
LevelDB \ 2(4*) \ 5-8 \ 5-8
SLM-DB 8 1 8 2-3 8 2-3
MCF-KV 1-2 2 3-4 2-3 3-4 2-3

262



Table 3: Space cost and False Positive Rate of different
indices

Symbol Meaning Default
𝑁𝑐 Number of Cuckoo filter 12
𝑉𝑙 Base load factor 0.92
𝑓𝑙 Fluctuation ratio of load factor 0.02
𝑅 Files with live key ratio ≤ 𝑅 are 0.7

considered as seeds
𝑘 Number of files selected for compaction 3

7 EVALUATION
This section presents the experimental results of MCF-KV. In the
experiments, we first evaluate the PM-resident indices of MCF-
KV using the micro-benchmarks. Then we report the overall per-
formance of MCF-KV, using both micro and macro-benchmarks.

7.1 Experiment Setup
Our experiments are conducted on a machine with two Intel
Xeon Gold 6240C processors (2.60GHz) and 400GB memory. We
employ two storage devices, an 1.5TB Intel SSDPEDME016T4F
SSD and 128GB NVM of one single 128 GB Intel Optane DC
PMM[24]. Ubuntu 20.04 of Linux kernel version of the machine
is 5.4.0 is used for the machine.

When running the experiments, we follow the same settings of
Matrix[42] and SLM-DB[26]. We restrict the DRAM size to 16GB
via memory kernel parameters. For PM device, we leverage the
PMDK to manage an NVM pool of 8GB. We also set the default
MemTable/SSTable size to 64MB and turn off sync (i.e do not
sync the write ahead log for strong durability) in our experiment
for better performance. For MCF-KV, the default value of each
parameter is shown in Table 3.

We evaluate the performance of MCF-KV and compare with
LevelDB, SLM-DB, and NoveLSM. LevelDB represents traditional
LSM based KV store engine of a DRAM-SSD hierarchy. NoveLSM
is the state-of-the-art hybrid storage scheme based on LevelDB,
which combines DRAM, PM, and SSD. SLM-DB is the most simi-
lar with MCF-KV in structure, from which we can tell how the
differences in indices influence the overall performance. We do
not include uTree in our evaluation as its architecture, which
consists only of DRAM and PM, is different from ours.

7.2 Microbenchmark on Indices
This section presents the efficiency of the proposed MCF index,
including the multi-Cuckoo filters and the auxiliary B+-tree. We
compare the index against the traditional bloom filter in LevelDB
and the B+-tree index in SLM-DB. We also compare with two
variants of MCF index, one with merely a single Cuckoo filter
and the other with no B+-tree. To make the evaluation more fair,
We implement a persistent version of bloom filter for the test.
We focus on both write and read performance of these indices.
Besides, we also pay attention to the space efficiency and false
positive rate of these indices when we perform write and read
operations on them. All experiments are run with one single
thread with no actual flash I/O, which enables us to detect the
difference among different indices more precisely.

In the experiment, we introduce the concept of update rate.
We use parameter 𝑑 to represent the update rate of the key set.
For example, a 𝑑 value of 0.1 indicates that we will select 10% of
the key in the key set to update, which means these keys to be

updated will trigger hash collision in these hash-based indices.
We later show how the update rate influences the performance
of these hash base indices. To evaluate the index performance
under production environment, we also use the YCSB workload
to reproduce real-world scenarios.

Figure 7: Time cost of every batch insertion of Single
Cuckoo filter and MCF-Index with no B+tree

Table 4: Average time cost (in microseconds) of insertion
operation under different update ratio

Insertion
Cost(usec)

Update rate
0 0.1 0.2 0.4 0.8 YCSB

Single Cuckoo filter 0.99 7.94 12.31 22.22 43.11 36.23
MCF (no B+-tree) 0.92 7.72 12.08 22.84 42.29 35.98
B+-tree Index 7.63 7.50 7.42 7.22 6.57 7.10
Bloom filters (PM) 2.02 2.11 2.10 2.10 2.09 2.13
MCF Index 1.07 1.39 1.41 1.60 2.43 2.06

Write Performance. In the write performance test, we insert
125 million pre-generated random 64-bit entries into each index
in an ascending order. For the Cuckoo filters (including MCF
and single Cuckoo), we carefully design the initial capacity of
Cuckoo filter to make it rehash once during the insertion process
to ensure a fair evaluation. For the single Cuckoo filter and MCF
Index without B+-tree, we simulate the operation of checking
keys that cause hash collision by imposing a 50𝜇𝑠 latency for
each hash collision occurring in the index.

Table 4 shows the insertion latency of different indices under
different update ratios. As we can see, MCF Index is faster than all
other indices in all conditions except for bloom filter (PM) under
0.8 update rate. This is because in this exceptional case MCF-KV
nearly degrades to a B+-tree index. Single Cuckoo filter has even
better performance compared to MCF-index with zero update
rate, but its insertion cost grows drastically when the update ratio
increases because it is not able to handle hash collision without
extra I/O. On the other hand, MCF index is faster than B+-tree
index since the latter needs more CPU time for finding the target
leaf node and performing the extra re-balancing operation.

Moreover, we carry out a test to study the long tail latency
of write operations on multiple Cuckoo filters. Specifically, we
insert 100MB of 64-bit random keys into MCF-index (no B+-tree)
and single Cuckoo filter as mentioned above, but this time with
a smaller initial capacity for the filter so that the filter would
rehash for several times during the insertion process.

263



Table 5: Space cost and False Positive Rate of different
indices

Index type Space cost(bits/key) FP rate
Single Cuckoo filter 35.52 0.1%
MCF (no B+-tree) 33.97 0.1%
Bloom filter 1.41 1.521%
B+-tree index 110.69 \
MCF index 40.24 \

Figure 7 shows that MCF-index with randomized load factor
outperforms normal MCF-index and single Cuckoo filter in long-
tail latency during the bulk writing operations. This improvement
mainly owes to the increased number of filters (and thus more
balanced cost for rehashing). With multiple filters and different
load factor of each filter, MCF is able to amortize the total cost
of rehashing a single filter into many filters in different period,
which contributes to a clear decrease in the long-tail latency of
write operations.

Figure 8: Read Throughput of different indices

Read Performance. To measure the read performance of each
index, we execute 6.5 million query operations on each index
and report the throughput of the indices being studied. As bloom
filter only helps to determine if a key exists in a specific file
instead of telling the exact file ID, we remove bloom from the
read performance test to make the evaluation more rational. MCF
index maintains a B+-tree index to better handle the hash colli-
sion, which to some extend sacrifices the read performance. As
shown in Figure 8, MCF index is slower than single Cuckoo due
to the introduction of the B+-tree and extra software stack. With
the increase of update rate, the read performance of MCF index
decreases because the B+-tree becomes larger. Different from
MCF index, the throughput of FF B+-tree increases with higher
update rate. This is because while MCF index keeps most keys in
Cuckoo filters and higher update rate means larger B+-tree, FF
B+-tree performs in-place updates on identical keys, resulting in
a smaller B+-tree and better read performance.

False Positive Rate & Space Cost. As shown in Table 5, Bloom
filter reaches minimal space cost, but it fails to provide good false
positive rate (FPR), which is responsible for the long tail latency
in read. B+-tree index does not have the problem of FPR as it
stores the full information of all keys. However, it consumes on

average 85× the space of the Bloom filter and 3× the space of
Cuckoo filter per key. Single Cuckoo filter and MCF index both
reach good performance in space cost and FPR, but the former
achieves this at great expenses (i.e. long latency to deal with hash
collision).

7.3 Overall Performance Evaluation
In this section, we evaluate the overall performance of the four
aforementioned KV stores with db_bench, a micro-benchmark
for LevelDB, and the widely used YCSB macro-benchmark.

7.3.1 Results withMicrobenchmark. Figure 9 shows the through-
put with MCF-KV for randomwrite, sequential write and random
read. We evaluate these workloads with different value size (1𝐾𝐵,
4𝐾𝐵, 16𝐾𝐵 and 64𝐾𝐵). For random read workload, we first run a
random write workload to create the database and do the read
work until the compaction process is done. Details of the experi-
ment are reported in the following.

Write Performance. For randomwrite, we insert 80GB data in a
uniformly distributed random order. Figure 9(a) demonstrates the
random write performance of different KV stores with different
value size. MCF-KV provides about 3 × −10× higher throughput
than LevelDB, which is mainly derived from reducing the data
size written to disk in major compaction. MCF-KV’s throughput
improvement over SLM-DB ranges from 2× to 3×, this is mainly
caused by the fast and efficient MCF index in PM. Although
SLM-DB uses a background thread to build the B+-tree index,
compaction thread still needs to wait for the finish of former
batch of insertion in B+-tree to continue later flush and com-
paction. Therefore, a comparatively slow index leads to a lower
throughput of the whole system. When compared to NoveLSM,
MCF-KV provides 1.3× to 3× higher throughput because Nov-
eLSM only gains limited benefits from PM device but leaves the
problem of high WA and write stall unaddressed.

We evaluate sequential write performance by inserting 80GB
KV items with different value sizes in a sequential order. As
shown in Figure 9(b), the throughput of sequential write is higher
than random write in every KV store as it causes no major com-
paction. LevelDB SSD performs the best as the DRAM-SSD archi-
tecture is theoretically the fastest without compaction. MCF-KV
outperforms SLM-DB and NoveLSM as it utilizes the PM devices
more efficiently.

Write amplification. Figure 10 shows the total amount of data
written to disk by various KV stores under random write work-
load of 80GB data. The results are normalized by LevelDB. Nov-
eLSM displays high WA since it incurs significantly higher costs
in 𝐿0 − 𝐿1 compaction. On the contrary, SLM-DB and MCF-KV
reduce the average amount of data written to disk by 60%-70%
compared to LevelDB. This is because both KV stores employ
single-level SSTable organization and carefully design their com-
paction procedures to optimize the write process. MCF-KV out-
performs SLM-DB because compaction is triggered more fre-
quently in SLM-DB to reach better scan performance (which
would be discussed in section 7.3.2).

Read Performance. Random read performance is evaluated by
reading 10% of the KV items randomly from an existing 80GB
database. As shown in Figure 9(c), MCF-KV outperforms other
KV stores in all situations. The improvement of random read
performance mainly owes to the efficient lookup in PM indices.
With the value size increases, the time of reading from the disk

264



(a) random write (b) sequential write (c) random read

Figure 9: Microbenchmark results

becomes more dominant in read operations, leading to reduction
in performance gap from ∼ 60% to ∼ 20%. Besides, for SLM-DB,
although it employs a B+-tree index to speed up read process, the
time spent searching for target in PM increases as the B+-tree
grows, which explains its lower throughput than LevelDB and
NoveLSM in 1𝐾𝐵 and 4𝐾𝐵 value size. Different from SLM-DB,
MCF-KV only places keys that incur hash collisions in the B+-
tree, resulting in a smaller B+-tree and contributing to stable
lookup performance.

7.3.2 Results with YCSB. YCSB[15] is a widely used macro-
benchmark suit released by Yahoo!. It consists of six workload
that capture different real-world scenarios. During the evalua-
tion, we first write an 80GB data set with fixed 4KB values to
load the database (marked as workload a). Then we tested four
different workload patterns with one million items from YCSB
respectively: 1) The first workload launches one-million point
query on randomly selected items (marked as b). 2) The second
workload has 50% random reads and 50% updates (marked as c).
3) The third one consists of a 50% random reads and 50% read-
and-update operations (marked as d). 4) The fourth workload
issues a sorted scan to fetch keys from a starting item (marked
as e).

Throughput. As shown in Figure 11, MCF-KV is 2.1× to 4.9×
faster than other KV stores in terms of insertion speed. With the
help of MCF index, MCF-KV also achieves 1.4× to 2.2× higher

Figure 10: Total amount of written data (normalized)

Figure 11: YCSB results. The y-axis shows the throughput
of different KV store under different workload. Log-scale
is used on y-axis.

point query performance. Moreover, MCF-KV handles update op-
eration with the auxiliary B+-tree to avoid extra I/O and reaches
about 3.5× improvement. However, MCF-KV is slower than the
other KV stores in workload e, which issues rounds of scans
to fetch the data. This is because MCF index is unable to offer
valuable information to speed up the sequential read due to its
hash-based nature. If a workload is dominated by scan operations,
MCF-KV can be configured to launch more pick-up process in
compaction, which improves the data locality at the cost of write
speed for better scan performance.

Read Latency. We specifically focus on the tail latency of read
operation as it is crucial for optimizing foreground query experi-
ences. We evaluate the latency with YCSB-B. As shown in Table
6, MCF-KV achieves a 99.9% percentile latency of 19.27us, which
is much better than other baselines.

Table 6: Read latency on different KV stores

KV-Store Avg. 90% 99% 99.9%
LevelDB 10.35 11.27 19.36 44.28
NoveLSM 11.26 13.87 22.03 51.24
SLM-DB 13.14 19.25 19.25 19.25
MCF-KV 6.22 6.22 10.24 10.24

265



8 CONCLUSION
In this paper, we presented MCF-KV, a key-value store that uti-
lizes an extra PM layer to reach high random write and point
query performance. By leveraging persistent multiple Cuckoo
filters and single-level LSM-tree, MCF-KV reduces write ampli-
fication and achieves high write throughput and stable query
performance. Additionally, MCF-KV eliminates hash collision in
hash-based Cuckoo filter with an auxiliary B+-tree index, which
avoids extra I/O and improves performance. Furthermore, MCF-
KV introduces an overlap-based compaction scheme to ensure
some extent of data locality in the single-level LSM-tree. Evalua-
tion results demonstrated that MCF-KV outperforms LevelDB,
SLM-DB and NoveLSM in most scenarios. The MCF-index, as
a general indexing technique, holds potential for application in
various key-value stores. We plan to explore this potential in our
future work.

ACKNOWLEDGMENTS
This work is supported by the National Key R&D Program of
China (No.2022YFB3304100) and Fundamental Research Funds for
the Central Universities. The authors are supported by the State
Key Laboratory of Blockchain and Data Security, and Key Lab of
Intelligent Computing Based Big Data of Zhejiang Province.

A COMPACTION FILE PICK UP
This appendix describes in detail how MCF-KV picks up files
for compaction, in addition to Section 4. As mentioned before,
MCF-KV selects seed files as good candidates for compaction and
builds for every seed file 𝑠𝑖 a heap structure ℎ𝑖 sorted by overlap
ratio(𝑂𝑅).

Specifically, each heap ℎ𝑖 contains tuples as (𝑓 ,𝑂𝑅(𝑓 , 𝑠𝑖 )),
sorted in descending order of 𝑂𝑅(·), where 𝑓 is the ID of a file,
𝑂𝑅(𝑓 , 𝑠𝑖 ) is the overlap ratio between file 𝑓 and seed 𝑠𝑖 . The
overlap ratio is defined as

𝑂𝑅 (𝑓 , 𝑠𝑖 ) =


𝑀𝐼𝑁 (𝑚𝑎𝑥 (𝑓 ),𝑚𝑎𝑥 (𝑠𝑖 ) )−𝑀𝐴𝑋 (𝑚𝑖𝑛 (𝑓 ),𝑚𝑖𝑛 (𝑠𝑖 ) )
𝑀𝐴𝑋 (𝑚𝑎𝑥 (𝑓 ),𝑚𝑎𝑥 (𝑠𝑖 ) )−𝑀𝐼𝑁 (𝑚𝑖𝑛 (𝑓 ),𝑚𝑖𝑛 (𝑠𝑖 ) )

0 if 𝑓 does not overlap 𝑠𝑖

(1)

where 𝑚𝑖𝑛(𝑥) and 𝑚𝑎𝑥 (𝑥) indicate the minimal and maximal
keys of file 𝑥 , which can be found in the metadata for 𝑥 .

The allocation of a file (to any one of the heaps) aims at pro-
ducing the maximum overlap in key space. For each file 𝑓 , we
compute its 𝑂𝑅 with all the𝑚 seeds. Then file 𝑓 is allocated to
the heap of the seed producing maximum 𝑂𝑅. Formally, tuple
(𝑓 ,𝑂𝑅(𝑓 , 𝑠𝑖 )) is inserted to the heap of seed

argmax
𝑖
𝑂𝑅(𝑓 , 𝑠𝑖 ) where 𝑖 = 1, . . . ,𝑚.

Note that the seeds are also disk files, and are therefore also in-
serted to the heaps. In the end, each seed 𝑠𝑖 is hopefully associated
with a sorted list of files which maximally overlap 𝑠𝑖 .

REFERENCES
[1] 2019. PMDK. https://github.com/pmem/pmdk.
[2] 2020. An empirical guide to the behavior and use of scalable persistent memory.
[3] 2021. LevelDB. https://github.com/google/leveldb.
[4] 2021. RocksDB. https://github.com/facebook/rocksdb.
[5] R. H. Arpacidusseau and A. C. Arpacidusseau. 2015. Operating systems: Three

easy pieces. (2015).
[6] Meenakshi Sundaram Bhaskaran, Jian Xu, and Steven Swanson. 2014.

Bankshot: Caching slow storage in fast non-volatile memory. ACM SIGOPS
Operating Systems Review 48, 1 (2014), 73–81.

[7] Matias Bjrling, N. Dayan, L. Bouganim, and P. Bonnet. 2013. The Necessary
Death of the Block Device Interface. In CIDR 2013.

[8] Alex D Breslow and Nuwan S Jayasena. 2018. Morton filters: faster, space-
efficient cuckoo filters via biasing, compression, and decoupled logical sparsity.
Proceedings of the VLDB Endowment 11, 9 (2018), 1041–1055.

[9] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020. Charac-
terizing, modeling, and benchmarking {RocksDB}{Key-Value} workloads at
facebook. In 18th USENIX Conference on File and Storage Technologies (FAST
20). 209–223.

[10] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, and S. Swanson. 2010. Moneta:
A High-Performance Storage Array Architecture for Next-Generation, Non-
volatileMemories. In IEEE/ACM International Symposium onMicroarchitecture.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gru-
ber. 2008. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS) 26, 2 (2008), 1–26.

[12] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020.
uTree: a persistent B+-tree with low tail latency. Proceedings of the VLDB
Endowment 13, 12 (2020), 2634–2648.

[13] Joel Coburn, AdrianMCaulfield, Ameen Akel, LauraMGrupp, Rajesh KGupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories. ACM SIGARCH
Computer Architecture News 39, 1 (2011), 105–118.

[14] N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus. 2019. Fine-Grain Checkpointing
with In-Cache-Line Logging.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. 2010.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June
10-11, 2010.

[16] Niv Dayan, Martin Kjær Svendsen, Matias Bjorling, Philippe Bonnet, and
Luc Bouganim. 2014. EagleTree: Exploring the design space of SSD-based
algorithms. arXiv preprint arXiv:1401.6360 (2014).

[17] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for
LSM-Tree. In Proceedings of the 2021 International Conference on Management
of Data. 365–378.

[18] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software
for persistent memory. In Proceedings of the Ninth European Conference on
Computer Systems. 1–15.

[19] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying
Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018.
Reducing DRAM footprint with NVM in Facebook. In Proceedings of the Thir-
teenth EuroSys Conference. 1–13.

[20] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments and
Technologies. 75–88.

[21] Thomas Mueller Graf and Daniel Lemire. 2020. Xor filters: Faster and smaller
than bloom and cuckoo filters. Journal of Experimental Algorithmics (JEA) 25
(2020), 1–16.

[22] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable transient inconsistency in {Byte-Addressable} persistent {B+-
Tree}. In 16th USENIX Conference on File and Storage Technologies (FAST 18).
187–200.

[23] Junsu Im, Jinwook Bae, Chanwoo Chung, Sungjin Lee, et al. 2020. {PinK}:
High-speed In-storage Key-value Store with Bounded Tails. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). 173–187.

[24] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic performance measurements of the intel optane DC persistent
memory module. arXiv preprint arXiv:1903.05714 (2019).

[25] HV Jagadish, PPS Narayan, Sridhar Seshadri, S Sudarshan, and Rama Kan-
neganti. 1997. Incremental organization for data recording and warehousing.
In VLDB. 16–25.

[26] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H Noh, and Young-ri
Choi. 2019. SLM-DB: single-level key-value store with persistent memory. In
17th USENIX Conference on File and Storage Technologies (FAST). 191–205.

[27] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau,
and Remzi Arpaci-Dusseau. 2018. Redesigning LSMs for nonvolatile memory
with NoveLSM. In 2018 USENIX Annual Technical Conference (USENIX/ATC).
993–1005.

[28] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. 2018. Redesigning {LSMs} for Nonvolatile Memory
with {NoveLSM}. In 2018 USENIX Annual Technical Conference (USENIX ATC
18). 993–1005.

[29] Takayuki Kawahara, Kenchi Ito, Riichiro Takemura, and Hideo Ohno. 2012.
Spin-transfer torque RAM technology: Review and prospect. Microelectronics
Reliability 52, 4 (2012), 613–627.

[30] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized
structured storage system. ACM SIGOPS operating systems review 44, 2 (2010),
35–40.

[31] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019.
Kvell: the design and implementation of a fast persistent key-value store.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles.
447–461.

266



[32] Jianhong Li, Andrew Pavlo, and Siying Dong. 2017. NVM-rocks: RocksDB on
non-volatile memory systems.

[33] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, HariharanGopalakrishnan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. Wisckey:
Separating keys from values in ssd-conscious storage. ACM Transactions on
Storage (TOS) 13, 1 (2017), 1–28.

[34] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju
Rangaswami. 2015. {NVMKV}: A Scalable, Lightweight,{FTL-aware}{Key-
Value} Store. In 2015 USENIX Annual Technical Conference (USENIX ATC 15).
207–219.

[35] Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks: LSM-
tree database storage engine serving Facebook’s social graph. Proceedings of
the VLDB Endowment 13, 12 (2020), 3217–3230.

[36] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.

[37] Simone Raoux, GeoffreyW Burr, Matthew J Breitwisch, Charles T Rettner, Y-C
Chen, Robert M Shelby, Martin Salinga, Daniel Krebs, S-H Chen, H-L Lung,
et al. 2008. Phase-change random access memory: A scalable technology. IBM
Journal of Research and Development 52, 4.5 (2008), 465–479.

[38] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A space-
efficient key-value storage engine for semi-sorted data. Proceedings of the
VLDB Endowment 10, 13 (2017), 2037–2048.

[39] Sanam Shahla Rizvi and Tae-Sun Chung. 2010. Flash SSD vs HDD: High
performance oriented modern embedded and multimedia storage systems. In
2010 2nd International Conference on Computer Engineering and Technology,
Vol. 7. IEEE, 297–299.

[40] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. {LSM-trie}: An
{LSM-tree-based}{Ultra-Large}{Key-Value} Store for Small Data Items. In
2015 USENIX Annual Technical Conference (USENIX ATC 15). 71–82.

[41] Yuhan Wu, Zirui Liu, Xiang Yu, Jie Gui, Haochen Gan, Yuhao Han, Tao Li, Ori
Rottenstreich, and Tong Yang. 2021. Mapembed: Perfect hashing with high
load factor and fast update. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 1863–1872.

[42] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. {MatrixKV}: Reducing Write Stalls and
Write Amplification in {LSM-tree} Based {KV} Stores with Matrix Container
in {NVM}. In 2020 USENIX Annual Technical Conference (USENIX ATC 20).
17–31.

267


