
CSR+: A Scalable Efficient CoSimRank Search Algorithm with
Multi-SourceQueries on Massive Graphs
Maoyin Zhang

Nanjing University of Sci. & Tech.

Jiangsu, Nanjing, China

maoyinzhang@njust.edu.cn

Weiren Yu
∗

Warwick University

Coventry, CV4 7AL, UK

weiren.yu@warwick.ac.uk

ABSTRACT
CoSimRank is a compelling model that iteratively follows the

SimRank-like notion that “two items (nodes) are deemed similar

if their in-neighbours are similar”. However, the existing CoSim-

Rank algorithm [6] is only efficient in single-source search, and

is rather sluggish for multi-source queries due to repeated cal-

culations across queries. Another algorithm [4] involves cost-

inhibitive tensor products in preprocessing, rendering it unscal-

able on big graphs. In this paper, we proposeCSR+, a fast efficient

multi-source CoSimRank algorithm that scales well on billion-

edge graphs. First, we analyse the pros and cons of [4] and pro-

pose a four-stage optimisation scheme to eliminate costly graph

tensor products and numerous repetitive similarity calculations

while addressing each of the deficiencies in [4]. Next, we present

an efficient algorithm, CSR+, for multi-source CoSimRank search,

which significantly reduces the computation time from 𝑂 (𝑟4𝑛2)
to 𝑂 (𝑟 (𝑚 + 𝑛(𝑟 + |Q|))) and memory from 𝑂 (𝑟2𝑛2) to 𝑂 (𝑟𝑛) on
a graph of 𝑛 nodes and𝑚 edges, without compromising the ac-

curacy of [4], where 𝑟 (≪ 𝑛) is the low rank of singular value

decomposition. Experiments on various real datasets validate

that CSR+ is 1—4 orders of magnitude faster than its rivals for

multi-source queries while scaling on large graphs.

1 INTRODUCTION
Evaluating similarity between nodes is an essential operation

on graphs, used in a wide spectrum of real applications, e.g. syn-
onym expansion [10], knowledge graphs [16], link prediction [7],

and so forth. Many graph-theoretic similarity measures have

been proposed, including SimRank [1], SimFusion [8], CoSim-

Rank [6], SemSim [5], and CoSimHeat [15]. Of these, CoSimRank,

conceived by Rothe and Schütze [6], shines out as particularly ap-

pealing due to its simple SimRank-like intuition that “two items

(nodes) are deemed similar if their in-neighbours are similar”.

However, CoSimRank similarity between each node and itself

is not necessarily 1. This base case differs from the well-known

SimRank definition [1], where the similarity of every node to

itself is constantly 1. Due to this nuance, CoSimRank and Sim-

Rank interpret random surfers differently: CoSimRank similarity

for nodes 𝑎 and 𝑏 reflects all the meeting times of two random

surfers starting from nodes 𝑎 and 𝑏, while SimRank reflects only

their first meeting time. Therefore, CoSimRank contains richer

link information than SimRank.

In this study, we consider the problem of fast CoSimRank

search with multi-source queries. Given a graph G and a set of

queries Q, we want to retrieve CoSimRank similarities, [S]∗,Q :=

{[S]𝑥,𝑞}𝑥∈G,𝑞∈Q , between each node in G and each query 𝑞 in

∗
Weiren Yu is the corresponding author.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the

27th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2024, ISBN 978-3-89318-094-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

a

bd c

f e
law
unlabelled user

(with no Wiki page)

art

(a) Wiki Talk Graph G

b

e

d

e

a c

c f

da f

p
(0)
b = [0, 1, 0, 0, 0, 0]T

p
(0)
d = [0, 0, 0, 1, 0, 0]T

p
(2)
d = [0, 0, 0.17, 0.67, 0, 0.17]T

p
(2)
b = [0, 0, 0.17, 0.67, 0, 0.17]T

p
(3)
d = [0.22, 0, 0, 0.33, 0.22, 0.22]T

p
(3)
b = [0.22, 0, 0, 0.33, 0.22, 0.22]T

· · · · · · · · · · · ·

d

e

d

e

a f

c f

da f

query

duplicates

p
(1)
b = [0.33, 0, 0.33, 0, 0.33, 0]T

p
(1)
d = [0.33, 0, 0, 0, 0.33, 0.33]T

b

d
a c e

a fe

c d f

c d f

a d e f

a d e f· · · · · · · · · · · ·

duplicate
computation

in PPRs

2

(b) 3-hop In-linked Propagation from Each Individual Query

Figure 1: Duplicate Computations in CoSimRank Search
[S]∗,Q with Multi-Source Queries Q = {𝑏, 𝑑} on Graph G

Q. Many real-world applications benefit from multi-source simi-

larity search, e.g. document classification, and social community

identification.

Application (Wikipedians Categorisation). Figure 1(a) de-
picts a tiny Wikipedia Talk graph, where a node is a Wikipedia

user, and an edge 𝑥 → 𝑦 exists if user 𝑥 edited user 𝑦’s talk page.

Some users (e.g. {𝑎, 𝑏, 𝑑}), who have added their user page to the

“Wikipedian-by-interest” category, are labelled with an area of

interest (e.g. “art” for user 𝑎 and “law” for 𝑏 and 𝑑). To retrieve

users in G relevant to the area of “law”, similarities of all nodes

in G are evaluated w.r.t. a set of queries Q = {𝑏, 𝑑} labelled with

“law”. Similarity values [S]∗,Q can aid in automatic Wikipedi-

ans categorisation based on interests, using the link structure of

Wikipedia Talk. □
However, existing work on CoSimRank computation suffers

from two limitations: Firstly, the previous algorithm [6] is effi-

cient only in single-source search, and is too sluggish for multi-

source queries due to repeated calculations across queries, as

shown in Example 1.1.

Example 1.1. In Figure 1(a), given a multi-source query Q =

{𝑏, 𝑑}, we aim to retrieve the CoSimRank similarities [S]∗,Q . The
existing algorithm [6] splits Q into two single-source individual

queries and evaluates [S]∗,𝑏 and [S]∗,𝑑 independently, leading

to many duplicate calculations. Precisely, for each query 𝑏 (resp.
𝑑), first, the Personalised PageRank (PPR) vector w.r.t. seed node

𝑏 (resp. 𝑑) at each iteration 𝑘 is computed to get the 𝑘-hop in-

neighbours of 𝑏 (resp. 𝑑). As shown in Figure 1(b), the 1-hop

in-neighbour sets of 𝑏 and 𝑑 share two nodes {𝑎, 𝑒}. Since 𝑐 and 𝑓

have the same in-neighbour set {𝑑}, 𝑏 and 𝑑 have the same 2-hop

in-neighbour sets, leading to identical PPR vectors (p(𝑘)
𝑏

= p(𝑘)
𝑑

)
for every subsequent iteration 𝑘 = 2, 3, · · · . These identical PPRs
(in orange) indicate many duplicate computations. □

Secondly, another optimisation algorithm proposed by Li et al. [4]
divides similarity calculation into two stages: precomputation

and online query. However, the low-rank decomposition in pre-

computation entails a cost-inhibitive graph tensor product.Worse,

there are many superfluous memorised results from precompu-

tation which are futile for online query, as will be detailed in

Sections 3.1–3.2. It is worth mentioning that, although the initial

Short Paper

Series ISSN: 2367-2005 201 10.48786/edbt.2024.18

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.18

Algorithm Time Memory Error
CSR+ (this work) 𝑂 (𝑟 (𝑚 + 𝑛(𝑟 + |Q|)) 𝑂 (𝑟𝑛) the same low

rank-𝑟 errorNI-Sim [4] 𝑂 (𝑟4𝑛2 + 𝑟4𝑛 |Q|) 𝑂 (𝑟2𝑛2)
CoSimRank [6] 𝑂 (𝑛2 log(1/𝜖) |Q|) 𝑂 (𝑛2) 𝜖

CoSimMate [11] 𝑂 (𝑛3 log
2
(log(1/𝜖))) 𝑂 (𝑛2) 𝜖

PR-CoSim [9] 𝑂 (𝑛2 log(𝑛)/𝜖2 log(1/𝜖)) 𝑂 (𝑛2) 𝜖

F-CoSim [14] 𝑂 (𝑛2 + log(1/𝜖)𝑛(𝑚 − 𝑛) |Q|) 𝑂 (𝑛2) 𝜖

Table 1: Comparison of Various CoSimRank Algorithms
forMulti-Source Search [S]∗,Q OnQuery SetQ (𝑛×|Q| Pairs)
intention of [4] was to speed up SimRank search, the approach

in that work actually provides an approximation of SimRank sim-

ilarity using a linear matrix equation. This equation [4, Eq.(2)]

lacked a specific name for the similarity measure, but later re-

search [13] proved it to be an exact scaled version of the CoSim-

Rank equation. Consequently, the methodologies presented by

[4] essentially represent optimization techniques for the CoSim-

Rank measure. Thus, there is a pressing need to devise a novel

efficient CoSimRank algorithm.

Contributions. Our main contributions are listed as follows:

• We first discuss the pros and cons of Li et al.’s work [4] (§ 3.1),
and present optimisation techniques to eliminate its costly

tensor products and many repeated calculations during simi-

larity computation while tackling each of the blemishes in [4]

(§ 3.2).

• We propose an efficient algorithm, CSR+, for multi-source

CoSimRank search with theoretical guarantees, which greatly

reduces the time [4] from 𝑂 (𝑟4𝑛2) to 𝑂 (𝑟 (𝑚 + 𝑛(𝑟 + |Q|)))
and memory from 𝑂 (𝑛2𝑟2) to 𝑂 (𝑛𝑟) on a graph of 𝑛 nodes

and𝑚 edges (§ 3.3).

• Using various real datasets, we empirically validate that CSR+
consistently outperforms the state-of-the-art rivals by 1 − 4

orders of magnitude in both time and space for multi-source

queries while scaling effectively on billion-edge graphs (§ 4).

Related Work. Recent years have witnessed an upsurge of in-

terest in the efficient search for CoSimRank since its concep-

tion by Rothe and Schütze [6]. They also suggested two effi-

cient algorithms for single-pair and single-source CoSimRank

search, respectively. However, when broadened to multi-source

queries, such approaches become exceedingly slow due to a num-

ber of repeated calculations across distinct queries. Since then,

a variety of methods for accelerating the CoSimRank compu-

tation [4, 9, 11, 14] have been presented. Their time and space

complexity for multi-source CoSimRank search has been sum-

marised in Table 1. CoSimmate [11] adopts a repeated squaring

approach, which can exponentially cut down the number of it-

erations to guarantee the same accuracy, but requires quadratic

space to memoise the squared intermediate results. As a result,

this approach is unsuitable for direct use in high-dimensional

space. Renchi Yang [9] presented RP-CoSim, a randomised tech-

nique for estimating all-pairs CoSimRank similarities by Gauss-

ian sampling. Nevertheless, its𝑂 (𝑛2) memory seriously limits its

scalability on large graphs. Recently, Yu and Fan [14] proposed

a dynamic single-source CoSimRank method for evolving net-

works. This strategy, however, is less efficient when employed

for multi-source search on static graphs. Recently, there is also

another method [4] using low-rank SVD to speed up SimRank

computation, but [4] worked on the linear approximation of the

SimRank equation, which essentially generates the scaled CoSim-

Rank scores. Please refer to Section 2 for more details. Moreover,

there exist rather costly graph tensor products in precomputation,

making [4] unscalable on any large graphs.

Symbol Description Symbol Description
G(V, E) graph (V/E: node/edge set) Q a set of queries

[X]𝑖,∗ 𝑖-th row of matrix X Q transition matrix

[X]∗, 𝑗 𝑗-th column of matrix X I𝑛 𝑛 × 𝑛 identity matrix

X𝑇
transpose of matrix X S similarity matrix

𝑛,𝑚 number of nodes/edges in 𝐺 𝜖 desired accuracy

𝑟 target low rank of SVD 𝑐 damping factor

Table 2: Description of Main Symbols

2 PRELIMINARIES
We formally revisit the origins of CoSimRank [6]. The key sym-

bols and definitions used in this paper are laid out in Table 2.

CoSimRankFormulation.Given a graphG = (V, E) with a set
of nodesV and a set of edges E, let Q be the column-normalised

adjacency matrix. The CoSimRank matrix S is defined as

S = 𝑐Q𝑇 SQ + I𝑛 (1)

where 𝑐 ∈ (0, 1) is a user-specified damping factor, typically set

to 0.6 or 0.8 [6]. (∗)𝑇 is matrix transpose. I𝑛 is a 𝑛 × 𝑛 identity

matrix.

In comparison, CoSimRank Eq.(1) is similar to the following

Jeh and Widom’s well-known SimRank equation [1]:

S = max{𝑐Q𝑇 SQ, I𝑛} (2)

Contrary to SimRankwith the entry-wisemax operator “max{∗, I𝑛}”
which sets each element on the diagonal of S to 1, CoSimRank

Eq.(1) with “+ I𝑛” ensures that each similarity [S]𝑎,𝑎 not only

recursively considers the in-neighbouring structure of node 𝑎

but also exceeds the similarity value [S]𝑎,𝑥 between 𝑎 and any

other node 𝑥 in G.

CoSimRank Computation. Rothe and Schütze [6] computes

each pair of CoSimRank similarity as follows:

[S]𝑎,𝑏 =
∞∑
𝑘=0

𝑐𝑘 (p(𝑘)
𝑎)𝑇 p(𝑘)

𝑏
(3)

where p(𝑘)
𝑎 (resp. p(𝑘)

𝑏
) is the𝑘-th iterative Personalised PageRank

vector w.r.t. seed node 𝑎 (resp. 𝑏), which is iteratively computed

as

p(𝑘+1)
𝑎 = Qp(𝑘)

𝑎 (𝑘 = 0, 1, · · ·) with p(0)
𝑎 = [I𝑛]∗,𝑎

For single-pair or single-source similarity search, the method

of Eq.(3) is scalable and efficient. However, when extended to

multi-source queries, this method becomes rather sluggish.

Li et al.’s [4] Relation to CoSimRank. To support multi-source

or all-pairs similarity search, Li et al. [4] suggested a non-iterative
method to efficiently solve the matrix S′ to the following equa-

tion:

S′ = 𝑐Q𝑇 S′Q + (1 − 𝑐)I𝑛 (4)

and considered the solution S′ to Eq. (4) as a linear approxima-

tion of the SimRank matrix S to Eq.(2). The recent work [13] has

proved that the solution S′ in Eq.(4) is different from the SimRank

solution S in Eq.(2). Moreover, it can be easily verified that S′ in
Eq.(4) is exactly the scaled version of the CoSimRank solution S
to Eq.(1). That is, S′ and S satisfy the relationship: S′ = (1 − 𝑐)S.
Therefore, the computational methods of [4] to solve Eq.(4) for S′

can be regarded as an algorithm designed to compute the scaled

CoSimRank similarity, rather than the SimRank values. This is

the reason why the work [4] is perceived more closely to CoSim-

Rank than SimRank. As a result, the non-iterative optimisation

techniques of Li et al. [4] for solving Eq.(4) can be directly ap-

plied to CoSimRank computation. Specifically, Li et al. [4] first
introduced two matrix operators:

202

Definition 2.1. vec(X) vectorises a 𝑝 × 𝑞 matrix X into the

𝑝𝑞 × 1 column vector by stacking the columns of X on top of one

another:

vec(X) = [𝑥11, · · · , 𝑥𝑞1, 𝑥12, · · · , 𝑥𝑞2, · · · , 𝑥1𝑝 , · · · , 𝑥𝑞𝑝]𝑇 □

Definition 2.2. The tensor product X ⊗ Y of a 𝑝 × 𝑞 matrix X
and a 𝑟 × 𝑠 matrix Y is the 𝑝𝑟 × 𝑞𝑠 matrix, defined as

X ⊗ Y =

𝑥11Y . . . 𝑥1𝑞Y
.
.
.

. . .
.
.
.

𝑥𝑝1Y . . . 𝑥𝑝𝑞Y

 □

Employing these two operators, Li et al. [4] derives the follow-
ing closed-form for the similarity matrix S to Eq.(1):

vec(S) =
(
I𝑛2 − 𝑐 (Q ⊗ Q)𝑇

)−1
vec(I𝑛) (5)

To speed up the computation of matrix inverse in Eq.(5), Li

et al. [4] next applied the SVD (Q = UΣV𝑇) to the tensor prod-

uct Q ⊗ Q in conjunction with the Sherman-Morrison formula,

yielding the following expression to compute similarity matrix S
in Eq.(1):

vec(S) = vec(I𝑛) + 𝑐 (U ⊗ U)Λ(V ⊗ V)𝑇 vec(I𝑛) (6a)

with Λ =
(
(Σ ⊗ Σ)−1 − 𝑐 (V ⊗ V)𝑇 (U ⊗ U)

)−1
(6b)

The pros and cons of this method will be discussed in Section 3.1.

3 OPTIMISING COSIMRANK COMPUTATION
3.1 Pros and Cons of Li et al.’s Approach
A key advantage of Li et al.’s method [4] is that the computation

of similarity is divided into two phases: 1) In the preprocessing

phase, the matrix Λ is computed only once by Eq.(6b). 2) In the

query phase, Λ is reused and shared multiple times to compute

the multi-source similarity [S]∗,Q over a set of queries Q via

Eq.(6a). However, there are several limitations associated with Li

et al.’s method [4] that impede its scalability and speed:

• A costly tensor product (V ⊗ V)𝑇 (U ⊗ U) in Eq.(6b), which

requires 𝑂 (𝑟4𝑛2) time and 𝑂 (𝑟2𝑛2) memory.

• A redundant 𝑂 (𝑟2𝑛2)-time tensor product (V ⊗ V)𝑇 in

Eq.(6a), whose removal has no effect on the outcome.

• Many elements of Λ precomputed by Eq.(6b) are not used

at all for subsequent similarity computation via Eq.(6a).

• An expensive𝑂 (𝑟2𝑛2)-time tensor product (U⊗U) in Eq.(6a),
which can be eliminated without affecting the result.

Consequently, this method does not scale well on large graphs

since 𝑟4 may be much larger than 𝑛 even for the low rank 𝑟 ≪ 𝑛.

3.2 Our Optimisation Techniques
To greatly reduce the computational cost of Li et al.’s method [4],

we next propose an efficient four-stage optimisation scheme for

addressing each of the deficiencies outlined in Section 3.1.

1) Speeding up Computation of (V ⊗ V)𝑇 (U ⊗ U) in Eq.(6b).
Our first optimisation method rests on the following observation:

Theorem 3.1. The most expensive part (V ⊗ V)𝑇 (U ⊗ U) in
Eq.(6b) can be computed efficiently as

(V ⊗ V)𝑇 (U ⊗ U) = Θ ⊗ Θ with Θ = V𝑇 U (7)

which substantially reduces the computational time from 𝑂 (𝑟4𝑛2)
to𝑂 (𝑟2𝑛 + 𝑟4), and the memory usage from𝑂 (𝑟2𝑛2) to𝑂 (𝑟𝑛 + 𝑟4).

Proof. Eq.(7) is based on two properties of the tensor product:

(1) Transpositions are distributive over the tensor product,

i.e., (V ⊗ V)𝑇 = V𝑇 ⊗ V𝑇
.

(2) Mixed product property, i.e., if A,B,C,D are matrices of

such size that one can form the matrix products AC and

BD, then

(A⊗B) (C⊗D) = (AC)⊗(BD) with A = B = V𝑇
and C = D = U.

Combining these two properties, Eq.(7) follows immediately. □

Note that, in Eq.(7), computing Θ = V𝑇 U only requires𝑂 (𝑟2𝑛)
time and𝑂 (𝑟𝑛) memory. Since Θ is of size 𝑟 × 𝑟 , the computation

of Θ⊗Θ entails𝑂 (𝑟4) time and𝑂 (𝑟4) memory. Moreover, Θ only

needs to be computed once and is reused twice to obtain Θ ⊗ Θ.

As a result, the overall cost of Eq.(7) requires 𝑂 (𝑟2𝑛 + 𝑟4) time

and𝑂 (𝑟𝑛 + 𝑟4) memory, which is a significant improvement over

the𝑂 (𝑟4𝑛2) time and𝑂 (𝑟2𝑛2) memory of Li et al.’s approach [4].

2) RemovingUnnecessaryTensor Product (V⊗V)𝑇 in Eq.(6a).
Our second observation is based on the following theorem:

Theorem 3.2. For the query phase, computing the tensor product
(V ⊗ V)𝑇 in Eq.(6a) is redundant, i.e., Eq.(6a) can be simplified as

vec(S) = vec(I𝑛) + 𝑐 (U ⊗ U) (Λvec(I𝑟)) (8)

Proof. After the SVD decomposition Q = UΣV𝑇
is applied,

the 𝑛 × 𝑟 matrix V is column-orthonormal, which satisfies I𝑟 =

V𝑇 V. We take vec(∗) on both sides and apply the tensor property

to get

vec(I𝑟) = vec(V𝑇 V) = (V𝑇 ⊗ V𝑇)vec(I𝑛) = (V ⊗ V)𝑇 vec(I𝑛)
Replacing (V ⊗ V)𝑇 vec(I𝑛) in Eq.(6a) with vec(I𝑟) yields Eq.(8).

□

Theorem 3.2 not only accelerates the computation of Eq.(6a)

by saving the 𝑂 (𝑟2𝑛2) time and memory of the tensor product

(V ⊗ V) without compromising any accuracy, but also reveals

much redundancy in Eq.(8), which directs our next optimisation

technique.

3) Eliminating Redundancy of (Λvec(I𝑟)) in Eq.(8). Note that
Λ is the 𝑟2 × 𝑟2 matrix precomputed by Eq.(6b), and vec(I𝑟) is a
very sparse vector with only 𝑟 elements 1s and the remaining

𝑟 × (𝑟 −1) elements 0s. As a result, the computation of (Λvec(I𝑟))
is essentially to extract only 𝑟 columns (with their column in-

dices associated with the indices of the 1s in vec(I𝑟)) from the 𝑟2

columns of matrix Λ. This implies that all the remaining 𝑟×(𝑟−1)
columns of Λ is useless for (Λvec(I𝑟)) computation in Eq.(8). Con-

sequently, there is no need to precompute all 𝑟2 × 𝑟2 elements of

Λ via Eq.(6b).

Nonetheless, to eliminate unnecessary computations in (Λvec(I𝑟)),
it seems challenging to directly resort to the expression of Λ in

Eq.(6b) for speedup. Thus, we begin by representing Λ as another

expression, which serves as the basis for (Λvec(I𝑟)) optimisation.

Theorem 3.3. The matrix Λ in Eq.(6b) can be expressed as

Λ = (Σ ⊗ Σ)
(
I𝑟 2 − 𝑐 (H ⊗ H)

)−1 with H = V𝑇 UΣ (9)

Proof. In virtue of Eq.(6b) and Theorem 3.1, it follows that

(Σ ⊗ Σ)−1Λ = (Σ ⊗ Σ︸︷︷︸
=X

)−1
(
(Σ ⊗ Σ)−1 − 𝑐 (V𝑇 U) ⊗ (V𝑇 U)︸ ︷︷ ︸

=Y

)−1
Applying the inverse property X−1Y−1 = (YX)−1, we have

(Σ ⊗ Σ)−1Λ =
(
I𝑟 2 − 𝑐

(
(V𝑇 U) ⊗ (V𝑇 U)

)
(Σ ⊗ Σ)

)−1
=
(
I𝑟 2 − 𝑐 (H ⊗ H)

)−1
with H = V𝑇 UΣ

203

Left-multiplying both sides by (Σ ⊗ Σ) produces Eq.(9). □

Theorem 3.3 is introduced to optimise the computation of

(Λvec(I𝑟)) in Eq.(8), which is based on the following theorem.

Theorem 3.4. The term (Λvec(I𝑟)) in Eq.(8) can be computed as

Λvec(I𝑟) = vec(ΣPΣ) (10)

where P is the solution to the following equation (in 𝑟 × 𝑟 subspace):
P = 𝑐HPH𝑇 + I𝑟 with H = V𝑇 UΣ (11)

Proof. Plugging Λ in Eq.(9) into Λvec(I𝑟), we obtain

Λvec(I𝑟) = (Σ ⊗ Σ)
(
I𝑟 2 − 𝑐 (H ⊗ H)

)−1
vec(I𝑟) = (Σ ⊗ Σ)vec(P)

where vec(P) satisfies
(
I𝑟 2 − 𝑐 (H ⊗ H)

)
vec(P) = vec(I𝑟), i.e.,

vec(P) = 𝑐 (H ⊗ H)vec(P) + vec(I𝑟) = vec(𝑐HPH𝑇) + vec(I𝑟)

Thus, P = 𝑐HPH𝑇 + I𝑟 holds, which proves Eqs.(10) and (11). □

Theorem 3.4 provides an efficientmethod to compute (Λvec(I𝑟)),
thereby reducing redundancy significantly. Specifically, to ob-

tain (Λvec(I𝑟)) using Theorem 3.4, it first takes𝑂 (𝑟2𝑛) time and

𝑂 (𝑟𝑛) memory to compute H = V𝑇 UΣ by Eq.(11). Due to the

small size of H (𝑟 × 𝑟), the matrix P can then be iteratively com-

puted by Eq.(11) in the low-rank 𝑟 space, which requires 𝑂 (𝑟3)
time and 𝑂 (𝑟2) memory in the worst case. After P is obtained,

it takes only 𝑂 (𝑟2) time and space to compute ΣPΣ by Eq.(10)

to get the result of (Λvec(I𝑟)). Thus, the total complexity of

computing (Λvec(I𝑟)) by Theorem 3.4 is 𝑂 (𝑟2𝑛) time and 𝑂 (𝑟𝑛)
memory (𝑟 ≪ 𝑛). In contrast, the traditional method to compute

(Λvec(I𝑟)) demands 𝑂 (𝑟6 + 𝑟4𝑛2) time and 𝑂 (𝑟2𝑛2) memory to

prepare all entries of Λ via Eq.(6b) and Theorem 3.1. Intuitively,

Theorem 3.4 does not require the entire Λ to be prepared and

instead processes (Λvec(I𝑟)) as a whole via Eqs.(10) and (11),

thus eliminating a large amount of redundancy.

4) Avoiding Tensor Product (U ⊗ U) in Eq.(8). We next focus

on optimising (U ⊗ U) in Eq.(8) to further accelerate S compu-

tation since (U ⊗ U), if carried out directly, consumes 𝑂 (𝑟2𝑛2)
time and memory, being the most expensive part that inhibits

the scalability of CoSimRank on large graphs. Fortunately, by

integrating Theorems 3.2–3.4, we observe that the tensor prod-

uct (U ⊗ U) in Eq.(8) can be effectively avoided by applying the

property (U ⊗ U)vec(ΣPΣ) = vec(U(ΣPΣ)U𝑇), thereby enabling

a further significant reduction in S computation. To be more

specific, we have the following theorem:

Theorem 3.5. The multi-source CoSimRank similarity [S]∗,Q
over a set of queries Q in Eq.(8) can be computed efficiently as

[S]∗,Q = [I𝑛]∗,Q + 𝑐Z[U]𝑇Q,∗ (12)

where Z := U(ΣPΣ) satisfies Eq.(11).

Proof. Plugging Eq.(10) into Eq.(8) produces

vec(S) = vec(I𝑛) + 𝑐 (U ⊗ U)vec(ΣPΣ) = vec(I𝑛) + vec(𝑐U(ΣPΣ)U𝑇)

Taking off vec(∗) operator on both sides yields S = I𝑛+𝑐U(ΣPΣ)U𝑇
.

Then, applying Theorem 3.4 to the term (ΣPΣ) and right-multiplying

both sides by [I𝑛]∗,Q result in Eq.(12). □

Theorem 3.5 substantially accelerates multi-source CoSim-

Rank search while avoiding the cost-inhibitive tensor product

(U⊗U). Using Eq.(12), it only takes𝑂 (𝑛𝑟2 +𝑛𝑟 |Q|) time (𝑟 ≪ 𝑛)
and𝑂 (𝑛𝑟) memory to assess [S]∗,Q , consisting of (i)𝑂 (𝑛𝑟2) time

and𝑂 (𝑟𝑛) memory to obtain Z and (ii)𝑂 (𝑛𝑟 |Q|) time and𝑂 (𝑛𝑟)
memory to compute Z[U]𝑇Q,∗. As an extreme case when Q = V

(resp. Q = {𝑞}), Eq.(8) reduces to all-pairs (resp. single-source)
search. In contrast, the cost of Eq.(8), even when applied to the

multi-source scenario to compute [S]∗,Q , is still dominated by

the 𝑂 (𝑛2𝑟2) time and memory of the tensor product (U ⊗ U),
rather than the size of queries |Q|.

3.3 Putting Them All Together
Combining Theorems 3.1–3.5, we next provide a complete al-

gorithm, namely CSR+, for efficient multi-source CoSimRank

computation that scales well on billion-edge graphs, as shown in

Algorithm 1.

Algorithm. CSR+ takes as inputs a graph G(V, E), a set of

queries Q (⊆ V), and a target low rank 𝑟 (≪ 𝑛), and outputs

multi-source CoSimRank scores, [S]∗,Q , between each node in

G and any query in Q. CSR+ works as follows: First, the column-

normalised adjacency matrix Q (𝑛×𝑛) is decomposed into UΣV𝑇

using the low rank-𝑟 SVD (lines 1–2). Then, using H0 = V𝑇 UΣ,
a low-dimensional subspace (𝑟 × 𝑟) is built (line 3). In the sub-

space, the matrix P is determined iteratively using a repeated

squaring approach (line 5). There is a loop (lines 4–5) that iter-

ates until P𝑘 converges to P. To guarantee desired accuracy 𝜖 ,

this loop terminates when the number of iterations, 𝑘 , reaches

max{0, [log
2
log𝑐 𝜖] + 1} using the repeated squaring approach

of our prior work [12]. At this point, ∥P𝑘 − P∥max < 𝜖 . Using

P, Z is computed only once and memoised for later use (line 6).

During the query stage, the similarity [S]∗,Q is computed from

Z and U on an as-needed basis (line 7).

Example 3.6. Recall the graph G in Figure 1(a). Given a query

set Q = {𝑏, 𝑑}, low rank 𝑟 = 3, and damping factor 𝑐 = 0.6, CSR+
computes the CoSimRank similarities [S]∗,Q as follows:

First, the column normalised adjacency matrix Q is decom-

posed into UΣV𝑇
via low rank-3 SVD (lines 1–2) as follows:

Q

0 1/3 0 1/3 0 0

0 0 0 0 0 0

0 1/3 0 0 1/2 0

1 0 1 0 0 1

0 1/3 0 1/3 0 0

0 0 0 1/3 1/2 0

=

U

0.58 0 0

0 0.53 −0.47
0.58 0 0

0 0.53 −0.47
0 0.66 0.75

0.58 0 0

Σ
1.73 0 0

0 0.87 0

0 0 0.54

V𝑇

0 0 0 1 0 0

0.40 0 0.58 0 0.40 0.58

−0.58 0 0.40 0 −0.58 0.40

Next, from U,Σ,V, we obtain H0 (line 3) and iteratively com-

pute P via repeated squaring (line 5) in the small 3 × 3 subspace:

H0 =

0 0.46 −0.25

1.57 0.23 0.16

0.22 −0.34 −0.23

 and P0 =

1

1

1

 via−−−−→
line 5

P =

1.49 0.44 −0.24
0.44 3.44 0.04

−0.24 0.04 1.30

Finally, Z is computed from P (line 6) and the multi-source

CoSimRank [S]∗,Q is obtained from Z (line 7):

Z = U(ΣPΣ)
2.57 0.46 2.57 0.46 0.27 2.57

0.38 1.38 0.38 1.38 1.76 0.38

−0.13 −0.17 −0.13 −0.17 0.30 −0.13

𝑇

via−−−−→
line 7

[S]∗,Q = [I𝑛]∗,Q + 𝑐Z[U]𝑇Q,∗[
0.16 1.49 0.16 0.49 0.48 0.16

0.16 0.49 0.16 1.49 0.48 0.16

]𝑇
□

Correctness. The correctness of CSR+ can be readily verified

by Theorems 3.1–3.5. It can be shown that S returned by CSR+
is the solution to Eq.(1), yielding the same result as Li et al.’s
method [4].

Complexity. Regarding total cost, we have the following theorem:

Theorem 3.7. The total computational cost of CSR+ is bounded
by 𝑂 (𝑟 (𝑚 + 𝑛(𝑟 + |Q|)) time and 𝑂 (𝑟𝑛) memory (𝑟 ≪ 𝑛).

Proof. The time and space complexities of each line of CSR+
(in Algorithm 1) are analysed in the following table:

Line # Time Memory Line # Time Memory
1 𝑂 (𝑚) 𝑂 (𝑚) 4-5 𝑂 (𝑟3) 𝑂 (𝑟2)
2 𝑂 (𝑚𝑟 + 𝑟3) 𝑂 (𝑛𝑟) 6 𝑂 (𝑟2 + 𝑛𝑟2) 𝑂 (𝑛𝑟)
3 𝑂 (𝑛𝑟2 + 𝑛𝑟) 𝑂 (𝑛𝑟) 7 𝑂 (𝑛𝑟 |Q|) 𝑂 (𝑛𝑟)

204

Algorithm1:CSR+: Multi-Source CoSimRank (G,Q, 𝑐, 𝑟, 𝜖)
Input :G: a graph, Q: a set of queries, 𝑐 : damping factor,

𝑟 : target low rank, 𝜖 : desired accuracy (e.g. 𝜖 = 10
−5)

Output : [S]∗,Q : multi-source CoSimRank similarity

I. Precomputation

1 Initialise Q as the column normalised adjacency matrix of G
2 Decompose Q := UΣV𝑇

using a low rank-𝑟 SVD

3 Initialise H0 := V𝑇 UΣ, P0 := I𝑟 , and 𝑘 := 0

4 while 𝑘 ≤ max{0, [log
2
log𝑐 𝜖] + 1} do

5 P𝑘+1 := P𝑘 + 𝑐2𝑘 H𝑘P𝑘 (H𝑘)𝑇 , H𝑘+1 := (H𝑘)2, 𝑘 := 𝑘 + 1

6 Compute the matrix Z := U(ΣP𝑘Σ)
II. Online Multi-Source Query

7 return [S]∗,Q := [I𝑛]∗,Q + 𝑐Z[U]𝑇Q,∗

Since 𝑟 ≪ 𝑛, the total cost of CSR+ is dominated by 𝑂 (𝑚 +
𝑚𝑟 +2𝑟3+2𝑛𝑟2+3𝑛𝑟 +𝑟𝑛 |Q|) time and𝑂 (𝑚+𝑛𝑟 +𝑟2) space, which
is bounded by 𝑂 (𝑟 (𝑚 + 𝑛(𝑟 + |Q|)) time and 𝑂 (𝑟𝑛) space. □

4 EXPERIMENTAL EVALUATION
4.1 Experimental Settings
Datasets.Weuse real-life datasets publicly available on SNAP [3]:
Data 𝑚 = |E | 𝑛 = |V| 𝑚/𝑛 Description
FB 88,234 4,039 21.9 Social friendship from ego-Facebook

P2P 54,705 22,687 2.4 Gnutella peer-to-peer network

YT 5,975,248 1,134,890 5.3 Youtube social network communities

WT 5,021,410 2,394,385 2.1 Wikipedia talk (communication) graph

TW 1,468,365,182 41,625,230 35.3 Twitter user-follower network

WB 1,019,903,190 118,142,155 8.6 A graph obtained by a Webbase crawler

Competitors.We contrast our CSR+ with the following rivals:

• CSR-NI: a low-rank SVD based method by Li et al. [4].
• CSR-IT: an iterative CoSimRankmethod by Rothe and Schütze [6].

• CSR-RLS: an efficient single-source similarity computingmethod

by Kusumoto et al. [2] applied to CoSimRank search.

Parameters. The following settings are used by default: (1) multi-

source query size |Q| = 100; (2) damping factor 𝑐 = 0.6; (3) target

rank 𝑟 = 5; (4) for fairness of comparison, the number of iterations

𝑘 for CSR-IT and CSR-RLS is made equal to low-rank 𝑟 .

Implementation. Given that our key optimisation techniques

are based on matrix operations, we choose MATLAB as the pri-

mary tool for implementation due to its proficiency in handling

various matrix operations. Also, MATLAB offers many optimisa-

tion packages (e.g. sparse SVD) that are easy to implement.

Graph Storage. For graph storage, our implementation adopts

the COO (Coordinate) format in MATLAB, a sparse storage

method similar to an adjacency list, that allows for significant

storage savings by excluding zeros of the adjacencymatrix. In this

format, the adjacency matrix is represented as triples {(𝑥,𝑦, 1)},
where 𝑥 and 𝑦 denote the row and column indices (i.e. starting
and ending vertex indices) of each edge. Sorting and grouping

these triples by 𝑥 results in a neighbouring list {𝑥 : 𝑦1, 𝑦2, 𝑦3, · · · }
for each node. This conversion facilitates easy access of local in-

formation for any vertex 𝑥 in vertex-centric algorithms, enabling

message exchange with neighbouring vertices.

All experiments are run on Ubuntu 20.04 LTS with Intel
®

Xeon
®

Gold 6226R CPU @ 2.9GHz × 64 and 256GB RAM.

4.2 Experimental Results
4.2.1 Time Efficiency. Figure 2 compares the total time of

CSR+ with that of its rivals (CSR-RLS, CSR-IT and CSR-NI) on
real datasets. The total time of CSR+ includes preprocessing

time and query time. We notice that 1) on each dataset, CSR+ is

FB P2P YT WT TW WB
10−2

10−1

1

101

102

103

104

×× ×× ××× ×××

|Q| = 100

E
la
p
se
d
T
im

e
(s
ec
)

CSR+

CSR-RLS

CSR-IT

CSR-NI

Figure 2: Total Time on Real
Datasets

FB YT WT TW

10−2

10−1

1

101

102

103

E
la
p
se
d
T
im

e
(s
ec
)

Preprocessing
|Q| = 100
|Q| = 300
|Q| = 500
|Q| = 700

Figure 3: Preprocessing and
Query Time for CSR+

5 10 15 20
10−2

10−1

1

101
102
103

|Q| = 100

E
la
p
se
d
T
im

e
(s
ec
)

CSR+ CSR-RLS
CSR-IT CSR-NI

(a) Vary 𝑟 on FB
30 50 80 120

101

102

103

104

105

|Q| = 100

CSR-IT & CSR-NI failed
(memory explosion)

E
la
p
se
d
T
im

e
(s
ec
)

CSR+
CSR-RLS

(b) Vary 𝑟 onWT

10 20 30 40
101

102

103

104

105

|Q| = 100

CSR-IT & CSR-NI

& CSR-RLS failed
(memory explosion)

E
la
p
se
d
T
im

e
(s
ec
)

CSR+

(c) Vary 𝑟 on TW

Figure 4: Effect of Low Rank 𝑟 on CPU Time

100 300 500 700
10−2

10−1

1

101

102

E
la
p
se
d
T
im

e
(s
ec
)

CSR+ CSR-RLS
CSR-IT CSR-NI

(a) Vary | Q | on FB

100 300 500 700
101

102

103

104

CSR-IT & CSR-NI failed
(memory explosion)

E
la
p
se
d
T
im

e
(s
ec
)

CSR+ CSR-RLS

(b) Vary | Q | onWT

100 300 500 700
101

102

103

104

CSR-IT & CSR-NI

&CSR-RLS failed
(memory explosion)

E
la
p
se
d
T
im

e
(s
ec
)

CSR+

(c) Vary | Q | on TW

Figure 5: Effect of Query Size |Q| on CPU Time

consistently 1–3 orders of magnitude faster than all the other

competitors. Particularly, CSR+ is 100x faster than CSR-NI on
P2P, highlighting the effectiveness of our SVD-based method

that avoids expensive Kronecker products. 2) CSR-RLS is mildly

slower than CSR+ on small FB and P2P, but markedly slower on

medium YT andWT. This is because there are many repeated ma-

trix product operations in CSR-RLS, and the duplicates become

more noticeable when the dataset grows larger. 3) Only CSR+
survives and scales well on large TW andWB. This is because our
four-stage optimisation methods for CSR+ greatly eradicate com-

putational redundancy and employ a repeated-squaring method

in the small subspace to speed up similarity computations.

Figure 3 depicts the time allotted to each phase of CSR+ on

real datasets when |Q| ranges from 100 to 700. We notice that

1) on each dataset, as |Q| rises, the preprocessing time of CSR+
remains unchanged (depicted by a single black bar per dataset),

whereas the query time increases linearly with |Q|. This aligns
with our intuition since the offline SVD preprocessing mainly

relies on graph structure, whereas the query time is proportional

to |Q|. 2) CSR+ exhibits considerably faster online query time

than preprocessing time on FB and TW, due to the effective

use of SVD for preprocessing. On large TW (resp. small FB),
the query time of CSR+ is 4–25x (resp. 3–10x) faster than the

preprocessing time. Consequently, when dealing with multiple

queries on large graphs (e.g. TW), it is advantageous to allocate

time for preprocessing to greatly reduce query time.

Figure 4 shows the impact of low rank 𝑟 on time. We see that

1) as 𝑟 grows, the time of CSR+, CSR-RLS and CSR-IT increases

mildly, whereas the time of CSR-NI grows steeply and surpasses

CSR-IT at 𝑟 = 20. This is because CSR-NI uses costly tensor

products in𝑂 (𝑟4𝑛2) time, making it unscalable w.r.t. 𝑟 and graph

size. 2) On each dataset,CSR+ outperforms its rivals by 1–2 orders

of magnitude as 𝑟 rises. This agrees with the time complexity of

CSR+ in Theorem 3.7. 3) On TW, CSR+ scales well as a result of

its linear space complexity w.r.t. 𝑛, while other rivals wreck due

to memory overload.

205

FB P2P YT WT TW WB
1

101

102

103

104

105

×× ×× ××× ×××

|Q| = 100

M
em

or
y
(M

B
)

CSR+

CSR-RLS

CSR-IT

CSR-NI

Figure 6: Total Memory on
Real Datasets

FB YT WT TW
1

101

102

103

104

105

M
em

or
y
(M

B
)

Preprocessing
|Q| = 100
|Q| = 300
|Q| = 500
|Q| = 700

Figure 7: Preprocessing and
Query Memory for CSR+

5 10 15 20
1

101
102
103
104
105

|Q| = 100

M
em

o
ry

(M
B
)

CSR+ CSR-RLS
CSR-IT CSR-NI

(a) Vary 𝑟 on FB
30 50 80 120

103

104

105

|Q| = 100

CSR-IT & CSR-NI failed
(memory explosion)

M
em

or
y
(M

B
)

CSR+
CSR-RLS

(b) Vary 𝑟 onWT

10 20 30 40
103

104

105

|Q| = 100

CSR-IT & CSR-NI

& CSR-RLSfailed
(memory explosion)M

em
o
ry

(M
B
)

CSR+

(c) Vary 𝑟 on TW

Figure 8: Effect of Low Rank 𝑟 on Memory

Figure 5 depicts how |Q| affects time on various datasets. We

discern that 1) as |Q| rises, the time of CSR+ and CSR-IT is less

sensitive to |Q|, as opposed to CSR-RLS and CSR-NI whose time

grows linearly and sensitive to |Q|. The reason is that CSR+ has a
preprocessing stage that is query-independent and dominates the

total time, making the increasing time of the online query with

the increase of |Q| negligibly small. Since CSR-IT is an iterative

algorithm to assess all node pairs, its time is orthogonal to |Q|.
2) When |Q| is tweaked, CSR+ runs consistently 1–2 orders of

magnitude faster than its rivals. On medium WT, CSR-IT and

CSR-NI fail due to memory crash, while CSR+ scales well with

|Q|, showcasing the effectiveness of our preprocessing strategies.
3) CSR-RLS is always 4–16x (resp. 34–115x) slower than CSR+ on

FB (resp.WT) sinceCSR-RLS hasmany repeated computations for

multiple queries. Thus, the larger |Q|, the higher the duplication
cost of CSR-RLS, making its time more sensitive to |Q|.

4.2.2 Memory Efficiency. Figure 6 compares the total memory

usage of CSR+with other algorithms on real datasets. We see that

1) on every dataset, the memory of CSR+ is always 1–4 orders

of magnitude inferior to all of its contenders. Particularly, the

memory of CSR+’s is 10,312x less than that of CSR-NI on P2P.
This is because CSR+ does not memoise the results of Kronecker

products but only maintains necessary low-dimensional block

matrices. 2) With the increasing size of graphs, the memory of

CSR+ increases linearly. This coincides with the space complexity

of CSR+ as analysed in Section 3.2, implying the scalability of

CSR+ on large TW andWB.
Figure 7 illustrates the memory usage for each phase of CSR+

on various datasets. We discern that 1) when the datasets become

larger, the memory consumption of CSR+ increases mildly in

each phase, as expected. The reason is that as the datasets expand

in size, so will the decomposed matrices and resulting similarity

matrix. The linearly increasing trends imply the high scalability of

CSR+ on large datasets (e.g. TW). 2) TheCSR+memory consumed

in the query phase increases linearly with the growing |Q| and
is always 1–46x higher than that spent during the preprocessing

phase. This conforms to our intuition as the similarity matrices

need to be memorised and their size rises linearly as |Q| grows.
Figure 8 shows the impact of low rank 𝑟 on memory for dif-

ferent methods. We notice that 1) CSR+ takes up 1–4 orders of

magnitude less space than other rivals. This is due to its effective

use of low-rank decomposition that avoids costly tensor products

of CSR-NI while preventing repeated computations of CSR-RLS
over multiple queries. 2) On FB, as 𝑟 grows, CSR+memory gently

100 300 500 700
1

101

102

103

104

M
em

o
ry

(M
B
)

CSR+ CSR-RLS
CSR-IT CSR-NI

(a) Vary | Q | on FB

100 300 500 700
102

103

104

105

CSR-IT & CSR-NI failed
(memory explosion)M

em
or
y
(M

B
)

CSR+
CSR-RLS

(b) Vary | Q | onWT

100 300 500 700
103

104

105

106

CSR-IT & CSR-NI

& CSR-RLS failed
(memory explosion)M

em
o
ry

(M
B
) CSR+

(c) Vary | Q | on TW

Figure 9: Effect of Query Size |Q| on Memory

Data 𝑟 = 25 𝑟 = 50 𝑟 = 100 𝑟 = 200

FB 3.3895 × 10
−3

2.7407 × 10
−3

2.0370 × 10
−3

1.2072 × 10
−3

P2P 1.3330 × 10
−4

1.3250 × 10
−4

1.3060 × 10
−4

1.2870 × 10
−4

Table 3: Error (AvgDiff) for CSR+ and CSR-NI (underlined)
on Real Datasets (FB, P2P) with |Q| = 100

increases, but CSR-NI memory rapidly increases since the tensor

product requires huge 𝑂 (𝑟2𝑛2) memory. 3) CSR-IT,CSR-NI and
CSR-RLS crash onWT and TW due to memory corruption, while

CSR+ survives on TW, implying the superior scalability of CSR+.
Figure 9 depicts the effect of |Q| on the memory of CSR+ and

its competitors on real datasets. We observe that 1) with |Q|
growing on each dataset, the memory of CSR+ and CSR-RLS is

more sensitive to |Q|, whereas CSR-NI and CSR-IT stay stable

when they do not fail due to memory explosion. This is because

CSR+ memoises intermediate results related to the number of

supplied queries on an as-needed basis. 2) Thememory of CSR+ is
1–3 orders of magnitude smaller than its opponents as |Q| rises.
This is due to the SVD decomposition of CSR+ that achieves

dimensionality reduction. 3) On TW, CSR+ scales well as |Q|
increases, while its rivals explode. This is because CSR+ uses

the optimization technique of Theorem 3.1-3.4 and implements

similarity search on low-dimensional spaces.

4.2.3 Accuracy & Exactness. We next evaluate how the accu-

racy of CSR+ is affected by low rank 𝑟 using AvgDiff, defined
as AvgDiffQ (Ŝ, S) := 1

|V |× |Q |
∑

(𝑖, 𝑗) ∈V×Q | [Ŝ]𝑖, 𝑗 − [S]𝑖, 𝑗 |, the
same accuracy measure used in [4], where Ŝ is the CoSimRank

values of CSR+ (or CSR-NI), and S is the exact CoSimRank scores.

The results on the AvgDiff of CSR+ are shown in Table 3, where

an underlined number signifies the same results returned byCSR-
NI as long as it survives. We notice that 1) On each dataset, when

𝑟 increases, AvgDiff mildly decreases. This is comprehensible

since the greater 𝑟 is, the larger the subspace after low rank-𝑟

SVD decomposition, and the higher the approximation accuracy.

2) When 𝑟 is reduced from 200 to 25, AvgDiff only increases by

0.218%, but the time decreases by 1–2 orders of magnitude. 3)

The accuracy of CSR+ and CSR-NI is exactly the same as long

as CSR-NI survives, implying that CSR+ is lossless relative to

CSR-NI, which is compatible with Theorems 3.1–3.5.

5 CONCLUSIONS
This paper studies the problem of fast multi-source CoSimRank

search on billion-edge graphs. We first analyse the key barriers

of Li et al.’s method [4] and propose a four-stage optimisation

scheme to eliminate costly graph tensor products and repetitive

similarity calculations. On top of that, we propose a fast and scal-

able multi-source CoSimRank algorithm, CSR+, which reduces

the time from𝑂 (𝑟4𝑛2) to𝑂 (𝑟 (𝑚 +𝑛(𝑟 + |Q|))) and memory from

𝑂 (𝑟2𝑛2) to 𝑂 (𝑟𝑛), while maintaining the same accuracy as [4].

Our experiments validate that CSR+ outperforms its competitors

by 1 to 4 orders of magnitude while scaling well on large graphs.

Acknowledgments. This work is supported by the National

Natural Science Foundation of China under Grant No. 61972203.

206

REFERENCES
[1] Glen Jeh and Jennifer Widom. 2002. SimRank: A measure of structural-context

similarity. In SIGKDD. 538–543. https://doi.org/10.1145/775047.775126

[2] Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi Kawarabayashi. 2014.

Scalable similarity search for SimRank. In SIGMOD. 325–336. https://doi.org/

10.1145/2588555.2610526

[3] Jure Leskovec and Andrej Krevl. 2014. SNAPDatasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[4] Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu, and

Tianyi Wu. 2010. Fast computation of SimRank for static and dynamic infor-

mation networks. In EDBT. 465–476. https://doi.org/10.1145/1739041.1739098

[5] Tova Milo, Amit Somech, and Brit Youngmann. 2019. Boosting SimRank with

semantics. In EDBT. 1–12.
[6] Sascha Rothe and Hinrich Schütze. 2014. CoSimRank: A Flexible & Efficient

Graph-Theoretic Similarity Measure. In ACL. 1392–1402. http://aclweb.org/

anthology/P/P14/P14-1131.pdf

[7] Peng Wang, BaoWen Xu, YuRongWu, and XiaoYu Zhou. 2015. Link prediction

in social networks: the state-of-the-art. Science China Information Sciences 58,
1 (2015), 1–38.

[8] Wensi Xi, Edward A Fox,Weiguo Fan, Benyu Zhang, Zheng Chen, Jun Yan, and

Dong Zhuang. 2005. Simfusion:measuring similarity using unified relationship

matrix. In Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval. 130–137.

[9] Renchi Yang. 2020. Fast Approximate CoSimRanks via Random Projections.

CoRR abs/2010.11880 (2020). arXiv:2010.11880 https://arxiv.org/abs/2010.

11880

[10] Jiale Yu, Yongliang Shen, Xinyin Ma, Chenghao Jia, Chen Chen, and Weiming

Lu. 2020. SYNET: Synonym Expansion using Transitivity. In Findings of the
Association for Computational Linguistics: EMNLP 2020. 1961–1970.

[11] Weiren Yu and Julie A McCann. 2015. Co-simmate: Quick retrieving all

pairwise co-simrank scores. Association for Computational Linguistics.

[12] Weiren Yu and Julie A. McCann. 2015. Efficient Partial-Pairs SimRank Search

for Large Networks. PVLDB 8, 5 (2015), 569–580. http://www.vldb.org/pvldb/

vol8/p569-yu.pdf

[13] Weiren Yu, Julie A. McCann, Chengyuan Zhang, and Hakan Ferhatosmanoglu.

2022. Scaling High-Quality Pairwise Link-Based Similarity Retrieval on Billion-

Edge Graphs. ACM Trans. Inf. Syst. 40, 4 (2022), 78:1–78:45. https://doi.org/10.

1145/3495209

[14] Weiren Yu and Fan Wang. 2018. Fast Exact CoSimRank Search on Evolving

and Static Graphs. In Proceedings of the 2018 World Wide Web Conference on
World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine
Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.).

ACM, 599–608. https://doi.org/10.1145/3178876.3186126

[15] Weiren Yu, Jian Yang, Maoyin Zhang, and Di Wu. 2022. CoSimHeat: An

Effective Heat Kernel Similarity Measure Based on Billion-Scale Network

Topology. In Proceedings of the ACM Web Conference 2022. 234–245.
[16] Weixin Zeng, Jiuyang Tang, and Xiang Zhao. 2019. Measuring entity related-

ness via entity and text joint embedding. Neural Processing Letters 50, 2 (2019),
1861–1875.

207

