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ABSTRACT
Numerous applications necessitate assessing the similarity be-

tween nodes across two graphs using link structures. GSim, sug-

gested by Blondel et al., is an appealing model, which determines

the similarity between nodes across two graphs by recursively

considering the similarity of their neighbouring structure. Re-

grettably, the existing efficient approach by Cason et al. using a
low-rank approximation involves rather costly QR decomposi-

tion. Worse, a fixed low rank is relied on for similarity approxi-

mation throughout all iterations, leading to issues, e.g. overfitting
or underestimation of the similarity matrix. In this paper, we fo-

cus on the efficient and scalable computation of GSim similarity

on large graphs with provable guaranteed accuracy. First, we

devise an efficient algorithm called GSim+, which resorts to an

adaptive low-dimensional similarity matrix. GSim+ employs a

novel iterative approach that dramatically speeds up the compu-

tation of GSim while yielding exactly the same scoring results of

GSim at each iteration. Next, we theoretically provide an error

bound on the iterative computation of GSim+, and analyse its

computational complexity. Finally, we empirically validate the

effectiveness of GSim+ to demonstrate that GSim+ is 1–4 orders

of magnitude faster than state-of-the-art competitors with su-

perior scalability on billion-edge graphs while guaranteeing the

same accuracy of GSim at each iteration.

1 INTRODUCTION
A graph is an omnipresent data structure that describes intri-

cate connections (edges) among objects (nodes). A fundamen-

tal task in graph mining is to quantify node-to-node similarity

based on graph topology, known as graph-based similarity search.
Recently, numerous appealing graph-based similarity measures

have been proposed, e.g. VertexSim [13], GSim [4], SimRank [10],

SimSem [15], CoSimRank [19], and SimRank
#
[18]. Among them,

GSim, conceived by Blondel et al. [4], is especially noteworthy for
its simple and intuitive philosophy. The GSim similarity between

nodes 𝑎 and 𝑏 across two graphs G𝐴 and G𝐵 , denoted as [S]𝑎,𝑏 , is
determined by the similarity between the adjacent nodes of node

𝑎 in G𝐴 and the adjacent nodes of node 𝑏 in G𝐵 . This idea allows
GSim to be easily adapted to content-based similarity measures,

making it a highly versatile model in a wide range of applications,

e.g. synonym extraction [9] and web searching [16].

Similar to the SimRank measure [10] that follows the intu-

ition that “two nodes in one graph are assessed as similar if

their neighboring nodes are similar”, the GSim model uses a re-

cursive fashion to define node similarity, which progressively

captures multi-hop neighbourly details pertaining to two given
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(c) GSim Score [S]Q𝐴,Q𝐵
Figure 1: GSim Search over Two Query Sets Q𝐴 and Q𝐵
Across Two Graphs G𝐴 (Facebook) and G𝐵 (Twitter)

nodes across graphs. However, GSim also exhibits unique fea-

tures when compared with SimRank: (1) For the base case of

recursion, GSim initialises all pairs of nodes to a similarity of

1 ([S0]𝑎,𝑏 ≡ 1, ∀(𝑎, 𝑏)), which is based on the philosophy that

no other pair of nodes have a higher similarity than the pair

itself. In contrast, SimRank initialises the similarity between any

two distinct nodes as 0 ([S0]𝑎,𝑏 = 0, ∀𝑎 ≠ 𝑏), which is based on

the assumption that each node is always most similar to itself

([S0]𝑎,𝑏 = 1, ∀𝑎 = 𝑏). Recursively, due to the lack of connectivity

between nodes across two graphs, SimRank would perceive these

nodes as completely dissimilar, unlike GSim which would evalu-

ate their similarity by recursively analysing their neighbouring

patterns. (2) Unlike SimRank which requires the user to specify

a damping factor, GSim does not rely on a damping factor.

Application (Social Media Analysis). Consider two social net-

works in Figure 1, where G𝐴 is a Facebook social media graph,

and G𝐵 is a Twitter micro-blogging graph. Each network consists

of nodes denoting users, and edges depicting interactions (e.g.
followers, likes). GSim similarity search over two query sets, Q𝐴
and Q𝐵 (in red), across two graphs can discover communities

on Twitter that share similar interests or social communication

patterns as communities on Facebook. This information is useful

for many purposes (e.g. targeted advertising, or content recom-

mendation), thereby enhancing marketing campaigns and user

engagement. □

Despite its usefulness, the existingGSim algorithm [4] has two

limitations. (1) It requires cubic time to perform matrix-matrix

multiplications in each iteration. This high computational cost

makes it impractical to deal with large graphs efficiently. (2) Even

when the goal is to assess the similarity between a subset of nodes

across two graphs, this method still requires the computation for

all node pairs, as shown in Example 1.1.

Example 1.1. In Figure 1, given query sets Q𝐴 = {1, 3, 7, 8}
and Q𝐵 = {𝑏, 𝑐, 𝑑} (in red), we want to assess GSim similarity

{𝑠 (𝑥,𝑦)} between any nodes 𝑥 ∈ Q𝐴 and 𝑦 ∈ Q𝐵 across graphs

G𝐴 and G𝐵 .
The naive approach [4] needs to calculate the pairwise sim-

ilarities between all nodes across the two graphs G𝐴 and G𝐵
and then extract the relevant queries. Specifically, we begin by

initialising the similarity matrix as a matrix of all 1s. Then, we

perform matrix multiplications to compute the entire similarity
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Algorithm Time Complexity Space Complexity Notes
GSim+ (our) 𝑂 (𝑙 (𝑚𝐴 +𝑚𝐵 + |Q𝐴 | |Q𝐵 |)) 𝑂 (𝑙 (𝑛𝐴 + 𝑛𝐵)) 𝑙 = min{2𝑘 , 𝑛𝐴, 𝑛𝐵}
GSVD [6] 𝑂 (𝑟 (𝑚𝐴 +𝑚𝐵 + 𝑛𝐴𝑟 + 𝑛𝐵𝑟 )) 𝑂 (𝑛𝐴𝑛𝐵) 𝑟 : fixed low rank of SVD

GSim [4] 𝑂 (𝑚𝐴𝑛𝐵 +𝑚𝐵𝑛𝐴) 𝑂 (𝑛𝐴𝑛𝐵) independent of query size

RSim [11] 𝑂 (𝑘 (𝑛𝐴 + 𝑛𝐵)2𝑑 log𝑑) 𝑂 ((𝑛𝐴 + 𝑛𝐵)2) 𝑑 : ave degree of G𝐴 ∪ G𝐵
NED [22] 𝑂 ( |Q𝐴 | |Q𝐵 |𝑘𝐿3) 𝑂 (𝑑𝑘+1) 𝐿: # of nodes per level
SS-BC* [7] 𝑂 ( |Q𝐴 | |Q𝐵 |𝑘 log𝐷) 𝑂 (𝑘 (𝑛𝐴 + 𝑛𝐵) log𝐷) 𝐷 : max degree of G𝐴 ∪ G𝐵
Table 1: Comparison of Various Algorithms for Similarity

Search between Queries Q𝐴 and Q𝐵 across Graphs

matrix at the next iteration from the product of the two graph

adjacency matrices and the similarity matrix at the current it-

eration. This iterative process goes on till the similarity matrix

converges. Finally, we extract the elements indexed by queries

Q𝐴 and Q𝐵 from the similarity matrix (red in Figure 1c). □

To accelerate the computation of GSim, the most efficient ap-

proach [6] utilizes a low-rank approximation technique. However,

this method has the limitation of involving a costly QR decompo-

sition. Moreover, it relies on a fixed low rank for approximating

the similarity matrix for all iterations, as will be discussed in de-

tail in Section 3. These limitations call for further improvements

to enhance the efficiency and effectiveness of GSim.

Contributions. Our main contributions are as follows:

• We devise an efficient algorithm, GSim+, that resorts to an

adaptive low-dimensional representation of GSim similarity

matrix, which substantially accelerates the computation of

GSim without any compromise in accuracy. (Section 3)

• We provide an error bound on the iterative computation of

GSim+, and analyse the computational complexity of GSim+
in terms of both CPU time and memory. (Section 4)

• Using real datasets, we empirically validate that GSim+ sur-

passes its state-of-the-art competitors in speed by 1–4 orders

of magnitude with high scalability on billion-edge graphs

while ensuring the same accuracy as GSim. (Section 5)

Related Work. Recent years have witnessed a growing inter-

est in graph similarity search. Representative models include

GSim [4], GSVD [6], RoleSim (RSim) [11], NED [22], StructSim

(SS-BC*) [7]. GSim is inspired by Kleinberg’s HITS [12] that eval-

uates similarity from the graph dominant eigenvector. Blondel

et al. [4] applied GSim for automatic synonym extraction in a

dictionary. Bruch et al. [5] employed GSim to detect commu-

nity in online dating Market structure analysis. However, GSim
is rather expensive to compute via the naive fixed-point itera-

tion [4], which hinders its scalability on large graphs. RoleSim

(RSim) [11], is a role-based similarity model that ensures auto-

morphism confirmation through maximal neighbor matching.

It entails 𝑂 (𝑘 (𝑛𝐴 + 𝑛𝐵)2𝑑 log𝑑) time to assess similarities of all

pairs in a graph G𝐴 ∪ G𝐵 with (𝑛𝐴 + 𝑛𝐵) nodes and 𝑑 average

degree, which is not scalable well on large graphs. To acceler-

ate computation further, IcebergRoleSim is proposed to evaluate

only node pairs whose similarities exceed a specified threshold.

However, this method does not improve the worst-case time

complexity. NED [22] utilises the 𝑘-adjacent trees of two nodes

to assess a single-pair similarity. It is more memory-efficient,

only needing to store 𝑘-adjacent trees, unlike RoleSim, which

demands significant memory for all-pair similarities in each it-

eration. However, the time complexity of NED is 𝑂 (𝐾𝐿3) for
querying a single pair, where 𝐿 is the average number of nodes in

each level of the 𝑘-adjacent trees. Unfortunately, due to the huge

number of repeatedly visited nodes across multiple levels, 𝐿 often

exhibits exponential growth as 𝑘 increases. Consequently,NED is

exceedingly slow as 𝑘 rises. StructSim (SS-BC*) [7] adopts a hier-
archical framework to calculate a single-pair role similarity more

efficiently using maximum matching. It incorporates BinCount

Symbol Description Symbol Description

G(V, E) graph (V/E: node/edge set) X𝑇 transpose of matrix X
A/B adjacency matrix of G𝐴/G𝐵 [X]Q𝐴,∗ extract rows indexed by Q𝐴 from X

Q𝐴/Q𝐵 a set of query nodes in G𝐴/G𝐵 ∥X∥𝐹 Frobenius norm of matrix X
S𝑘 similarity matrix at iteration 𝑘 Z𝑘 unnormalised similarity via Eq.(6a)

𝑛𝐴 (𝑚𝐴) number of nodes (edges) in G𝐴 𝑘 iteration number

®1𝑛 length-𝑛 column vector of all 1s U𝑘/V𝑘 low-embeddings of Z𝑘 via Eq.(8)–(9)

Table 2: Key Symbols and Their Meanings

matching to speed up computations in large-scale graphs. While

SS-BC* excels in answering a single-pair similarity query, its time

efficiency decreases when extended to handle |Q𝐴 | × |Q𝐵 | query
pairs – SS-BC* requires the repeated execution of single-pair

queries |Q𝐴 | × |Q𝐵 | times, resulting in many duplicate computa-

tions across queries, thus reducing its efficiency for partial-pair

similarity searches. More recently, Cason et al. [6] improved

the work of [8] and proposed a more efficient scheme GSVD,
which employs low-rank SVD and QR decomposition to approxi-

mate the GSim matrix. However, this approach is limited by its

fixed-rank iteration, which may lead to issues, e.g. overfitting or

underestimation in similarity approximation. Moreover, the QR

decomposition involved in their method is rather costly. There are

also studies on optimising GSim-like models [10, 14, 17, 20, 21].

However, none of them exploits the low-rank characteristics of

the evolving resolution of the GSim matrix.

2 PRELIMINARIES
In this section, we formally review the background of GSim.

Table 2 lists the main symbols used throughout this paper.

Let G𝐴 = (V𝐴, E𝐴) and G𝐵 = (V𝐵, E𝐵) be two graphs with

node sets V𝐴 and V𝐵 , and edge sets E𝐴 and E𝐵 . Let A and B be

the adjacency matrices of G𝐴 and G𝐵 , respectively. We denote

by 𝑛𝐴 = |V𝐴 | and 𝑛𝐵 = |V𝐵 | the number of nodes in graph G𝐴
and G𝐵 , respectively, and𝑚𝐴 = |E𝐴 | and𝑚𝐵 = |E𝐵 | the number

of edges in G𝐴 and G𝐵 , respectively. The GSim similarity matrix

S (𝑛𝐴 × 𝑛𝐵) across graphs G𝐴 and G𝐵 is defined recursively as

S = ASB𝑇 + A𝑇 SB (1)

where (∗)𝑇 is matrix transpose. Each (𝑖, 𝑗)-th entry, [S]𝑖, 𝑗 , mea-

sures GSim similarity between node 𝑖 in G𝐴 and node 𝑗 in G𝐵 .
Blondel et al.’s GSim [4]. To obtain the solution S to Eq.(1),

Blondel et al. [4] adopted the following power iteration method:

S𝑘 =
AS𝑘−1B𝑇 + A𝑇 S𝑘−1B

∥AS𝑘−1B𝑇 + A𝑇 S𝑘−1B∥𝐹
(𝑘 = 1, 2, · · · ) with S0 = 1 (2)

where S𝑘 is the GSim similarity matrix at iteration 𝑘 . Initially,

S0 is set to 1 (a matrix of all 1s), meaning that there is no other

pair of nodes that is more similar to each other than a pair itself.

∥ ∗ ∥𝐹 denotes a Frobenius norm, defined as the square root of

the sum of the squares of the elements of the matrix. It has been

shown in [4] that the even iterates of Eq.(2) converge to S, i.e.,
lim𝑘→∞ S

2𝑘 = S.

Cason et al.’s GSVD [6]. To speed up Eq.(1) computation, Ca-

son et al. [6] proposed a low-rank approximation method. S𝑘
is first approximated with U𝑘Σ𝑘V𝑇

𝑘
via a fixed low rank-𝑟 SVD

decomposition. To get the SVD approximation of S𝑘+1 in the next

iteration, they plug S𝑘 ≈ U𝑘Σ𝑘V𝑇
𝑘
into the RHS of Eq.(1) to get

AS𝑘B𝑇 + A𝑇 S𝑘B ≈
[
AU𝑘Σ𝑘

�� A𝑇U𝑘Σ𝑘
]
·
[
BV𝑘

�� B𝑇V𝑘
]𝑇

(3)

Next, applying QR decomposition QUR𝑇U =
[
AU𝑘Σ𝑘

�� A𝑇U𝑘Σ𝑘
]

and QVR𝑇V = [BV𝑘 | B𝑇V𝑘 ] plus another SVD decomposition
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yields

Eq.(3) = QU (RURV
𝑇 )︸     ︷︷     ︸

≈ŨΣ̃Ṽ𝑇

QV
𝑇 ≈ (QUŨ)︸ ︷︷ ︸

=U𝑘+1

Σ̃︸︷︷︸
=Σ𝑘+1

(QVṼ)︸ ︷︷ ︸
=V𝑘+1

𝑇
= U𝑘+1Σ𝑘+1V𝑇

𝑘+1 (4)

Thus, in the next iteration, S𝑘+1 takes the similar form ofU𝑘+1Σ𝑘+1V𝑇
𝑘+1,

just like S𝑘 is represented as U𝑘Σ𝑘V𝑇
𝑘
in the current iteration.

This iterative process will continue until S𝑘 converges.

3 OUR SOLUTION
Problem Statement. We aim to solve the following problem:

Given: two graphs G𝐴 and G𝐵 , and two query sets Q𝐴 and Q𝐵
Retrieve: theGSim similarities [S]Q𝐴,Q𝐵 := {[S]𝑎,𝑏 }∀(𝑎,𝑏 ) ∈Q𝐴×Q𝐵
between every node 𝑎 in G𝐴 and every node 𝑏 in G𝐵 .
Limitations of Two State-of-The-Art Solutions ([4] and [6]).
Blondel et al.’s GSim [4] has two limitations: Firstly, to compute

S𝑘 in Eq.(2), costly matrix multiplications (AS𝑘B𝑇 and A𝑇 S𝑘B)
are required per iteration, entailing𝑂 (𝑛𝐴𝑛𝐵 (𝑛𝐴 +𝑛𝐵)) time. Sec-

ondly, even if we only want to assess partial entries of S𝑘 (e.g.
[S𝑘 ]Q𝐴,Q𝐵 ), Eq.(2) necessitates that all the (𝑛𝐴 × 𝑛𝐵) elements

of S𝑘−1 from the previous iteration be prepared first based on

the following iteration:

( | Q𝐴 |× |Q𝐵 | ) pairs︷          ︸︸          ︷
[S𝑘+1]Q𝐴,Q𝐵 =

[A]Q𝐴,∗

(𝑛𝐴×𝑛𝐵 ) pairs︷︸︸︷
S𝑘 [B𝑇 ]∗,Q𝐵 +[A

𝑇 ]Q𝐴,∗

(𝑛𝐴×𝑛𝐵 ) pairs︷︸︸︷
S𝑘 [B]∗,Q𝐵[A]Q𝐴,∗S𝑘 [B𝑇 ]∗,Q𝐵 +[A

𝑇 ]Q𝐴,∗S𝑘 [B]∗,Q𝐵

𝐹

(5)

The limitations in Cason et al.’s GSVD [6] are two-fold. Firstly, it

requires twoQR decompositions of thematrices [AU𝑘Σ𝑘 | A𝑇U𝑘Σ𝑘 ]
and [BV𝑘 | B𝑇V𝑘 ], respectively, via Eq.(4), resulting in dense ma-

trices (QURU) and (QVRV). This process is very time-consuming.

Secondly, approximating [AU𝑘Σ𝑘 | A𝑇U𝑘Σ𝑘 ] and [BV𝑘 | B𝑇V𝑘 ]
in Eq.(3) with a fixed rank-𝑟 SVD may lead to overfitting or

underestimation of the similarity matrix. This is because the di-

mensions of these block matrices vary as 𝑘 rises. When 𝑘 is large,

approximating the large block matrices [AU𝑘Σ𝑘 | A𝑇U𝑘Σ𝑘 ] and
[BV𝑘 | B𝑇V𝑘 ] in Eq.(3) with a small rank-𝑟 SVD may lead to

a huge approximation error. Hence, it is undesirable to use a

constant rank-𝑟 approximation of S𝑘 for all iterations.

Our Scheme. We first provide an equivalent form of Eq.(2):

Z𝑘 = AZ𝑘−1B𝑇 + A𝑇Z𝑘−1B (𝑘 = 1, · · · , 𝐾) with Z0 = 1 (6a)

S𝐾 = Z𝐾/∥Z𝐾 ∥𝐹 (normalisation only in last iteration 𝐾 ) (6b)

It can be readily verified that, given the number of iterations, 𝐾 ,

the solution S𝐾 to Eq.(2) is exactly the same as the solution S𝐾
to Eq.(6b). However, unlike Eq.(2), which mandates ∥ ∗ ∥𝐹 nor-

malisation for every iteration, Eq.(6) only requires normalisation

of Z𝑘 to be performed once at the last iteration 𝐾 . Due to this

equivalence, our techniques below will focus on optimising Z𝑘
in Eq.(6a).

Our key insight is that the rank of the matrix Z𝑘 grows gen-

tly from 1 by a factor of 2 as Eq.(6a) iterates. Therefore, rather

than computing the entire Z𝑘 at each iteration, we progressively

maintain two low-embedding matrices
1
for Z𝑘 such that Z𝑘 can

be expressed as their outer product. At each iteration, we utilise

the matrix associative law to parenthesise the matrix product

with these low-embedding matrices that have adaptive ranks

and dimensions to optimise Z𝑘 computation, instead of repre-

senting Z𝑘 with a constant rank-𝑟 SVD across all iterations, as

in [6]. By dynamically maintaining the two low-embeddings for

1
The low-embeddings for a given matrix X (𝑛 ×𝑚) refers to two low-dimensional

matrices A (𝑛 × 𝑟 ) and B (𝑟 ×𝑚) such that A · B = X, where 𝑟 ≪ min{𝑛,𝑚}.

Z𝑘 on an as-needed basis, our method avoids the overfitting or

underestimation issue in [6].

Specifically, initially when 𝑘 = 0, Z0 is a rank-1 matrix of all

1s (𝑛𝐴 × 𝑛𝐵), expressible as the outer product of two vectors of

1s:

Z0 = ®1𝑛𝐴 · ®1𝑇𝑛𝐵 with ®1𝑛𝐴 = [1, 1, · · · , 1]𝑇 ∈ R𝑛𝐴×1

By virtue of the two low-rank embeddings, ®1𝑛𝐴 and ®1𝑛𝐵 , for Z0,

the computation of Z1 can be expedited considerably through

the matrix associative law and parenthesisation, as shown below:

Z1 = AZ0B𝑇 + A𝑇Z0B = A(®1𝑛𝐴 ®1𝑇𝑛𝐵 )B
𝑇 + A𝑇 (®1𝑛𝐴 ®1𝑇𝑛𝐵 )B

= (A®1𝑛𝐴 ) (B®1𝑛𝐵 )
𝑇 + (A𝑇 ®1𝑛𝐴 ) (B𝑇 ®1𝑛𝐵 )𝑇

= [A®1𝑛𝐴 |A𝑇 ®1𝑛𝐴 ]︸             ︷︷             ︸
=U1

[B®1𝑛𝐵 |B𝑇 ®1𝑛𝐵 ]𝑇︸              ︷︷              ︸
=V1

= U1V1

𝑇
(7)

It is noteworthy that, in the first iteration, our method by Eq.(7)

enables a significant reduction in computational time, as opposed

to the naive approach that requires𝑂 (𝑚𝐴𝑛𝐵 +𝑚𝐵𝑛𝐴) to perform
matrix-matrix products (e.g. AZ0B𝑇 and A𝑇Z0B). Instead, our
approach maintains two low-rank embedding matrices, U1 and

V1, for the similarity Z1, resulting in a computational time of

only 𝑂 (2(𝑚𝐴 +𝑚𝐵)). This significant reduction is achieved by

leveraging the adaptive low-rank representation of Z0 and matrix

associative law for parenthesisation, which only entails 𝑂 (2𝑚𝐴)
(resp.𝑂 (2𝑚𝐵)) time to perform matrix-vector products A®1𝑛𝐴 and

A𝑇 ®1𝑛𝐵 (resp. B®1𝑛𝐵 and B𝑇 ®1𝑛𝐵 ). Furthermore, as observed from

Eq.(7), the resulting matrix Z1 has at most rank-2, due to the

existence of two slender matrices U1 (𝑛𝐴 × 2) and V1 (𝑛𝐵 × 2)
such that Z1 = U1V1

𝑇
. The iterative process continues till 𝑘

converges. For each iteration 𝑘 , it suffices to maintain only the

low-embedding matrices, U𝑘 and V𝑘 , for Z𝑘 . Only in the last

iteration 𝐾 , the outer product of U𝐾 and V𝐾 is carried out to

obtain S𝐾 .
Precisely, we have the following theorem, which shows that

our ideas yield identical results to the GSim similarity in Eq.(2).

Theorem 3.1. Let U𝑘 and V𝑘 be slender matrices defined as

U𝑘 = [AU𝑘−1 | A𝑇U𝑘−1] (𝑘 = 1, 2, · · · ) with U0 = ®1𝑛𝐴 (8)

V𝑘 = [BV𝑘−1 | B𝑇V𝑘−1] (𝑘 = 1, 2, · · · ) with V0 = ®1𝑛𝐵 (9)

The GSim similarity S𝑘 in Eq.(2) can be represented as

S𝑘 = U𝑘V𝑇
𝑘
/∥U𝑘V𝑇

𝑘
∥𝐹 (10)

Proof. We prove Eq.(10) by induction on 𝑘 .

Base Case: For𝑘 = 1, U1 = [A®1𝑛𝐴 | A𝑇 ®1𝑛𝐴 ], V1 = [B®1𝑛𝐵 | B𝑇 ®1𝑛𝐵 ].

U1V𝑇
1
= A · ®1𝑛𝐴 ®1𝑇𝑛𝐵 ·B

𝑇 + A𝑇 · ®1𝑛𝐴 ®1𝑇𝑛𝐵 ·B = AS0B𝑇 + A𝑇 S0B

Thus, S1 = U1V𝑇
1
/∥U1V𝑇

1
∥𝐹 , and Eq.(10) holds for 𝑘 = 1.

Induction Step:Assume the induction hypothesis S𝑘 = U𝑘V𝑇
𝑘
/∥U𝑘V𝑇

𝑘
∥𝐹

holds for 𝑘 . We can deduce that

U𝑘+1V𝑇
𝑘+1 = [AU𝑘 | A𝑇U𝑘 ] · [BV𝑘 | B𝑇V𝑘 ]𝑇

= A(U𝑘V𝑇
𝑘
)B𝑇 + A𝑇 (U𝑘V𝑇

𝑘
) B

which implies that

U𝑘+1V𝑇
𝑘+1U𝑘+1V𝑇
𝑘+1


𝐹

=

A
( S𝑘︷    ︸︸    ︷

U𝑘V𝑇
𝑘

∥U𝑘V𝑇
𝑘
∥
𝐹

)
B𝑇 + A𝑇

( S𝑘︷    ︸︸    ︷
U𝑘V𝑇

𝑘

∥U𝑘V𝑇
𝑘
∥
𝐹

)
BA( U𝑘V𝑇

𝑘

∥U𝑘V𝑇
𝑘
∥
𝐹

)
B𝑇 + A𝑇

( U𝑘V𝑇
𝑘

∥U𝑘V𝑇
𝑘
∥
𝐹

)
B

𝐹

= S𝑘+1

Thus, Eq.(10) holds for 𝑘 + 1, which completes the induction. □
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GSim+ Algorithm. Theorem 3.1 implies an efficient algorithm,

denoted as GSim+, for similarity computation (see Algorithm 1).

Algorithm 1: GSim+ (A,B, 𝐾,Q𝐴,Q𝐵 )
Input :A/B: adjacency matrix of G𝐴 (V𝐴, E𝐴 )/G𝐵 (V𝐵, E𝐵 ) ,

Q𝐴/Q𝐵 : a set of queries in graph V𝐴/V𝐵 ,
𝐾 : total number of iterations.

Output :S𝐾 : pairwise similarity matrix ( | Q𝐴 | × |Q𝐵 | ) between
queries Q𝐴 and Q𝐵 across graphs at iteration 𝐾 .

1 initialise U0 := ®1𝑛𝐴 and V0 := ®1𝑛𝐵
2 for 𝑘 := 1, 2, · · · , 𝐾 do
3 compute 𝝃1 := AU𝑘−1 and 𝝃2 := A𝑇U𝑘−1
4 compute 𝜼1 := BV𝑘−1 and 𝜼2 := B𝑇 V𝑘−1
5 update U𝑘 := [𝝃1 | 𝝃2 ] and V𝑘 := [𝜼1 | 𝜼2 ]
6 Z := [U𝐾 ]Q𝐴,∗ ( [V𝐾 ]Q𝐵 ,∗ )

𝑇

7 return S𝐾 := Z/∥Z∥𝐹

Example 3.2. Recall Figure 1. Given 𝐾 = 2, Q𝐴 = {1, 3, 7, 8},
and Q𝐵 = {𝑏, 𝑐, 𝑑}, GSim+ computes [S2]Q𝐴,Q𝐵 as follows:

First, U0 and V0 are initialised as two vectors of all 1s (line 1).

Then, U𝑘 and V𝑘 (𝑘 = 1, 2) are iteratively evaluated (lines 2–5)

as follows:

𝑘 U𝑘 V𝑘
0

[
1 1 1 1 1 1 1 1

]𝑇 [
1 1 1 1 1

]𝑇
1

[
2 3 4 2 1 3 3 3

1 4 4 1 3 0 5 3

]𝑇 [
1 4 3 3 3

1 3 4 3 3

]𝑇
2


7 10 10 3 3 6 10 10

8 12 15 4 5 9 11 13

2 12 11 3 9 0 14 10

1 13 13 0 5 0 14 13


𝑇 

3 10 10 10 10

4 11 9 10 10

4 9 11 10 10

3 10 10 10 10


𝑇

Next, we extract necessary rows from U2 and V2, respectively,

based on query sets Q𝐴 and Q𝐵 to compute Z (line 6), which

yields

[U2 ]Q𝐴,∗
7 8 2 1

10 15 11 13

10 11 14 14

10 13 10 13


[V2 ]𝑇Q𝐵,∗
10 10 10

11 9 10

9 11 10

10 10 10

 =

Z
186 174 180

494 486 490

487 493 490

463 457 460

 =⇒ S2 =

Z/∥Z∥𝐹
0.126 0.118 0.122

0.335 0.330 0.332

0.330 0.335 0.332

0.314 0.310 0.312


Finally, using ∥Z∥𝐹 = 1474, we normalise Z to obtain S2 (line 7).

□

4 PERFORMANCE ANALYSIS OF GSIM+
We first analyse the time and space complexity of GSim+ (The-

orem 4.1). We next provide an error bound for GSim+ (Theo-

rem 4.2).

Theorem 4.1 (Time and Space Complexity). GSim+ requires
𝑂 (𝑙 (𝑚𝐴 +𝑚𝐵 + |Q𝐴 | |Q𝐵 |)) time and𝑂 (𝑙 (𝑛𝐴 +𝑛𝐵)) memory space
(where 𝑙 = min{2𝐾 , 𝑛𝐴, 𝑛𝐵}) to retrieve similarity S𝐾 between two
query sets Q𝐴 and Q𝐵 across graphs G𝐴 and G𝐵 after 𝐾 iterations.

Proof. In line 1, it requires 𝑂 (𝑛𝐴) (resp. 𝑂 (𝑛𝐵)) time and

space to initialise U0 (resp. V0). At each 𝑘-th iteration (lines 2–5),

it takes 𝑂 (2𝑘−1𝑚𝐴) time and 𝑂 (2𝑘−1𝑛𝐴 + 𝑚𝐴) space to com-

pute 𝝃1 and 𝝃2 (line 3). Similarly, it takes 𝑂 (2𝑘−1𝑚𝐵) time and

𝑂 (2𝑘−1𝑛𝐵 +𝑚𝐵) space to compute 𝜼1 and 𝜼2 (line 4). Merging 𝝃1
and 𝝃2 (resp. 𝜼1 and 𝜼2) into a block matrix U𝑘 (resp. V𝑘 ) requires
𝑂 (𝑛𝐴2𝑘−1) (resp.𝑂 (𝑛𝐵2𝑘−1) time and space (line 5). Thus, for 𝐾

iterations, it entails𝑂 (∑𝐾
𝑘=1

2
𝑘−1 (𝑚𝐴 +𝑚𝐵) = 𝑂 (2𝐾 (𝑚𝐴 +𝑚𝐵))

time to obtain U𝐾 and V𝐾 . Next, it takes 𝑂 (2𝐾 |Q𝐴 | |Q𝐵 |) time

and 𝑂 (( |Q𝐴 | + |Q𝐵 |)2𝐾 + |Q𝐴 | |Q𝐵 |) space to compute Z (line 6).

Finally, normalising Z requires 𝑂 ( |Q𝐴 | |Q𝐵 |) time and space

(line 7). Thus, the total complexity of Algorithm 1 is 𝑂 (2𝐾 (𝑚𝐴 +
𝑚𝐵 + |Q𝐴 | |Q𝐵 |)) time and𝑂 (2𝐾 (𝑛𝐴 +𝑛𝐵)) space. Since for large
graphs, 𝑛𝐴 ≫ 2

𝐾
and 𝑛𝐵 ≫ 2

𝐾
, the term 2

𝐾
can be replaced

with 𝑙 = min{2𝐾 , 𝑛𝐴, 𝑛𝐵}. □

Theorem 4.2 (Error Bound). Let S𝑘 be the similarity matrix
produced by GSim+ after 𝑘 iterations, and S be the exact solution
to Eq.(1). For any even number of iterations 𝑘 , the gap between S𝑘
and S is bounded by

∥S𝑘 − S∥𝐹 ≤
(
|_2 |
|_1 |

)𝑘
𝐶 with 𝐶 = 1

|𝑐1 |

√︃∑𝑛
𝑖=2 𝑐𝑖

2
(11)

where _1 and _2 are the largest and second largest eigenvalues of
the matrix M = B ⊗ A + B𝑇 ⊗ A𝑇 , respectively. 𝑛 = 𝑛𝐴 × 𝑛𝐵 .
Each scalar 𝑐𝑖 is the 𝑖-th element of the length-𝑛 column vector
®c = [𝑐1, 𝑐2, · · · , 𝑐𝑛]𝑇 which is derived from ®c = V𝑇 ®1𝑛 where V is
a matrix whose columns are the corresponding eigenvectors of the
matrix M.

Proof. By Theorem 3.1, S𝑘 in Eq.(10) can be expressed as

S𝑘 =
U𝑘V𝑇

𝑘

∥U𝑘V𝑇
𝑘
∥𝐹

=
AS𝑘−1B𝑇 +A𝑇 S𝑘−1B

∥AS𝑘−1B𝑇 +A𝑇 S𝑘−1B∥𝐹
(12)

Let ®s𝑘 = 𝑣𝑒𝑐 (S𝑘 ), M = B ⊗ A + (B ⊗ A)𝑇 . Taking 𝑣𝑒𝑐 (∗) on
both sides of Eq.(12), and applying the property of the Kronecker

product 𝑣𝑒𝑐 (AXB𝑇 ) = (B ⊗ A)𝑣𝑒𝑐 (X) produces

®s𝑘 =
M®s𝑘−1

∥M®s𝑘−1 ∥2
= · · · = M𝑘®s0

∥M𝑘®s0 ∥2
=

M𝑘 ®1𝑛
∥M𝑘 ®1𝑛 ∥2

(𝑛 = 𝑛𝐴×𝑛𝐵) (13)

Let W be the eigenvectors of M associated with the eigenvalues

𝚲:

M = W𝚲W𝑇
and M𝑘 = W𝚲

𝑘W𝑇
(14)

Plugging Eq.(14) into Eq.(13) produces

∥M𝑘 ®1𝑛 ∥
2

2
= ®1𝑇𝑛M𝑘 · M𝑘 ®1𝑛 = (®1𝑇𝑛W)𝚲2𝑘 (W𝑇 ®1𝑛)

Let ®c = [𝑐1, 𝑐2, · · · , 𝑐𝑛]𝑇 ≜ W𝑇 ®1𝑛 and 𝚲 = 𝑑𝑖𝑎𝑔(_1, _2, · · · , _𝑛).
Assume the eigenvalues of M are sorted as |_1 | ≥ · · · ≥ |_𝑛 |.
Then,

∥M𝑘 ®1𝑛 ∥2 =
√︁
®c𝑇𝚲2𝑘®c =

√︃∑𝑛
𝑖=1 _𝑖

2𝑘𝑐𝑖
2 ≥

√︃
_1

2𝑘𝑐1
2 = |_1 |𝑘 |𝑐1 |

Substituting ∥M𝑘 ®1𝑛 ∥2 = |_1 |𝑘 |𝑐1 | back into Eq.(13) yields

®s𝑘 = M𝑘 ®1𝑛/∥M𝑘 ®1𝑛 ∥2 ≤ M𝑘 ®1𝑛/(|_1 |𝑘 |𝑐1 |) (15)

Similarly, plugging Eq.(14), we have M𝑘 ®1𝑛 = W𝚲
𝑘W𝑇 ®1𝑛 =

W𝚲
𝑘®c with ®c = W𝑇 ®1𝑛 . Let W = [w1 | · · · |w𝑛], where w𝑖 is a

vector. Then,

M𝑘 ®1𝑛 =
𝑛∑
𝑖=1

𝑐𝑖_
𝑘
𝑖

w𝑖 = 𝑐1_𝑘
1

w1 +
𝑛∑
𝑖=2

𝑐𝑖_
𝑘
𝑖

w𝑖 (16)

Since _𝑘
1
= |_1 |𝑘 for even number 𝑘 , we plug Eq.(16) into Eq.(15):

®s𝑘 ≤ 𝑐1
|𝑐1 | w1 +

𝑛∑
𝑖=2

𝑐𝑖
|𝑐1 |

_𝑘
𝑖

|_1 |𝑘
w𝑖 (17)

Next, we plug Eq.(16) into Eq.(14), and then take the limit on

both sides as 𝑘 → ∞, which produces ®s = (𝑐1/|𝑐1 |)w1. Finally,

we subtract Eq.(17) from ®s, take 2-norm on both sides, and use

the matrix norm property that ∥𝑣𝑒𝑐 (X)∥
2
= ∥X∥𝐹 , which yields

∥S𝑘 − S∥𝐹 = ∥®s𝑘 − ®s∥
2
≤
 𝑛∑
𝑖=2

𝑐𝑖_
𝑘
𝑖

|𝑐1 | |_1 |𝑘
w𝑖


2

=

√︄
𝑛∑
𝑖=2

(
𝑐𝑖_

𝑘
𝑖

|𝑐1 | |_1 |𝑘

)
2

w𝑇
𝑖

w𝑖

≤

√︄
𝑛∑
𝑖=2

(
𝑐𝑖_

𝑘
2

|𝑐1 | |_1 |𝑘

)
2

=

(
|_2 |
|_1 |

)𝑘
𝐶 with 𝐶 = 1

|𝑐1 |

√︃∑𝑛
𝑖=2 𝑐𝑖

2

□
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Figure 2: Time & Scalability
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Figure 3: Effect of 𝑘 on Time over Real Datasets (EE,WT, IT)
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Figure 5: Effect of ( |Q𝐴 |, |Q𝐵 |) on Time

5 EXPERIMENTS
5.1 Experimental Settings
Datasets. We use real-life datasets publicly available at [1–3].

G𝐴 𝑚 = |E𝐴 | 𝑛 = |V𝐴 | 𝑚/𝑛 Description
HP 421,578 34,546 12.2 Social friendship from ego-Facebook [3]

EE 420,045 265,214 1.6 A EU research institution Email network [3]

WT 5,021,410 2,394,385 2.1 Wikipedia talk (communication) graph [3]

UK 298,113,762 18,520,486 16.1 2002 large web crawl of .uk domain [2]

IT 1,150,725,436 41,291,594 27.9 2004 large web crawl of .it domain [2]

G𝐴 is directly taken from these datasets, whereas the corre-

sponding G𝐵 are sampled from a subgraph of G𝐴 with the size

|V𝐵 | = 10, 000.

Algorithms:We compare the following rivals:

• GSim+: our proposed scheme in Algorithm 1.

• GSVD [6]: the best-known competitor via low-rank SVD.

• GSim [4]: the conventional algorithm via power iteration.

• SS-BC* [7]: the StructSim hierarchical framework to calculate

a single-pair role similarity through BinCount matching.

• NED [22]: a single-pair role similarity model that utilises the

𝑘-adjacent trees of two nodes to assess the similarity.

• RSim [11], the RoleSim similarity model that ensures auto-

morphism confirmation via maximal neighbor matching.

Default Parameters: Unless otherwise specified, the number of

iterations 𝑘 = 10. The query size |Q𝐴 | = 2, 000 and |Q𝐵 | = 2, 000

(resp. |Q𝐵 | = 20, 000) for largeWT, UK, and IT.
All experiments were conducted on Rocky Linux 8.7, using an

Intel Core Xeon CPU E5-2660 v3 @ 2.60GHz, with 256GB RAM.

5.2 Experimental Results
5.2.1 Time Efficiency. The first set of experiments is to evalu-

ate the time and scalability of GSim+ against its rivals.

Varying G𝐴 on Real Datasets. Figure 2 compares the time

of GSim+ with its competitors on five real graphs. 1) On each

dataset, GSim+ consistently outperforms other algorithms, espe-

cially with larger graphs (UK and IT). This is because GSim+ can

avoid costly matrix-matrix multiplications for similarity assess-

ment through low-embeddings. 2)GSim+ time rises in proportion

to the size |G𝐴 |, which requires only 1.78s on small HP and 1794s

on large IT. This is compliant with the complexity analysis in

Theorem 4.1. 3) Across all datasets, SS-BC* is consistently 3–

67x slower than GSim+ due to SS-BC*’s repeated execution of

single-pair queries for |Q𝐴 | × |Q𝐵 | query pairs, resulting in many

duplicate computations. 4) RSim survives on small HP only, as

it requires cubic time for the recursive computation of maximal

neighbor matching for every pair of nodes. 5) NED is only vi-

able on small HP, and is 10,430x slower than GSim+, due to the

unbounded size of NED’s 𝑘-adjacent trees.
Varying 𝑘 . To show the impact of 𝑘 on GSim+ time, we fix query

size ( |Q𝐴 |, |Q𝐵 |) and vary 𝑘 from 2 to 10 on each dataset. in Fig-

ure 3. It is discernible that 1) on each dataset, the time of GSim+
grows mildly as 𝑘 rises, as expected. 2) NED performs well only

with small 𝑘 on HP, but it fails to yield results within one day

for larger graphs (WT and IT). This is because the number of

nodes per level in the unbounded 𝑘-adjacent trees experiences

an exponential increase w.r.t. 𝑘 . 3) RSim struggles with all these

datasets since it cannot memoise all-pairs similarities at each

iteration, even for partial pair queries. 4) SS-BC* works well on
largerWT and IT but consistently lags behind GSim+ in terms of

speed across all iterations, indicating its inefficiency in repeatedly

executing single-pair queries for handling partial-pair queries. 5)

When GSim and GSVD survive, GSim+ is consistently faster by

at least 2–3 orders of magnitude. 6) Even when GSim and GSVD
experience memory crash on WT, GSim+ still scales well due

to the effective use of the progressive low-rank embedding of

S. It is important to note that, in practice, when 𝑘 is small (e.g.
around 10), decent accuracy can be achieved on real datasets. For

instance, when 𝑘 = 12, the error of GSim+ on the HP dataset

is already below 0.01. As 𝑘 increases, accuracy improves, but

it comes at the expense of increased time and memory require-

ments. Thus, choosing 𝑘 involves a trade-off between speed and

accuracy. More importantly, even when 𝑘 becomes larger, the

time and space required by GSim+ never surpass those of GSim.

This is because, when the low dimensionality (2𝑘 ) exceeds the
number of graph nodes (𝑛𝐴 or 𝑛𝐵 ), GSim similarity computation

reverts to the original space dimensionality of min{𝑛𝐴, 𝑛𝐵}. In
such cases, after the iterations where 2

𝑘 ≥ min{𝑛𝐴, 𝑛𝐵}, GSim+
reduces to the traditional GSim without dimensionality reduc-

tion. Consequently, to perform the total number of iterations,

the time and space required by GSim+ remain always no greater

than those of GSim.

Effect of |V𝐵 | on Time. Figure 4 shows how the GSim+ time is

impacted by |G𝐵 |. 1) GSim+ scales well w.r.t. |V𝐵 | on all datasets,

and runs 2-3 orders of magnitude faster than GSim as |V𝐵 | rises,
showing the scalability of our low-embeddings on large graphs.
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Figure 6: Memory Space
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Figure 7: Effect of 𝑘 on Memory Space over EE andWT
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2) As G𝐵 grows, GSim and GSVD are more sensitive to |V𝐵 |
since GSim needs to assess the entire S𝑘 per iteration, whereas

GSim+ uses the low-embedding representation. 3) SS-BC*, being
a local single-pair search algorithm, shows little sensitivity to

|G𝐵 |, as its runtime is mainly influenced by the size of query

sets and the 𝑘-hop neighboring structure of each pair. 4) NED
remains unresponsive due to its costly maximum matching in

unbounded 𝑘-adjacent trees for each query. 5) RSim crashes on

EE and WT due to its substantial space requirements for storing

all-pair similarities.

Effect of ( |Q𝐴 |, |Q𝐵 |) on Time. Figure 5 depicts how changes

in query size (|Q𝐴 | and |Q𝐵 |) affect the time of GSim+ and its

rivals. 1) On each dataset, GSim+ shows impressive scalability,

with only a mild increase in time as |Q𝐴 | and |Q𝐵 | grows. 2)
As Q𝐴 and Q𝐵 increase in size, SS-BC* is always slower than
GSim+ and becomes more sensitive to the size of query sets. This

aligns with its time complexity since SS-BC* addresses partial-
pair queries by executing a single query multiple times. 3) NED
remains unresponsive for both graphs due to the exponential

growth of the 𝑘-adjacent trees.

5.2.2 Memory Efficiency. We next compare GSim+ memory

with its rivals and show how it is affected by various parameters.

Varying G𝐴 on Real Datasets. Figure 6 compares memory

between GSim+ and its competitors. 1) On all datasets, GSim+
entails 5–15 times less memory than GSim and GSVD, and scales
well on large graphs. GSim and GSVD crash on large graphs due

to their need for huge memory to maintain a large dense S. The
memory of GSim+ is comparable with SS-BC* and NED and is

slightly higher. This is because SS-BC* and NED are single-pair

search algorithms that will release memory after calculation of

each pair of similarity. 2) GSim+ memory rises linearly with the

size of G𝐴 , under the same iterations. This agrees with our space

complexity in Section 4.

Varying 𝑘 . Figure 7 shows the impact of 𝑘 on GSim+ memory.

1) As 𝑘 grows, GSim+ always consumes 1–3 orders of magnitude

less memory than GSim and GSVD on EE. Moreover, GSim+
scales well on largeWT, unlike GSim and GSVD suffering from

memory explosion. This highlights the efficacy of GSim+ that

incrementally generates the low-rank embedding for S. 2) NED
memory is on par with GSim+ across all iterations because NED
promptly frees up memory from the similarity results of the

current node pair to evaluate the similarity of the node pair in

the query set. 3) SS-BC* consumes additional memory compared

toGSim+ because of its need for space to accommodate the index.

Effect of ( |Q𝐴 |, |Q𝐵 |) on Space. Figure 8 shows the impact of

( |Q𝐴 |, |Q𝐵 |) on the memory of GSim+ and its rivals. Due to

similar trends, we only report results on EE for space interest.

We see that, 1) as |Q𝐴 | and |Q𝐵 | rise, GSim+ shows superior

scalability to GSim and GSVD. This is understandable given that

GSim and GSVD both require huge memory to keep all-pairs

similarities, whereas GSim+ only needs to store low-embeddings

of S. 2) RSim encounters memory issues when attempting to

materialise all-pairs similarities, leading to its failure. 3) GSim+,
SS-BC*, and NED have comparable memory requirements. They

are approximately 1.5 orders of magnitude lower than GSim and

GSVD, being less sensitive to query size, which is consistent with

the space complexity.

5.2.3 Accuracy of Approximation. Lastly, we evaluate the ac-
curacy of GSim+ on real datasets and compare it with GSim+
(with low-rank 𝑟 ∈ {5, 10, 50}). Below, we only show results on

HP due to its similarity to other datasets. The accuracy is mea-

sured by the error ∥S𝑘 − S∥𝐹 , where S𝑘 is the similarity matrix

at 𝑘-th iteration generated by each algorithm, and S is the exact

solution performed by GSim for 100 iterations, ensuring that the

similarity values are accurate up to 6 decimal places, achieving

‘float’ type precision.

𝑘 GSim+ / GSim GSVD
(𝑟 = 5) (𝑟 = 10) (𝑟 = 50)

4 1.89755 × 10
−2

2.13657 × 10
−2

2.13632 × 10
−2

2.13628 × 10
−2

8 1.03769 × 10
−2

1.24451 × 10
−2

1.24352 × 10
−2

1.24350 × 10
−2

12 6.17055 × 10
−3

8.11206 × 10
−3

8.09702 × 10
−3

8.09688 × 10
−3

16 3.79280 × 10
−3

5.74970 × 10
−3

5.73933 × 10
−3

5.73927 × 10
−2

20 2.34014 × 10
−3

4.41413 × 10
−3

4.40861 × 10
−3

4.40859 × 10
−2

Here are the key findings: 1) For each iteration 𝑘 , the errors

of GSVD slightly decrease as low-rank 𝑟 grows. However, even

with this decrease, the errors of GSVD remain consistently larger

than those of GSim+, regardless of the chosen low-rank 𝑟 . This

shows that our low-embeddings effectively avoid the issues of

overfitting and underestimation in similarity approximation. 2)

The errors of GSim+ and GSim are identical at each iteration.

This indicates that our low embedding technique does not com-

promise the accuracy of GSim, highlighting the correctness of

Theorem 3.1. 3) The error of GSim+ approaches zero as 𝑘 rises,

and its convergence rate outpaces that of GSVD. This aligns with
our error analysis in Theorem 4.2.

6 CONCLUSIONS
This paper studies the efficient computation of GSim similarity

between a collection of nodes across two graphs at a large scale

with guaranteed accuracy. Firstly, we propose a novel algorithm

namely GSim+, which employs an adaptive low-dimensional

embedding technique for iteratively evaluating the similarity

matrix, greatly accelerating the computation of GSim. Secondly,

we provide a theoretical error bound on the iterative computation

of GSim+, and analyse its computational complexity. Finally, our

experiments on real datasets demonstrate that GSim+ surpasses

state-of-the-art competitors, achieving 1–4 orders of magnitude

speedup and superior scalability on billion-edge graphs.
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