
Fair Spatial Indexing: A paradigm for Group Spatial Fairness
Sina Shaham

Viterbi School of Engineering

University of Southern California

Los Angeles, California, USA

sshaham@usc.edu

Gabriel Ghinita

College of Science and Engineering

Hamad Bin Khalifa University

Qatar Foundation, Doha, Qatar

gghinita@hbku.edu.qa

Cyrus Shahabi

Viterbi School of Engineering

University of Southern California

Los Angeles, California, USA

shahabi@usc.edu

ABSTRACT
Machine learning (ML) is playing an increasing role in decision-

making tasks that directly affect individuals, e.g., loan approvals,

or job applicant screening. Significant concerns arise that, with-

out special provisions, individuals from under-privileged back-

grounds may not get equitable access to services and opportuni-

ties. Existing research studies fairness with respect to protected

attributes such as gender, race or income, but the impact of lo-

cation data on fairness has been largely overlooked. With the

widespread adoption of mobile apps, geospatial attributes are

increasingly used in ML, and their potential to introduce unfair

bias is significant, given their high correlation with protected

attributes. We propose techniques to mitigate location bias in

machine learning. Specifically, we consider the issue of miscal-

ibration when dealing with geospatial attributes. We focus on

spatial group fairness and we propose a spatial indexing algo-

rithm that accounts for fairness. Our KD-tree inspired approach

significantly improves fairness while maintaining high learning

accuracy, as shown by extensive experimental results on real

data.

1 INTRODUCTION
Recent advances in machine learning (ML) led to its adoption

in numerous decision-making tasks that directly affect individu-

als, such as loan evaluation or job application screening. Several

studies [4, 25, 27] pointed out that ML techniques may introduce

bias with respect to protected attributes such as race, gender,

age or income. The last years witnessed the introduction of fair-
ness models and techniques that aim to ensure all individuals

are treated equitably, focusing especially on conventional pro-

tected attributes (like race or gender). However, the impact of

geospatial attributes on fairness has not been extensively stud-

ied, even though location information is being increasingly used

in decision-making for novel tasks, such as recommendations,

advertising or ride-sharing. Conventional applications may also

often rely on location data, e.g., allocation of local government

resources, or crime prediction by law enforcement using geo-

graphical features. For example, the Chicago Police Department

releases monthly crime datasets [2] and classifies neighborhoods

based on their crime risk level. Subsequently, the risk level is used

to determine vehicle and house insurance premiums, which are

increased to reflect the risk level, and in turn, result in additional

financial hardship for individuals from under-privileged groups.

Fairness for geospatial data is a challenging problem, due to

two main factors: (i) data are more complex than conventional

protected attributes such as gender or race, which are categorical

and have only a few possible values; and (ii) the correlation

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the

27th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2024, ISBN 978-3-89318-094-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

between locations and protected attributes may be difficult to

capture accurately, thus leading to hard-to-detect biases.

We consider the case of group fairness [8], which ensures no

significant difference in outcomes occurs across distinct popu-

lation groups. In our setting, groups are defined with respect to

geospatial regions. The data domain is partitioned into disjoint

regions, and each of them represents a group. All individuals

whose locations belong to a certain region are assigned to the

corresponding group. In practice, a spatial group can correspond

to a zip code, a neighborhood, or a set of city blocks. Our objec-

tive is to devise fair geospatial partitioning algorithms, which

can handle the needs of applications that require different lev-

els of granularity in terms of location reporting. Spatial index-
ing [9, 37, 40] is a common approach used for partitioning, and

numerous techniques have been proposed that partition the data

domain according to varying criteria, such as area, perimeter,

data point count, etc. We build upon existing spatial indexing

techniques, and adapt the partition criteria to account for the

specific goals of fairness. By carefully combining geospatial and

fairness criteria in the partitioning strategies, one can obtain

spatial fairness while still preserving the useful spatial properties

of indexing structures (e.g., fine-level clustering of the data).

Specifically, we consider a set of partitioning criteria that

combines physical proximity and calibration error. Calibration is

an essential concept in classification tasks which quantifies the

quality of a classifier. Consider a binary classification task, such

as a loan approval process. Calibration measures the difference

between the observed and predicted probabilities of any given

point being labeled in the positive class. If one partitions the

data according to some protected attribute, then the expectation

would be that the probability should be the same across both

groups (e.g., people from different neighborhoods should have

an equal chance, on aggregate, to be approved for a loan). If the

expected and actual probabilities are different, that represents a

good indication of unfair treatment.

Our proposed approach builds a hierarchical spatial index

structure by using a composite split metric, consisting of both

geospatial criteria (e.g., compact area) and miscalibration error.

In doing so, it allows ML applications to benefit from granular

geospatial information, while at the same time ensuring that no

significant bias is present in the learning process.

Our specific contributions include:

• We identify and formulate the problem of spatial group

fairness, an important concept which ensures that geospa-

tial information can be used reliably in a classification task,

without introducing, intentionally or not, biases against

individuals from underprivileged groups;

• We propose a new metric to quantify unfairness with

respect to geospatial boundaries, called Expected Neigh-

borhood Calibration Error (ENCE);

• We propose a technique for fair spatial indexing that builds

on KD-trees and considers both geospatial and fairness

criteria, by lowering miscalibration and reducing ENCE;

Series ISSN: 2367-2005 150 10.48786/edbt.2024.14

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.14

(a) Neighborhoods Partitioning (b) Generation of Classifier Scores (c) Calibration of Neighborhoods

Figure 1: An example of the miscalibration problem with respect to neighborhoods.

• We perform an extensive experimental evaluation on real

datasets, showing that the proposed approach is effective

in enforcing spatial group fairness while maintaining data

utility for classification tasks.

The rest of the paper is organized as follows: Section 2 pro-

vides background and fundamental definitions. Section 3 reviews

related work. We introduce the proposed fair index construc-

tion technique in Section 4. Section 5 presents the results of our

empirical evaluation, followed by conclusions in Section 6.

2 BACKGROUND
2.1 System Architecture
We consider a binary classification task 𝑇 over a dataset 𝐷 of

individuals𝑢1, ..., 𝑢 |𝐷 | . The feature set recorded for𝑢𝑖 is denoted
by 𝒙 𝒊 ∈ R𝑙 , and its corresponding label by𝑦𝑖 ∈ {0, 1}. Each record
consists of 𝑙 features, including an attribute called neighborhood,
which captures an individual’s location, and is the main focus of

our approach. The sets of all input data and labels are denoted by

X and Y, respectively. A classifier ℎ(.) is trained over the input

data resulting in ℎ(X) = (𝑌, 𝑆) where ˆY = {𝑦1, ..., 𝑦 |𝐷 |} is the
set of predicted labels (𝑦𝑖 ∈ {0, 1}) and S = {𝑠1, ..., 𝑠 |𝐷 |} is the
set of confidence scores (𝑠𝑖 ∈ [0, 1]) for each label.

The dataset’s neighborhood feature indicates the individual’s

spatial group. We assume the spatial data domain is split into a set

of partitions of arbitrary granularity. Without loss of generality,

we consider a 𝑈 × 𝑉 grid overlaid on the map. The grid is se-

lected such that its resolution captures adequate spatial accuracy

as required by application needs. A set of neighborhoods is a

non-overlapping partitioning of the map that covers the entire

space, with the 𝑖𝑡ℎ neighborhood denoted by 𝑁𝑖 , and the set of

neighborhoods denoted by N .

Figure 1 illustrates the system overview. Figure 1a shows the

map divided into 4 non-overlapping partitionsN = {𝑁1, 𝑁2, 𝑁3, 𝑁4}.
The neighborhood is recorded for each individual 𝑢1, ..., 𝑢11 to-

gether with other features, and a classifier is trained over the

data. The classifier’s output is the confidence score for each entry

which turns into a class label by setting a threshold.

2.2 Fairness Metric
Our primary focus is to achieve spatial group fairness using as

metric the concept of calibration [26, 29], described in the follow-

ing.

In classification tasks, it is desirable to have scores indicating

the probability that a test data record belongs to a certain class.

Probability scores are especially important in ranking problems,

where top candidates are selected based on relative quantitative

performance. Unfortunately, it is not granted that confidence

scores generated by a classifier can be interpreted as probabilities.

Consider a binary classifier that indicates an individual’s chance

of committing a crime after their release from jail (recidivism). If

two individuals 𝑢1 and 𝑢2 get confidence scores 0.4 and 0.8, this

cannot be directly interpreted as the likelihood of committing a

crime by 𝑢2 being twice as high as for 𝑢1. The model calibration
aims to alleviate precisely this shortcoming.

Definition 1. (Calibration). An MLmodel is said to be calibrated

if it produces calibrated confidence scores. Formally, outcome

score 𝑅 is calibrated if for all scores 𝑟 in support of 𝑅 it holds that

𝑃 (𝑦 = 1|𝑅 = 𝑟) = 𝑟 (1)

This condition means that the set of all instances assigned a

score value 𝑟 contains an 𝑟 fraction of positive instances. The

metric is a group-level metric. Suppose there exist 10 people

who have been assigned a confidence score of 0.7. In a well-

calibrated model, we expect to have 7 individuals with positive

labels among them. Thus, the probability of the whole group is

0.7 to be positive, but it does not indicate that every individual

in the group has this exact chance of receiving a positive label.

To measure the amount of miscalibration for the whole model

or for an output interval, the ratio of two key factors needs to be

calculated: expected confidence scores and the expected value of

true labels. Abiding by the convention in [26], we use functions

𝑜 (.) and 𝑒 (.) to return the true fraction of positive instances

and the expected value of confidence scores, respectively. For

example, the calibration of the model in Figure 1b is computed

as:

𝑒 (ℎ)
𝑜 (ℎ) =

(∑𝑢∈𝐷 𝑠𝑢)/|𝐷 |
(∑𝑢∈𝐷 𝑦𝑢)/|𝐷 |

=
5.2/11
7/11 ≈ .742 (2)

Perfect calibration is achieved when a specific ratio is equal to

one. Ratios that are above or below one are considered miscali-

bration cases. Another way to measure the calibration error is by

using the absolute value of the difference between two values,

denoted by |𝑒 (ℎ) − 𝑜 (ℎ) |, with the ideal value being zero. In this

work, the second method is utilized, as it eliminates the division

by zero problem that may arise from neighborhoods with low

populations.

2.3 Problem Formulation
Even when a model is overall well-calibrated, it can still lead

to unfair treatment of individuals from different neighborhoods.

In order to achieve spatial group fairness, we must have a well-

calibrated model with respect to all neighborhoods. The existence
of calibration error in a neighborhood can result in classifier bias

and lead to systematic unfairness against individuals from that

151

Figure 2: Overview of the proposed mitigation techniques.

neighborhood (in Section 5, we support this claim with real data

measurements).

Definition 2. (Calibration for Neighborhoods). Given neighbor-

hood set N = {𝑁1, ..., 𝑁𝑡 }, we say that the score 𝑅 is calibrated

in neighborhood 𝑁𝑖 if for all the scores 𝑟 in support of 𝑅 it holds

that

𝑃 (𝑦 = 1|𝑅 = 𝑟, 𝑁 = 𝑁𝑖) = 𝑟, ∀𝑖 ∈ [1, 𝑡] (3)

The following equations can be used to measure the amount

of miscalibration with respect to neighborhood 𝑁𝑖 ,

𝑒 (ℎ |𝑁 = 𝑁𝑖)
𝑜 (ℎ |𝑁 = 𝑁𝑖)

or |𝑒 (ℎ |𝑁 = 𝑁𝑖) − 𝑜 (ℎ |𝑁 = 𝑁𝑖) | (4)

Going back to the example in Figure 1d, the calibration amount

for neighborhoods𝑁1 to𝑁4 is visualized on a plot. Neighborhood

𝑁4 is well-calibrated, whereas the others suffer from miscalibra-

tion.

Problem 1. Given m binary classification tasks 𝑇1,𝑇2, ...,𝑇𝑚 ,
we seek to partition the space into continuous non-overlapping
neighborhoods such that for each decision-making task, the trained
model is well-calibrated for all neighborhoods.

2.4 Evaluation Metrics
A commonly used metric to evaluate the calibration of a model

is Expected Calibration Error (ECE) [13]. The goal of ECE (de-

tailed in Appendix A.1) is to understand the validity of output

confidence scores. However, our focus is on identifying the cali-

bration error imposed on different neighborhoods. Therefore, we

extend ECE and propose the Expected Neighborhood Calibration

Error (ENCE) that captures the calibration performance over all

neighborhoods.

Definition 3. (Expected Neighborhood Calibration Error). Given
𝑡 non-overlapping geospatial regions N = {𝑁1, ..., 𝑁𝑡 } and a

classifier ℎ trained over data located in these neighborhoods, the

ENCE metric is calculated as:

ENCE =

𝑡∑︁
𝑖=1

|𝑁𝑖 |
|𝐷 | |o(𝑁𝑖) − 𝑒 (𝑁𝑖) | (5)

Table 1: Summary of Notations.

Symbol Description

𝑘 Number of features

𝐷 = {𝑢1, ..., 𝑢 |𝐷 |} Dataset of individuals

(𝑥𝑖 , 𝑦𝑖) (Set of features, true label) for 𝑢𝑖
𝐷 = [X,Y] Dataset with user features and labels

ˆY={𝑦1, .., 𝑦 |𝐷 |} Set of predicted labels

S = {𝑠1, ..., 𝑠 |𝐷 |} Set of confidence scores

N = {𝑁1, ..., 𝑁𝑡 } Set of neighborhoods

𝑈 ×𝑉 Base grid resolution

𝑇 Binary classification task

𝑚 Number of binary classification tasks

𝑡 Number of neighborhoods

𝑡ℎ Tree height

where 𝑜 (𝑁𝑖) and 𝑒 (𝑁𝑖) return the true fraction of positive in-

stances and the expected value of confidence scores for instances

in 𝑁𝑖
1
.

3 RELATEDWORK
Fairness in ML. There exist two broad categories of fairness

notions [5, 24]: individual fairness and group fairness. In group

fairness, individuals are divided into groups according to a pro-

tected attribute, and a decision is said to be fair if it leads to a

desired statistical measure across groups. Some prominent group

fairness metrics are calibration [29], statistical parity [21][7],

equalized odds [14], treatment equality [4], and test fairness [6].

Individual fairness notions focus on treating similar individu-

als the same way. Similarity may be defined with respect to a

particular task [7, 17].

Unfairness mitigation techniques can be categorized into three

broad groups: pre-processing, in-processing, and post-processing.

Pre-processing algorithms achieve fairness by focusing on the

classifier’s input data. Some well-known techniques include sup-

pression of sensitive attributes, change of labels, reweighting,

representation learning, and sampling [18]. In-processing tech-

niques achieve fairness during training by adding new terms

to the loss function [19] or including more constraints in the

optimization. Post-processing techniques sacrifice the utility of

output confidence scores and align them with the fairness objec-

tive [28].

Fairness in Spatial Domain. The fairness and justice concepts

in geographical social studies have been a subject of research as

early as the 1990’s [15]. With the rise of ML and its influence

on decision-making with geospatial data, this issue has gained

increased importance. Neighborhoods or individual locations

frequently serve as decision-making factors in entities such as

government agencies and banks. This context can lead to un-

fairness in a variety of tasks, such as mortgage lending [22], job

recruitment [10], school admissions [3], and crime risk predic-

tion [36].

A case study on American Census datasets by Ghodsi et al. [12]

underlines the context’s importance for fairness, illustrating how

spatial distribution can impact a model’s fairness-related per-

formance. According to [36], recidivism prediction models built

with data from one location often underperform when applied

1
Symbol |. | denotes absolute value.

152

(a) Initial execution of classifier.

(b) Re-districting the map based on fairness objective.

(c) Training classifier based on re-districted neighborhoods.

Figure 3: Overview of Fair KD-tree algorithm.

to another location. The study in [33] explores individual spatial

fairness within two contexts: (i) distance-based fairness, moti-

vated by nearest neighbor semantics, such as selecting drivers

in ride-sharing apps, and (ii) zone-based fairness, where abrupt

changes in neighborhood boundaries can bias the classifier’s out-

come. The work in [34] formulates the issue of fairness-aware

range queries, defining a fair query as one most similar to the

user’s own query. Studies in [16, 39] consider crop monitoring in

palm oil plantations, aiming to incorporate a fairness criterion

primarily based on the 𝐹1 score during training. Additionally,

the authors propose SPAD (space as a distribution) - a method

to formulate the spatial fairness of learning models in continu-

ous domains. The authors in [32] define spatial fairness as the

statistical independence of outcomes from locations and propose

an approach to audit spatial fairness. The auditing is conducted

by exploring the distribution of outcomes inside and outside of a

given region and how similar they are. Weydemann et al. [38]

measure fairness in next-location recommendation systems in

which the historical movement pattern of users is utilized tomake

future location recommendations. The proposed framework by

the authors first captures the probability that the location recom-

mender suggests locations based on race groups and then aims

to adjust the distribution for fairer outcomes.

The authors in [31] propose a loss function designed for in-

dividual fairness in social media and location-based advertising.

Pujol et al. [30] expose the disparate impact of differential privacy

on various neighborhoods. There have been numerous attempts

to apply fairness notions to clustering data points in Cartesian

space. The notion described in[20] views clustering as fair if the

average distance to points in its own cluster is not larger than

the average distance to any other cluster’s points. The authors

in [23] concentrate on defining individual fairness for 𝑘-median

and 𝑘-means algorithms, suggesting clustering is individually

fair if each point expects to have a cluster center within a certain

radius.

4 SPATIAL FAIRNESS THROUGH INDEXING
We introduce several algorithms that achieve group spatial fair-

ness by constructing spatial index structures in a way that takes

into account fairness considerations when performing data do-

main splits. We choose KD-trees as a starting point for our so-

lutions, due to their ability to adapt to data density, and their

property of covering the entire data domain (as opposed to struc-

tures like R-trees that may leave gaps within the domain).

Figure 2 provides an overview of the proposed solution. Our

input consists of a base grid with an arbitrarily-fine granularity

overlaid on the map, the attributes/features of individuals in the

data, and their classification labels. The attribute set includes

individual location, represented as the grid cell enclosing the

individual. We propose a suite of three alternative algorithms

for fairness, which are applied in the pre-processing phase of

the ML pipeline and lead to the generation of new neighborhood

boundaries. Once spatial partitioning is completed, the location

attribute of each individual is updated, and classification is per-

formed again.

The proposed algorithms are:

• Fair KD-tree is our primary algorithm and it re-districts

spatial neighborhoods based on an initial classification

of data over a base grid. Fair KD-tree can be applied to a

single classification task.

• Iterative Fair KD-tree improves upon Fair KD-tree by re-

fining the initial ML scores at every height of the index

structure. It incurs higher computational complexity but

provides improved fairness.

• Multi-Objective Fair KD-tree enables Fair KD-trees for mul-

tiple classification tasks. It leads to the generation of neigh-

borhoods that fairly represent spatial groups for multiple

objectives.

Next, we prove an important result that applies to all proposed

algorithms, which states that any non-overlapping partitioning of

the location domain has a weighted average calibration greater or

equal to the overall model calibration. The proofs of all theorems

are provided in Appendix A.

Theorem 1. For a givenmodelℎ and a complete non-overlapping
partitioning of the space N = {𝑁1, 𝑁2, ..., 𝑁𝑡 }, ENCE is lower-
bounded by the overall calibration of the model.

A broader statement can also be proven, showing that further

partitioning leads to poorer ENCE performance.

Theorem 2. Consider a binary classifier ℎ and two complete
non-overlapping partitioning of the space N1 and N2. If N2 is a
sub-partitioning of N1, then:

ENCE(𝑁1) ≤ ENCE(𝑁2) (6)

Neighborhood set N2 is a sub-partitioning of N1 if for every 𝑁𝑖 ∈
N1, there exists a set of neighborhoods in N2 such that their union
is 𝑁𝑖 .

4.1 Fair KD-tree
We build a KD-tree index that partitions the space into non-

overlapping regions according to a split metric that takes into

account the miscalibration metric within the regions resulting af-

ter each split. Figure 3 illustrates this approach, which consists of

three steps. Algorithm 1 presents the pseudocode of the approach.

Step 1. The base grid is used as input, where the location of

each individual is represented by the identifier of their enclosing

153

Algorithm 1 Fair KD-tree

Input: Grid (𝑈 ×𝑉), Features (X), Labels (Y), Height (𝑡ℎ).
Output: New neighborhoods and updated feature set

1: function FairKDtree(𝑁,X,Y,S, 𝑡ℎ)
2: if 𝑡ℎ = 0 then
3: N ← N + 𝑁
4: return 𝑇𝑟𝑢𝑒
5: 𝑎𝑥𝑖𝑠 ← 𝑡ℎ mod 2

6: 𝐿𝑘∗ , 𝑅𝑘∗ ← SplitNeighborhood(𝑁,Y,S, 𝑎𝑥𝑖𝑠)
7: Run FairKDtree(𝐿𝑘∗ ,X,Y,S, 𝑡ℎ − 1)
8: Run FairKDtree(𝑅𝑘∗ ,X,Y,S, 𝑡ℎ − 1)
9: 𝑁1 ← Grid

10: Global N ← {}
11: Set all neighborhoods in X to 𝑁1

12: Scores (S)← Train ML model on X and Y
13: Neighborhoods (N) ← Run 𝐹𝑎𝑖𝑟𝐾𝐷𝑡𝑟𝑒𝑒 (𝑁1,X,Y,S, 𝑡ℎ)
14: Update neighborhoods in X
15: return N , X

Algorithm 2 Split Neighborhood

Input: Neighborhood (𝑁), Confidence Scores (S), Labels
(Y), Axis.
Output: Non-overlapping split of 𝑁 into two neighborhoods

1: function SplitNeighborhood(𝑁,S,Y, 𝑎𝑥𝑖𝑠)
2: if 𝑎𝑥𝑖𝑠 = 1 then
3: 𝑁 ← Transpose of 𝑁

4: 𝑈 ′ ×𝑉 ′ ← Dimensions of 𝑁

5: for 𝑘 = 1...𝑈 ′ do
6: 𝐿𝑘 ← Neighborhoods in 1...𝑘

7: 𝑅𝑘 ← Neighborhoods in 𝑘 + 1...𝑈
8: 𝑧𝑖 ← Compute Equation (9) for 𝐿𝑘 and 𝑅𝑘

9: 𝑘∗ ← argmin𝑘 𝑧𝑘
10: return 𝐿𝑘∗ , 𝑅𝑘∗

grid cell. This location attribute, alongside other features, is used

as input to an ML classifier ℎ for training. The classifier’s output

is a set of confidence scores S, as illustrated in Figure 3a. Once

confidence scores are generated, the true fraction of positive

instances and the expected value of predicted confidence scores

of the model with respect to neighborhoods can be calculated as

follows:

𝑒 (ℎ |𝑁 = 𝑁𝑖) =
1

|𝑁𝑖 |
(
∑︁
𝑢∈𝑁𝑖

𝑠𝑢) ∀𝑖 ∈ [1, 𝑡] (7)

𝑜 (ℎ |𝑁 = 𝑁𝑖) =
1

|𝑁𝑖 |
(
∑︁
𝑢∈𝑁𝑖

𝑦𝑢) ∀𝑖 ∈ [1, 𝑡] (8)

where 𝑡 is the number of neighborhoods.

Step 2. This step performs the actual partitioning, by customiz-

ing the KD-tree split algorithm with a novel objective function.

KD-trees are binary trees where a region is split into two parts,

typically according to the median value of the coordinate across

one of the dimensions (latitude or longitude). Instead, we select

the division index that reduces the fairness metric, i.e., ENCE

miscalibration. Confidence scores and labels resulted from the

previous training step are used as input for the split point deci-

sion. For a given tree node, assume the corresponding partition

covers 𝑈 ′ × 𝑉 ′ cells of the entire 𝑈 × 𝑉 grid. Without loss of

generality, we consider partitioning on the horizontal axis (i.e.,

row-wise). The aim is to find an index 𝑘 which groups rows 1 to

Algorithm 3 Iterative Fair KD-tree

Input: Grid (𝑈 ×𝑉), Features (X), Labels (Y), Height (𝑡ℎ).
Output: New neighborhoods and updated feature set

1: 𝑁1 ← Grid

2: Set all neighborhoods in X to 𝑁1

3: N ← {𝑁1}
4: while 𝑡ℎ > 0 do
5: Scores (S)← Train ML model on X and Y
6: Nnew ← {}
7: for 𝑁𝑖 in N do
8: 𝐿, 𝑅 ← SplitNeighborhood(𝑁𝑖 ,S,Y, 𝑡ℎ%2)
9: Nnew ← Nnew + 𝐿, 𝑅
10: N ← Nnew

11: Update neighborhoods in X based on N
12: 𝑡ℎ ← 𝑡ℎ − 1
13: return N , X

𝑘 into one node and rows 𝑘 + 1 to𝑈 ′ into another, such that the

fairness objective is minimized (among all possible index split

positions). Let 𝐿𝑘 and 𝑅𝑘 denote the left and right regions gener-

ated by splitting on index 𝑘 . The fairness objective for index 𝑘

is:

𝑧𝑘 =
�� |𝐿𝑘 | × |𝑜 (𝐿𝑘) − 𝑒 (𝐿𝑘) | − |𝑅𝑘 | × |𝑜 (𝑅𝑘) − 𝑒 (𝑅𝑘) |�� (9)

In the above equation, |𝐿𝑘 | and |𝑅𝑘 | return the number of data

entries in the left and right regions, respectively. The intuition

behind the objective function is to reduce the model miscalibra-

tion difference as we heuristically move forward. Two key points

about the above function are: (i) the formulation of calibration is

used in linear format due to the possibility of a zero denominator,

and (ii) the calibration values are weighted by their corresponding

regions’ cardinalities. The optimal index 𝑘∗ is selected as:

𝑘∗ = argmin

𝑘
𝑧𝑘 (10)

Step 3. On completion of the fair KD-tree algorithm, the index

leaf set provides a non-overlapping partitioning of the map. In

the algorithm’s final step, the neighborhood of each individual

in the dataset is updated according to the leaf set and used for

training.

The pseudocode for the Fair KD-tree method is illustrated

in Algorithms 1 and 2. The SplitNeighborhood function in the

latter identifies the split point based on the fairness goal, and it

is invoked multiple times within Algorithm 1. In Algorithm 1,

lines 9 to 12 outline the algorithm’s initial training stage, as

detailed previously in Step 1. The starting grid is determined as

𝑁1 in line 9, and the model undergoes training in line 12. The

recursive split procedure is initiated in line 13. Upon reaching

a leaf node, the neighborhood is stored in line 3. If not, further

divisions are made, focusing on the fairness target.

Theorem 3. For a given dataset 𝐷 , the required number of
neighborhoods 𝑡 and the model ℎ, the computational complexity of
Fair KD-tree is O(|𝐷 | × ⌈log(𝑡)⌉) + O(ℎ).

4.2 Iterative Fair KD-tree
One drawback of the Fair KD-tree algorithm is its sensitivity

to the initial execution of the model, which uses the baseline

grid to generate confidence scores. Even though the space is

recursively partitioned following the initial steps, the scores are

not re-computed until the index construction is finalized. The

154

Figure 4: Overview of Iterative Fair KD-tree algorithm.

Figure 5: Aggregation in Multi-Objective Fair KD-tree.

iterative fair KD-tree addresses this limitation by re-training the

model and computing updated confidence scores after each split

(i.e., at each level of the tree). A refined version of ML scores is

used at every height of the tree, leading to amore fair redistricting

of the map.

Similar to the Fair KD-tree algorithm, the baseline grid is

initially used, and all grid cells are considered to be in the same

neighborhood (i.e., a single spatial group covering the entire

domain). The algorithm is implemented in 𝑡ℎ iterations with the

root node corresponding to the initial point (entire domain). As

opposed to the Fair KD-tree algorithm that follows Depth First

Search (DFS) recursion, the Iterative Fair KD-tree algorithm is

based on Breadth First Search (BFS) traversal. Therefore, all nodes

in the given height 𝑖 − 1 are completed before moving forward

to the height 𝑖 . Suppose we are in the 𝑖𝑡ℎ level of the tree, and all

nodes at that level are generated. Note that, the set of nodes at

the same height represents a non-overlapping partitioning of the

grid. The algorithm continues by updating the neighborhoods at

height 𝑖 based on the 𝑖 − 1 level partitioning. Then, the updated
dataset is used to train a new model, thus updating confidence

scores for each individual.

Algorithm 3 presents the Iterative Fair KD-tree algorithm. Let

N denote the set of all neighborhoods at level 𝑖 of the tree. For

each neighborhood 𝑁𝑖 ∈ N , Iterative Fair KD-tree splits the

region 𝑁𝑖 by calling the 𝑆𝑝𝑙𝑖𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 function in Algo-

rithm 2. The split is done on the 𝑥-axis if 𝑖 is even and on the

𝑦-axis otherwise.

The algorithm provides a more effective way of determining a

fair neighborhood partitioning by re-training the model at every

tree level, but incurs higher computation complexity.

Theorem 4. For a given dataset 𝐷 , the required number of
neighborhoods 𝑡 and the model ℎ, the computational complexity of
Iterative Fair KD-tree is O(|𝐷 | × ⌈log(𝑡)⌉) + ⌈log(𝑡)⌉ × O(ℎ).

4.3 Multi-Objective Fair KD-tree
So far, we focused on achieving a fair representation of space

given a single classification task. In practice, applications may

dictate multiple classification objectives. For example, a set of

neighborhoods that are fairly represented in a city budget alloca-

tion task may not necessarily result in a fair representation of a

map for deriving car insurance premia. Next, we show how Fair

KD-tree can be extended to incorporate multi-objective decision-

making tasks.

We devise an alternative method to compute initial scores in

Line 8 of Algorithm 2, which can then be called as part of Fair

KD-tree in Algorithm 1. A separate classifier is trained over each

task to incorporate all classification objectives. Let ℎ𝑖 be the 𝑖
𝑡ℎ

classifier trained over 𝐷 and label set Y𝑖 representing the task

𝑇𝑖 . The output of the classifier is denoted by S𝑖 = {𝑠𝑖
1
, ..., 𝑠𝑖|𝐷 |},

where in 𝑠𝑖
𝑗
, the superscript identifies the set S𝑖 and the subscript

indicates individual 𝑢 𝑗 . Once confidence scores for all models are

generated, an auxiliary vector is constructed as follows:

𝒗𝑖 =

𝑠𝑖
1
− 𝑦𝑖

1

𝑠𝑖
2
− 𝑦𝑖

2

.

.

.

𝑠𝑖|𝐷 | − 𝑦
𝑖
|𝐷 |

, ∀𝑖 ∈ [1...𝑡] (11)

To facilitate task prioritization, hyper-parameters 𝛼1, ..., 𝛼𝑚
are introduced such that

∑𝑚
𝑖=1 𝛼𝑖 = 1 and 0 ≤ 𝛼𝑖 ≤ 1. Coefficient

𝛼𝑖 indicates the significance of classification 𝑇𝑖 . The complete

vector used for computing the partitioning is then calculated as,

𝒗𝑡𝑜𝑡 =
𝑚∑︁
𝑖=1

𝛼𝑖𝒗𝑖 =

∑𝑚
𝑖=1 𝛼𝑖 (𝑠𝑖1 − 𝑦

𝑖
1
)∑𝑚

𝑖=1 𝛼𝑖 (𝑠𝑖2 − 𝑦
𝑖
2
)

.

.

.∑𝑚
𝑖=1 𝛼𝑖 (𝑠𝑖|𝐷 | − 𝑦

𝑖
|𝐷 |)

(12)

In the above formulation, each row corresponds to a unique

individual and captures its role in all classification tasks. Let

𝒗𝑡𝑜𝑡 [𝑢𝑖] denote the entry corresponding to 𝑢𝑖 in 𝒗𝑡𝑜𝑡 . Then the

classification objective function in Eq. 9 is replaced by:

𝑧𝑘 =
�� |𝐿𝑘 | × | ∑︁

𝑢𝑖=𝐿𝑘

𝒗𝑡𝑜𝑡 [𝑢𝑖] | − |𝑅𝑘 | × |
∑︁

𝑢𝑖=𝑅𝑘

𝒗𝑡𝑜𝑡 [𝑢𝑖] |
��

(13)

155

N1 N2 N3 N4 N5 N6 N7 N8 N9 N1
0

Neighborhoods

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ca
lib

ra
tio

n

Ideal Calibration

(a) EdGap (Los Angeles)

N1 N2 N3 N4 N5 N6 N7 N8 N9 N1
0

Neighborhoods

0.05

0.10

0.15

0.20

0.25

0.30

EC
E

(b) EdGap (Los Angeles)

N1 N2 N3 N4 N5 N6 N7 N8 N9 N1
0

Neighborhoods

1

2

3

4

5

Ca
lib

ra
tio

n

Ideal Calibration

(c) EdGap (Houston)

N1 N2 N3 N4 N5 N6 N7 N8 N9 N1
0

Neighborhoods

0.10

0.15

0.20

0.25

0.30

EC
E

(d) EdGap (Houston)

Figure 6: Evidence of Model Disparity on Geospatial Neighborhoods.

4 5 6 7 8 9 10
Height

10−3

10−2

10−1

EN
CE

 (l
og
)

Median KD-tree
Fair KD-tree
Iterative Fair KD-tree
Grid (Reweighting)
SPAD

(a) Los Angeles (Logistic Regression)

4 5 6 7 8 9 10
Height

10−3

10−2

10−1

EN
CE

 (l
og
)

Median KD-tree
Fair KD-tree
Iterative Fair KD-tree
Grid (Reweighting)
SPAD

(b) Los Angeles (Decision Tree)

4 5 6 7 8 9 10
Height

10−3

10−2

10−1

EN
CE

 (l
og
)

Median KD-tree
Fair KD-tree
Iterative Fair KD-tree
Grid (Reweighting)
SPAD

(c) Los Angeles (Naive Bayes)

4 5 6 7 8 9 10
Height

10−3

10−2

10−1

EN
CE

 (l
og
)

Median KD-tree
Fair KD-tree
Iterative Fair KD-tree
Grid (Reweighting)
SPAD

(d) Houston (Logistic Regression)

4 5 6 7 8 9 10
Height

10−3

10−2

10−1

EN
CE

 (l
og
)

Median KD-tree
Fair KD-tree
Iterative Fair KD-tree
Grid (Reweighting)
SPAD

(e) Houston (Decision Tree)

4 5 6 7 8 9 10
Height

10−3

10−2

10−1

EN
CE

 (l
og
)

Median KD-tree
Fair KD-tree
Iterative Fair KD-tree
Grid (Reweighting)
SPAD

(f) Houston (Naive Bayes)

Figure 7: Performance Evaluation with respect to ENCE.

and the optimal split point is selected as,

𝑘∗ = argmin

𝑘
𝑧𝑘 (14)

Vector aggregation is illustrated in Figure 5.

Theorem 5. For a given dataset𝐷 , the required number of neigh-
borhoods 𝑡 and𝑚 classification tasks modelled by ℎ1, ..., ℎ𝑚 , com-
putational complexity of Multi-Objective Fair KD-tree is O(|𝐷 | ×
⌈log(𝑡)⌉) +∑𝑚

𝑖=1 O(ℎ𝑖).

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We use two real-world datasets provided by EdGap [35] with 1153

and 966 data records respectively, containing socio-economic fea-

tures (e.g., household income and family structure) of US high

school students in Los Angeles, CA and Houston, Texas. Consis-

tent with [11], we use two features of average American College

Testing (ACT) and the percentage of family employment as indi-

cators to generate classification labels. The geospatial coordinates

of schools are derived by linking their identification number to

data provided by the National Center for Education Statistics [1].

We evaluate the performance of our proposed approaches (Fair

KD-tree, Iterative Fair KD-tree, and multi-objective Fair KD-tree)

in comparison with four benchmarks: (i) Median KD-tree, the

standard method for KD-tree partitioning; (ii) Reweighting over

grid – an adaptation of the re-weighting approach used in in [18]

and deployed in geospatial tools such as IBM AI Fairness 360; (iii)
Zipcode partitioning; and (iv) the SPAD (space as a distribution)

method proposed in [39], designed to improve spatial fairness

by minimizing statistical discrepancies tied to partitioning and

scaling in a continuous space. The core idea of SPAD is to in-

troduce fairness via a referee at the start of each training epoch.

This involves adjusting the learning rate for different data sam-

ple partitions. Intuitively, a partition that exceeds performance

expectations will receive a reduced learning rate, while those

underperforming will be allocated higher rates. All experiments

are implemented in Python and executed on a 3.40GHz core-i7

Intel processor with 16GB RAM.

5.2 Evidence for Disparity in Geospatial ML
First, we perform a set of experiments to measure the amount

of bias that occurs when performing ML on geospatial datasets

without any mitigating factors. Figure 6 captures the existing

disparity with respect to widely accepted metrics of calibration

error and ECE with 15 bins. We use the ratio representation

of calibration in which a closer value to 1 represents higher

calibration levels. Two logistic regression models are trained over

neighborhoods in Los Angeles and Houston areas. The labels

156

4 6 8 10
Height

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Median KD-tree
Fair KDtree
Iterative Fair KDtree
Grid (Reweighting)
SPAD

(a) Model Accuracy (Los Angeles)

4 6 8 10
Height

10−1

Tr
ai

ni
ng

 M
isc

al
ib

ra
tio

n
(lo

g)

Median KD-tree
Fair KDtree
Iterative Fair KDtree
Grid (Reweighting)
SPAD

(b) Training Miscalibration (Los Angeles)

4 6 8 10
Height

10−2

10−1

Te
st
 M
isc

al
ib
ra
ti

n
(l

g)

Median KD-tree
Fair KDtree
Iterative Fair KDtree
Grid (Reweighting)
SPAD

(c) Test Miscalibration (Los Angeles)

4 6 8 10
Height

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ra
cy

Median KD-tree
Fair KDtree
Iterative Fair KDtree
Grid (Reweighting)
SPAD

(d) Model Accuracy (Houston)

4 6 8 10
Height

10−2

10−1
Tr
ai
ni
ng

 M
isc

al
ib
ra
ti

n
(l

g)

Median KD-tree
Fair KDtree
Iterative Fair KDtree
Grid (Reweighting)
SPAD

(e) Training Miscalibration (Houston)

4 6 8 10
Height

10−1

Te
st

 M
isc

al
ib

 a
tio

n
(lo

g)

Median KD-tree
Fair KDtree
Iterative Fair KDtree
Grid (Reweighting)
SPAD

(f) Test Miscalibration (Houston)

Figure 8: Performance Evaluation with respect to other indicators.

are generated by setting a threshold of 22 on the average ACT

performance of students in schools. The overall performance of

models in terms of training and test calibration in Los Angeles

and Texas are (1.005, 1.033) and (0.999, 0.958), respectively. Both
training and test calibration are close to 1 overall, which in a

naive interpretation would indicate all schools are treated fairly.

However, this is not the case when computing the same metrics

on a per-neighborhood basis. Figure 6 shows miscaibration error

for the top 10 most populated zip codes. Despite the model’s

acceptable outcomes overall, many individual neighborhoods
suffer from severe calibration errors, leading to unfair outcomes

in the most populated regions, which are often home to the

under-privileged communities.

5.3 Mitigation Algorithms
5.3.1 Evaluation w.r.t. ENCE Metric. ENCE is our primary

evaluation metric that captures the amount of calibration error

over neighborhoods. Recall that Fair KD-tree and its extension

Iterative Fair KD-tree can work for any given classification ML

model. We apply algorithms for Logistic Regression, Decision

Tree, and Naive Bayes classifiers to ensure diversity in models.

We focus on student SAT performance following the prior work

in [11] by setting the threshold to 22 for label generation. Figure 7

provides the results in Los Angeles and Houston on the EdGap

dataset. The 𝑥-axis denotes the tree’s height used in the algorithm.

Having a higher height indicates a finer-grained partitioning. The

𝑦-axis is log-scale.

Figure 7 demonstrates that both Fair KD-tree and Iterative Fair

KD-tree outperform benchmarks by a significant margin. The im-

provement percentage increases as the number of neighborhoods

increase, which is an advantage of our techniques, since finer

spatial granularity is beneficial for most analysis tasks. The intu-

ition behind this trend lies in the overall calibration of the model:

given that the trained model is well-calibrated overall, dividing

the space into a smaller number of neighborhoods is expected

to achieve a calibration error closer to the overall model. This

result supports Theorem 1, stating that ENCE is lower-bounded

by the number of neighborhoods. Iterative Fair KD-tree behaves

better, as confidence scores are updated on every tree level. The

improvement achieved compared to Fair KD-trees comes at the

expense of higher computational complexity. On average Fair

KD-tree achieves 45% better performance in terms of computa-

tional complexity. The time taken for Fair KD-tree with 10 levels

is 102 seconds, versus 189 seconds for the iterative version.

5.3.2 Evaluation w.r.t. other Indicators. In Figure 8 we eval-

uate fairness with respect to three other key indicators: model

accuracy, training miscalibration, and test miscalibration. We

focus on logistic regression to discuss the performance as one of

the most widely adopted classification units. The accuracy of all

algorithms follows a similar pattern and increases at higher tree

heights. This is expected, as more geospatial information can be

extracted at finer granularities.

Figure 8b shows training miscalibration calculated for the

overall model (a lower value of calibration error indicates better

performance). Our proposed algorithms have comparable cali-

bration errors to benchmarks, even though their fairness is far

superior. Out of all benchmarks, SPAD is observed to have com-

parable or slightly better performance than our approach, but

only at coarse granularities, when the space is partitioned accord-

ing to a low-height structure. However, at coarse granularity,

there is little information that is provided to the data recipient

(e.g., in practice, it is of interest to take decisions at a city block

granularity, whereas zipcode-scale granularity is too coarse). For

finer-grained partitioning (i.e., higher height values) Fair KD-tree

and iterative KD-tree outperform benchmarks.

To understand better the underlying performance trends, Fig-

ure 9 provides the heatmap for the tree-based algorithms over

10 different tree heights. The amount of contribution each fea-

ture has on decision-masking is captured using a different color

code. One observation is that the model shifts focus to different

features based on the height. Such sudden changes can impact

the generated confidence scores and, subsequently, the overall

157

Un
em

pl
oy
m
en

t (
%

)
Co

lle
ge

 D
eg

re
e

Ma
rri

ag
e

(%
)

Me
di

an
 In

co
m

e
Re

du
ce

d
Lu

nc
h

(%
)

Ne
ig

hb
or

ho
od

Features

1
2

3
4

5
6

7
8

9
10

He
ig

ht

0.2

0.4

0.6

0.8

(a) Median KD-tree (Los Angeles)

Un
em

pl
oy
m
en

t (
%

)
Co

lle
ge

 D
eg

re
e

Ma
rri

ag
e

(%
)

Me
di

an
 In

co
m

e
Re

du
ce

d
Lu

nc
h

(%
)

Ne
ig

hb
or

ho
od

Features

1
2

3
4

5
6

7
8

9
10

He
ig

ht

0.2

0.4

0.6

0.8

(b) Fair KD-tree (Los Angeles)

Un
em

pl
oy
m
en

t (
%

)
Co

lle
ge

 D
eg

re
e

Ma
rri

ag
e

(%
)

Me
di

an
 In

co
m

e
Re

du
ce

d
Lu

nc
h

(%
)

Ne
ig

hb
or

ho
od

Features

1
2

3
4

5
6

7
8

9
10

He
ig

ht

0.2

0.4

0.6

0.8

(c) Iterative Fair KD-tree (Los Angeles)

Un
em

pl
oy
m
en

t (
%

)
Co

lle
ge

 D
eg

re
e

Ma
rri

ag
e

(%
)

Me
di

an
 In

co
m

e
Re

du
ce

d
Lu

nc
h

(%
)

Ne
ig

hb
or

ho
od

Features

1
2

3
4

5
6

7
8

9
10

He
ig

ht

0.2

0.4

0.6

0.8

(d) Median KD-tree (Houston)

Un
em

pl
oy
m
en

t (
%

)
Co

lle
ge

 D
eg

re
e

Ma
rri

ag
e

(%
)

Me
di

an
 In

co
m

e
Re

du
ce

d
Lu

nc
h

(%
)

Ne
ig

hb
or

ho
od

Features

1
2

3
4

5
6

7
8

9
10

He
ig

ht

0.2

0.4

0.6

0.8

(e) Fair KD-tree (Houston)

Un
em

pl
oy
m
en

t (
%

)
Co

lle
ge

 D
eg

re
e

Ma
rri

ag
e

(%
)

Me
di

an
 In

co
m

e
Re

du
ce

d
Lu

nc
h

(%
)

Ne
ig

hb
or

ho
od

Features

1
2

3
4

5
6

7
8

9
10

He
ig

ht

0.2

0.4

0.6

0.8

(f) Iterative Fair KD-tree (Houston)

Figure 9: Impact of features on decision-making.

ACT Employment
Classification Task

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

EN
CE

Median KD-tree Fair KD-tree Grid (Reweighting)

(a) Height= 4, Los Angeles

ACT Employment
Classification Task

0.000

0.005

0.010

0.015

0.020

EN
CE

Median KD-tree Fair KD-tree Grid (Reweighting)

(b) Height= 6, Los Angeles

ACT Employment
Classification Task

0.00

0.02

0.04

0.06

0.08

EN
CE

Median KD-tree Fair KD-tree Grid (Reweighting)

(c) Height= 8, Los Angeles

ACT Employment
Classification Task

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

EN
CE

Median KD-tree Fair KD-tree Grid (Reweighting)

(d) Height= 10, Los Angeles

ACT Employment
Classification Task

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

EN
CE

Median KD-tree Fair KD-tree Grid (Reweighting)

(e) Height= 4, Houston

ACT Employment
Classification Task

0.000

0.005

0.010

0.015

0.020

EN
CE

Median KD-tree Fair KD-tree Grid (Reweighting)

(f) Height= 6, Houston

ACT Employment
Classification Task

0.00

0.02

0.04

0.06

0.08

EN
CE

Median KD-tree Fair KD-tree Grid (Reweighting)

(g) Height= 8, Houston

ACT Employment
Classification Task

0.00

0.05

0.10

0.15

0.20

0.25

EN
CE

Median KD-tree Fair KD-tree Grid (Reweighting)

(h) Height= 10, Houston

Figure 10: Performance evaluation of multi-objective algorithm.

calibration of the model. As an example, consider the median KD-

tree algorithm at the height of 8 in Los Angeles (Figure 8b): there

is a sudden drop in training calibration, which can be explained

by looking at the corresponding heat map in Figure 9a. At the

height of 8, the influential features on decision-making consist

of different elements than the heights 4, 6, and 10, leading to the

fluctuation in the model calibration.

5.4 Performance of multi-objective approach.
When multi-objective criteria are used, we need a methodology

to unify the geospatial boundaries generated by each task. Our

proposed multi-objective fair partitioning predicated on Fair KD-

trees addresses exactly this problem. In our experiments, we use

the two criteria of ACT scores and employment percentage of

families as the two objectives used for partitioning. These features

158

1k 10k 50k 100K
Number of Sa ples

10−3

10−2

10−1

EN
CE
 (l
og
) Median KD-tree

Fair KD-tree
Iterative Fair KD-tree
Grid (Reweighting)
SPAD

Figure 11: Performance evaluation on synthetic data.

are separated from the training dataset in the pre-processing

phase and are used to generate labels. The threshold for ACT

is selected as before (22), and the threshold for label generation

based on family employment is set to 10 percent.

Figure 10 presents the results of the Multi-Objective Fair KD-

tree (to simplify chart notation, we use the ‘Fair KD-tree’ label).

We choose a 𝛼 value of 0.5 to give equal weight to both objectives.

We emphasize that, the output of theMulti-Objective Fair KD-tree

is a single non-overlapping partitioning of the space representing

neighborhoods. Once the neighborhoods are generated, we show

the performance with respect to each objective function, i.e.,

ACT and employment. The first row of the figure shows the

performance for varying tree heights in Los Angeles, and the

second row corresponds to Houston. The proposed algorithm

improves fairness for both objective functions. The margin of

improvement increases as the height of the tree increases.

5.5 Synthetic Data Results
We compare the studied algorithms using synthetic datasets, with

the primary focus of assessing their performance on larger data

cardinality. The results are illustrated in Figure 11. Synthetic data

were generated with sizes of 1𝑘, 10𝑘, 50𝑘, 100𝑘 using Python’s

SKLearn library to create a classification task encompassing 5

features, and users were distributed across the Los Angeles map.

The findings validate the earlier performance assessment using

real-world data, highlighting the superior performance of both

the Iterative Fair KD-tree and Fair KD-tree algorithms.

5.6 Multi-Objective Performance Evaluation
Figure 12 evaluates the Fair KD-tree’s effectiveness in a multi-

objective setting using synthetic data. We use three target fea-

tures labeled as ’Obj1’, ’Obj2’, and ’Obj3’. The multi-objective fair

KD-tree is used to generate a single unified map for all three, and

the resulting performance is evaluated. The outcomes corrobo-

rate the performance analysis using real-world data, highlighting

the improved fairness outcomes achieved by the Fair KD-tree

algorithm.

6 CONCLUSION
We introduced an indexing method aimed at ensuring spatial

group fairness in machine learning. This method divides the data

domain, considering both geographical aspects and calibration

errors. Comprehensive assessments on real-world data confirm

our technique’s efficacy in minimizing unfairness when training

with location features, without compromising data utility. Look-

ing ahead, we aim to delve deeper into custom split metrics for

Obj-1 Obj-2 Obj-3
Classification Task

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

EN
CE

Median KD-tree
Fair KD-tree
Grid (Reweighting)

Figure 12: Multi-objective Performance Evaluation.

fairness-aware spatial indexing that acknowledges data distribu-

tion nuances. We will also explore other indexing frameworks,

like R
+
trees, which fully encompass the data domain and offer

enhanced clustering traits. Furthermore, our present framework

is designed for binary classification. There’s a need to adapt this

model for multi-class classification.

Acknowledgments. This research has been funded in part

by NIH grant R01LM014026, NSF grants IIS-1910950, IIS-1909806,

CNS-2125530 and IIS-2128661, and an unrestricted cash gift from

Microsoft Research. Any opinions, findings, conclusions or rec-

ommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect the views of any of the

sponsors such as the NSF.

REFERENCES
[1] [n.d.]. National Center for Education Statistics. https://nces.ed.gov/

[2] 2015. Chicago Crime Dataset. https://data.cityofchicago.org/Public-Safety/

Crimes-2015/vwwp-7yr9

[3] Nawal Benabbou, Mithun Chakraborty, and Yair Zick. 2019. Fairness and

diversity in public resource allocation problems. Bulletin of the Technical
Committee on Data Engineering (2019).

[4] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.

2021. Fairness in criminal justice risk assessments: The state of the art. Socio-
logical Methods & Research 50, 1 (2021), 3–44.

[5] Simon Caton and Christian Haas. 2020. Fairness in machine learning: A survey.

arXiv preprint arXiv:2010.04053 (2020).
[6] Alexandra Chouldechova. 2017. Fair prediction with disparate impact: A study

of bias in recidivism prediction instruments. Big data 5, 2 (2017), 153–163.
[7] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd innovations
in theoretical computer science conference. 214–226.

[8] Cynthia Dwork and Christina Ilvento. 2018. Individual fairness under com-

position. Proceedings of Fairness, Accountability, Transparency in Machine
Learning (2018).

[9] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce

framework for spatial data. In 2015 IEEE 31st international conference on Data
Engineering. IEEE, 1352–1363.

[10] Evanthia Faliagka, Athanasios Tsakalidis, and Giannis Tzimas. 2012. An inte-

grated e-recruitment system for automated personality mining and applicant

ranking. Internet research (2012).

[11] Brian Fischer. 2021. data science methodology and applications. https:

//bookdown.org/bfischer_su/bookdown-demo/edgap.html

[12] Siamak Ghodsi, Harith Alani, and Eirini Ntoutsi. 2022. Context matters for

fairness–a case study on the effect of spatial distribution shifts. arXiv preprint
arXiv:2206.11436 (2022).

[13] ChuanGuo, Geoff Pleiss, Yu Sun, and Kilian QWeinberger. 2017. On calibration

of modern neural networks. In International conference on machine learning.
PMLR, 1321–1330.

[14] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in

supervised learning. Advances in neural information processing systems 29
(2016), 3315–3323.

[15] Alan M Hay. 1995. Concepts of equity, fairness and justice in geographical

studies. Transactions of the Institute of British Geographers (1995), 500–508.
[16] Erhu He, Yiqun Xie, Xiaowei Jia, Weiye Chen, Han Bao, Xun Zhou, Zhe Jiang,

Rahul Ghosh, and Praveen Ravirathinam. 2022. Sailing in the location-based

fairness-bias sphere. In Proceedings of the 30th International Conference on
Advances in Geographic Information Systems. 1–10.

159

[17] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth.

2016. Fairness in learning: Classic and contextual bandits. Advances in neural
information processing systems 29 (2016).

[18] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for

classification without discrimination. Knowledge and information systems 33,
1 (2012), 1–33.

[19] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2012.

Fairness-aware classifier with prejudice remover regularizer. In Joint European
conference on machine learning and knowledge discovery in databases. Springer,
35–50.

[20] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. 2020. A

Notion of Individual Fairness for Clustering. arXiv preprint arXiv:2006.04960
(2020).

[21] Matt J Kusner, Joshua R Loftus, Chris Russell, and Ricardo Silva. 2017. Coun-

terfactual fairness. arXiv preprint arXiv:1703.06856 (2017).
[22] Michelle Seng Ah Lee and Luciano Floridi. 2021. Algorithmic fairness in

mortgage lending: from absolute conditions to relational trade-offs. Minds
and Machines 31, 1 (2021), 165–191.

[23] Sepideh Mahabadi and Ali Vakilian. 2020. Individual fairness for k-clustering.

In International Conference on Machine Learning. PMLR, 6586–6596.

[24] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and

Aram Galstyan. 2021. A survey on bias and fairness in machine learning. ACM
Computing Surveys (CSUR) 54, 6 (2021), 1–35.

[25] Vishwali Mhasawade, Yuan Zhao, and Rumi Chunara. 2021. Machine learning

and algorithmic fairness in public and population health. Nature Machine
Intelligence 3, 8 (2021), 659–666.

[26] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. 2015. Ob-

taining well calibrated probabilities using bayesian binning. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

[27] Dana Pessach and Erez Shmueli. 2022. A review on fairness in machine

learning. ACM Computing Surveys (CSUR) 55, 3 (2022), 1–44.
[28] John Platt et al. 1999. Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods. Advances in large margin
classifiers 10, 3 (1999), 61–74.

[29] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Wein-

berger. 2017. On fairness and calibration. Advances in neural information
processing systems 30 (2017).

[30] David Pujol and Ashwin Machanavajjhala. 2021. Equity and Privacy: More

Than Just a Tradeoff. IEEE Security & Privacy 19, 6 (2021), 93–97.

[31] Christopher Riederer and Augustin Chaintreau. 2017. The Price of Fairness in

Location Based Advertising. (2017).

[32] Dimitris Sacharidis, Giorgos Giannopoulos, George Papastefanatos, and Kostas

Stefanidis. 2023. Auditing for Spatial Fairness. arXiv preprint arXiv:2302.12333
(2023).

[33] Sina Shaham, Gabriel Ghinita, and Cyrus Shahabi. 2022. Models and Mecha-

nisms for Fairness in Location Data Processing. arXiv preprint arXiv:2204.01880
(2022).

[34] Suraj Shetiya, Ian P Swift, Abolfazl Asudeh, and Gautam Das. 2022. Fairness-

aware range queries for selecting unbiased data. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 1423–1436.

[35] Peter VanWylen. [n.d.]. Visualizing the education gap. https://www.edgap.

org/#6/37.886/-97.000

[36] Caroline Wang, Bin Han, Bhrij Patel, and Cynthia Rudin. 2022. In pursuit

of interpretable, fair and accurate machine learning for criminal recidivism

prediction. Journal of Quantitative Criminology (2022), 1–63.

[37] Yongzhi Wang, Hua Lv, and Yuqing Ma. 2020. Geological tetrahedral model-

oriented hybrid spatial indexing structure based on Octree and 3D R*-tree.

Arabian Journal of Geosciences 13 (2020), 1–11.
[38] Leonard Weydemann, Dimitris Sacharidis, and Hannes Werthner. 2019. Defin-

ing and measuring fairness in location recommendations. In Proceedings of
the 3rd ACM SIGSPATIAL international workshop on location-based recommen-
dations, geosocial networks and geoadvertising. 1–8.

[39] Yiqun Xie, Erhu He, Xiaowei Jia, Weiye Chen, Sergii Skakun, Han Bao, Zhe

Jiang, Rahul Ghosh, and Praveen Ravirathinam. 2022. Fairness by “Where”:

A Statistically-Robust and Model-Agnostic Bi-level Learning Framework. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 12208–
12216.

[40] Chengyuan Zhang, Ying Zhang,Wenjie Zhang, and Xuemin Lin. 2016. Inverted

linear quadtree: Efficient top k spatial keyword search. IEEE Transactions on
Knowledge and Data Engineering 28, 7 (2016), 1706–1721.

A APPENDIX
A.1 Expected Calibration Error
Expected Calibration Error (ECE) is one of the primary metrics

used to quantify calibration in ML. According to this metric,

the output confidence scores are sorted and partitioned into𝑀

bins denoted by 𝐵1,, 𝐵𝑚 . The associated score for each data

instance lies within one of the bins. The ECE metric is then

calculated over bins as follows:

ECE =

𝑀∑︁
𝑚=1

𝐵𝑚

𝑛
|o(𝐵𝑚) − 𝑒 (𝐵𝑚) | (15)

A.2 Theorem Proofs
Proof of Theorem 1

The proof follows triangle inequality. The weighted calibration

of the model can be written as,∑︁
𝑁𝑖 ∈N

|𝑁𝑖 | × |𝑒 (ℎ |𝑁 = 𝑁𝑖) − 𝑜 (ℎ |𝑁 = 𝑁𝑖) | = (16)∑︁
𝑁𝑖 ∈N

|𝑁𝑖 | × |
1

|𝑁𝑖 |
(
∑︁
𝑢∈𝑁𝑖

𝑠𝑢) −
1

|𝑁𝑖 |
(
∑︁
𝑢∈𝑁𝑖

𝑦𝑢) | = (17)∑︁
𝑁𝑖 ∈N

|
∑︁
𝑢∈𝑁𝑖

𝑠𝑢 −
∑︁
𝑢∈𝑁𝑖

𝑦𝑢 | ≥ |
∑︁
𝑢∈𝐷

𝑠𝑢 −
∑︁
𝑢∈𝐷

𝑦𝑢 | (18)

= |𝐷 | × (|𝑒 (ℎ) − 𝑜 (ℎ) |) (19)

Proof of Theorem 2
SinceN2 is a subgroup partitioning ofN1 it can be constructed

following step-by-step partitioning of neighborhoods in N1 into

finer granularity ones until reaching N2. Denote N1 neighbor-

hoods by {𝑁1, 𝑁2, ..., 𝑁𝑡 }. Without loss of generality, we show

that splitting an arbitrary neighborhood 𝑁 𝑗 ∈ N1 to 𝑁 𝑗1 and 𝑁 𝑗2

leads to a worse ENCE metric value:

ENCE(N1) =
∑︁

𝑁𝑖 ∈N
|𝑁𝑖 | × |𝑒 (ℎ |𝑁 = 𝑁𝑖) − 𝑜 (ℎ |𝑁 = 𝑁𝑖) | = (20)∑︁

𝑁𝑖 ∈N,𝑖≠𝑗
|𝑁𝑖 | × |𝑒 (ℎ |𝑁 = 𝑁𝑖) − 𝑜 (ℎ |𝑁 = 𝑁𝑖) |+

|𝑁 𝑗 | × |𝑒 (ℎ |𝑁 = 𝑁 𝑗) − 𝑜 (ℎ |𝑁 = 𝑁 𝑗) | (21)

Note that,

|𝑁 𝑗 |×|𝑒 (ℎ |𝑁 = 𝑁 𝑗) − 𝑜 (ℎ |𝑁 = 𝑁 𝑗) | = (22)

|𝑁 𝑗 | × |
1

|𝑁 𝑗 |
(
∑︁
𝑢∈𝑁 𝑗

𝑠𝑢) −
1

|𝑁 𝑗 |
(
∑︁
𝑢∈𝑁 𝑗

𝑦𝑢) | = (23)

| (
∑︁
𝑢∈𝑁 𝑗

𝑠𝑢) − (
∑︁
𝑢∈𝑁 𝑗

𝑦𝑢) | = (24)

| (
∑︁

𝑢∈𝑁 𝑗1

𝑠𝑢) − (
∑︁

𝑢∈𝑁 𝑗1

𝑦𝑢) + (
∑︁

𝑢∈𝑁 𝑗2

𝑠𝑢) − (
∑︁

𝑢∈𝑁 𝑗2

𝑦𝑢) | ≤

(25)

| (
∑︁

𝑢∈𝑁 𝑗1

𝑠𝑢) − (
∑︁

𝑢∈𝑁 𝑗1

𝑦𝑢) | + |(
∑︁

𝑢∈𝑁 𝑗2

𝑠𝑢) − (
∑︁

𝑢∈𝑁 𝑗2

𝑦𝑢) | =

(26)

|𝑁 𝑗1 | × |
1

|𝑁 𝑗1 |
(
∑︁

𝑢∈𝑁 𝑗1

𝑠𝑢) −
1

|𝑁 𝑗1 |
(
∑︁

𝑢∈𝑁 𝑗1

𝑦𝑢) |+

|𝑁 𝑗2 | × |
1

|𝑁 𝑗2 |
(
∑︁

𝑢∈𝑁 𝑗2

𝑠𝑢) −
1

|𝑁 𝑗2 |
(
∑︁

𝑢∈𝑁 𝑗2

𝑦𝑢) | (27)

Therefore, since by further splitting of neighborhoods, ENCE

gets worse and asN2 can be reconstructed one division at a time

from N1, one can conclude that

ENCE(𝑁1) ≤ ENCE(𝑁2) (28)

Proof of Theorem 3
As the tree is binary, there is a maximum of ⌈log(𝑡)⌉ parti-

tioning levels. At every level of the tree, the fairness objective

function is calculated |𝐷 | times, with each computation taking a

constant time. Therefore, the required number of computations is

160

O(|𝐷 | × ⌈log(𝑡)⌉). Moreover, the algorithm requires an initial run

of the model ℎ, which depends on what ML model is employed,

represented by the computation complexity of 𝑂 (ℎ) in the total

complexity equation.

Proof of Theorem 4
Similar to Fair KD-tree, the total number of levels in Itera-

tive Fair KD-tree is ⌈log(𝑡)⌉ requiring computational complexity

of O(|𝐷 | × ⌈log(𝑡)⌉) to obtain the values for fair partitioning.

However, in contrast to the Fair KD-tree algorithm, the itera-

tive version requires the execution of the ML model at every

height of the tree. The total computational complexity adds up

to O(|𝐷 | × ⌈log(𝑡)⌉) + ⌈log(𝑡)⌉ × O(ℎ).

Proof of Theorem 5
Multi-objective Fair KD-tree requires a single execution of the

ML classifier at the beginning of the algorithm. Therefore, the

computational complexity is

∑𝑚
𝑖=1 O(ℎ𝑖). Once confidence scores

are generated, given that𝑚 is small, the total required objective

computations at every tree level remains O(|𝐷 | × ⌈log(𝑡)⌉) as
the combined vector can be calculated in constant time.

161

