
Computing Generic Abstractions from Application Datasets
Nelly Barret

nelly.barret@inria.fr
Inria, IP Paris, France

Ioana Manolescu
ioana.manolescu@inria.fr
Inria, IP Paris, France

Prajna Upadhyay
prajna.u@hyderabad.bits-pilani.ac.

in
BITS Pilani H, India

ABSTRACT

Digital data plays a central role in sciences, journalism, environ-
ment, digital humanities, etc. Open Data sharing initiatives lead
to many large, interesting datasets being shared online. Some
of these are RDF graphs, but other formats like CSV, relational,
property graphs, JSON or XML documents are also frequent.

Practitioners need to understand a dataset to decide whether it
is suited to their needs. Datasets may come with a schema and/or
may be summarized, however the first is not always provided and
the latter is often too technical for non-IT users. To overcome
these limitations, we present an end-to-end dataset abstraction
approach, which (𝑖) applies on any (semi)structured data model;
(𝑖𝑖) computes a description meant for human users, in the form
of an Entity-Relationship diagram; (𝑖𝑖𝑖) integrates Information
Extraction and data profiling to classify dataset entities among a
large set of intelligible categories. We implemented our approach
in a system called Abstra, and detail its performance on various
datasets.

1 INTRODUCTION

Data-driven applications are in the heart of many businesses and
governmental initiatives. When possible, data is shared in open

accesswhich leads to circulating knowledge on various domains,
ranging from journalism to education, environment or health.

With this trend of open-access data, the World Wide Web
Consortium’s recommends to share data as RDF graphs, and this
has been widely adopted, e.g., to build the Linked Open Data
Cloud. However, practitioners also use a variety of other data
formats such as relational data, XML or JSON documents and
property graphs. Thousands of CSV datasets are available on
Kaggle and the French public portal data.gouv.fr. XML is used
to share bibliographic notices on PubMed, a leading website in
the medical domain. JSON has become the reference format for
the French parliament to increase the transparency of the public
life, notably on the websites NosDeputes.fr and NosSenateurs.fr.
Relational databases are sometimes shared as dumps, includ-
ing schema constraints (e.g. primary and foreign keys), or as
CSV files. Property graphs (PGs, in short, such as pioneered by
Neo4J) are used to share Offshore leaks, a journalistic database
of offshore companies, or by the LDBC council.

Practitioners need to get a basic understanding of a dataset
content in order to decidewhether it suits their needs. Also,
data producers need tools to generate automatically a descrip-

tion of the dataset they want to share. They both need datasets
descriptions.

Datasets descriptions generally take the form of a documenta-
tion or a schema. While these can help users in their quest of the

The work was done when the third author was at Inria.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-091-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Abstraction pipeline.

right dataset, they have limitations. Documentation is often lack-
ing or insufficient (writing documentation is time-consuming). A
schema may be inferred from the dataset to describe its structure.
However, schemas have several limitations: (𝑖) schemas are rare
when sharing semi-structured datasets (XML, JON, RDF and PG).
Even when a schema is supplied with or extracted from the data:
(𝑖𝑖) schema syntactic details, such as regular expressions, are hard
to interpret for non-IT users; (𝑖𝑖𝑖) schema inference techniques
mainly focuses on the dataset structure, not on its content. It
does not take advantage of linguistic information available in
structures and text values; (𝑖𝑣) they do not reflect quantitatively
the dataset either, whereas showing all the structures regardless
of their importance in the dataset may overwhelm the user. Data
summarization techniques [4, 17, 19, 27, 36, 47] partially lift (𝑖). In
the particular case of RDF graphs, an ontology may accompany
the graphs and give an overview of the semantic of the dataset,
thus lifting (𝑖𝑖𝑖) but not the others. Pattern mining [31] may help
users to grasp the popular patterns in their datasets, e.g. items
often purchased together. This allows to bypass (𝑖) and (𝑖𝑣) only.

To answer practitioners and data producers needs, we present
anovel approach for abstracting any tabular, tree or graph-

structured dataset.Ourwork leverages the idea that any dataset
comprises some entities (data objects), often grouped in collec-
tions (sets). Such sets of entities are often connected by some
relationships. Our abstractions differ from the classical Entity-
Relationship schemas [44] in the sense that our entities may

have a deeply nested structure. This modeling seeks to ac-
count for the recent adoption of complex, non-relational data
formats. To identify entities and their relationships, we proceed
as follows (Fig. 1):

(1.) Based on how each data model represents fragments of
data, we transform any dataset into a labeled directed graph

(Sec. 2).
(2.) We group nodes into collections by leveraging how

each data model encodes similarity between data objects, e.g.
data types are a way to encode such similarity (Sec. 3).

(3.) We elect few collections as the main ones, such that,
they together represent a large part of the dataset. Each main
collection is a set of entities that may have a simple or very
complex structure. Also, we need to efficiently identify main
collections of entities (referred to as main entities), regardless of
the potentially complex and cyclic graph structure. To do so,
we introduce a notion of data weight and dedicated algorithms
(Sec. 4). Next, we identify relationships between main entities.

(4.)We attempt to classify eachmain collection of entities

into a semantic class, such as Person, Product, etc. Our classifi-
cation (Sec. 5) leverages (𝑖) entities names, properties and text

Series ISSN: 2367-2005 94 10.48786/edbt.2024.09

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.09

Figure 2: E-R model computed by Abstra from an XMark [45] XML document (3M nodes).

values on which Information Extraction is applied to find named
entities; (𝑖𝑖) a set of semantic properties we built using well-known
knowledge bases and existing semantic resources, while users
can also specify semantic properties they have in mind; (𝑖𝑖𝑖) lan-
guage models to compute the similarity between main collections
entities and the semantic classes.

Finally, we output a compact and graphical description

comprising the main entities, together with their semantic class
and their possible relationships. Note that this description is
free of any syntactic details of the input format. For instance,
the abstraction of an XMark [45] XML document (3M nodes, 80
different labels, 124 labeled paths) contains five main entity sets,
each shown as a box in Fig. 2. Each main entity is described by its
size, its name and its semantic class (within parenthesis if found).
The entity properties are displayed below. Three dots indicates
that the property is deeply nested, e.g. the mailbox contains mails
which have four properties (date, sender, receiver, text). Users
can unfold the nested structure through an HTML/JavaScript
interface. Our approach is implemented in a prototype, Abstra,
demonstrated recently [6].

We focus on application datasets, each describing a specific
scenario, e.g., the Senate, companies with their stakeholders and
officers, online auctions, etc. in the above examples, and do not
consider “universal” datasets, such as Wikidata [48], YAGO [41],
etc. No universal dataset abstraction is likely to be both compact
and comprehensive; extracting an application dataset from a uni-
versal one, based on keywords or terms the user already knows,
is an orthogonal problem, e.g., [18, 23].

In reverse w.r.t. the usual database design steps [44], our
goal is to retrieve from the dataset, the conceptual model origi-
nally behind it. For this, Sec. 2 provides a unified analysis of the
(semi)structured data models we consider, highlighting how they
encode various aspects of an application domain. Sec. 3 shows
how to represent any dataset as a directed, labeled graph, then
how we partition nodes into collections, and organize these in a
graph reflecting their relationships in the original dataset. Sec. 4
explains how we select main entity collections and their relation-
ships, through novel weight-based ranking methods, leveraging
graph connectivity and collections cardinalities. Sec. 5 describes
how to assign a semantic class to a collection, given its properties
and content. In Sec. 6, we evaluate the quality, scalability, and
compactness of our abstractions, before discussing related work
and concluding in Sec. 7.

Sample graphical abstractions, and our code, can be found at:
https://team.inria.fr/cedar/projects/abstra/.

2 FROM APPLICATIONS TO DATASETS: A

UNIFIED PERSPECTIVE

We consider the following data models: relational and CSV; XML
and JSON (documents); finally, RDF, and property graphs (PGs,

in short). Towards abstracting datasets, we first analyze how each
model describes a set of core features of any real-world applica-
tion: application objects (at various granularities), data types,
relationships, and information about application objects “of the
same kind”. We use "kind" (not "type"), because “type” has precise
(but different!) meanings in different data models. In this work,
“same-kind” designates similarity from the application perspective.

We denote by record a piece of data in a dataset, describing an
application domain object. Specifically, in a relational database
(RDB), each tuple or attribute value is a record; in a JSON or XML
document, each node is a record; in a PG or an RDF graph, each
node is a record. Clearly, some records may contain other records,
e.g., tuple attribute value records are contained (or part of) the
respective tuple record1. We call leaf record (or value) a record
that does not (syntactically) contain any other records: relational
attribute values; leaf nodes in JSON and XML documents; literals
in RDF graphs; atomic values of node or edge attributes in a PG.

Each data model supports some value types such as String,
Float, etc., described, e.g., in the ISO/IEC 9075:2011 standard for
relational databases, or the W3C’s standard [50] for XML and
RDF. Some value types model complex real-world concepts, e.g.,
the W3C’s gMonthDay type denotes "a specific day of a month,
recurring every year", such as “the 4th of July”. We view such
types as more expressive (closer to the application scenario)
than String or Float. Even if declared of type String, values such as
“Paul Jones”, “paul@outdoor.com” or “https://twitter.com/pjones”
denote, more expressively: a person name, respectively, an email,
and an URI. Frequent expressive types are named entity types
such as, Person, Location, Organization, as well as Email, URL,
Date etc.

Expressive types may be inferred from the data, through profil-
ing [1], pattern matching, Named Entity Recognition (NER), etc.
Within a String value, one may encounter several expressive-type
values. For instance, “Paul Jones lives in London; after ten years
at Mountaineering, he has been sales director at Outdoor since
Jan. 2022” contains one person name, a Place (London), two Orga-
nizations (Mountaineering and Outdoor), and a Date (Jan. 2022).
Expressive types bring useful information on the dataset content.
Thus, for a given expressive type set T , we assume any value

of an expressive T type has been identified in the dataset,
through one of the abovementioned methods. This is done for
instance in the ConnectionLens [2] system, on which this work
is based. Our abstraction method leverages such expressive-type
values to semantically classify the main entity collections (Sec. 5).

Next, we consider where and how relationships between
application objects are expressed in the data. A first category
of relationships comprises anonymous part-of relations, e.g., the

1This raises the question: where does one record end and where does another record
start? This question is complex for some data models, such as XML, RDF etc. We
will address it in Sec. 4.

95

records of the objects within a JSON array are part of the record
corresponding to the array; similarly, an XML element is part
of its parent. Next, we identify named binary relationships: in a
relation Person(id, name, address), in the tuple (1, “Alice”, “Main
Street”), a binary relation named “address” holds between the
tuple record and the value “Main Street”. Similar relations hold
between: an XML element record and each of its attribute val-
ues, e.g., ⟨person id=”1” name=”Alice” address=”Main Street”/⟩;
a JSON map record and its children; a PG node and each of
its attributes. Schema information may be attached to an XML
document, as a DTD [49] or XML Schema [50]. If it states that
an attribute, e.g., @id, is a PK (#ID) for ⟨person⟩ elements, and
that, e.g., @parent is a FK (#IDREF) on person@id, then ⟨student
name=”Bob” parent=”1”/⟩ also leads to a binary “parent” relation
between the student and the person records. PG edges also are
named binary relationships, and may have their own attributes;
the relational model also allows this, e.g., in a relation Works-
For(personID, companyID, startDate). Last but not least, each
RDF triple naturally encodes a binary relationship. Relationships
of arity higher than 2 are more rare, and we do not consider them
in this work.

Our last question is: how do data creators signal, in a dataset,
same-kind records, that is, records describing real-world ob-
jects of the same (or similar) nature? In a relational database, all
tuple records of the same table are of the same kind; the same
holds for XML elements with the same name in a document. If an
optional XML DTD or XML schema is available, each element is
assigned a type, and all same-type elements are of the same kind.
Moreover, leaf records (values) participating in a given named
binary relation, with non-leaf records of the same kind, are of
the same kind, e.g., values of “address” attribute in the Person
relation 𝑅 above, “@email” attributes of ⟨person⟩ XML elements.

RDF and property graphs allow attaching to node records
zero, one or more RDF types (resp. PG labels), e.g., a node can be
a “FrenchCitizen”, a “Student” and also an “PhDStudent”. If an
(optional) ontology is attached to an RDF graph, it may lead to
infer some node types, e.g., if 𝑥 is an UndergraduateStudent, then
𝑥 is also a Student. In this work, we assume that the set of facts
inferred from the ontology is finite, already computed [26], and
part of the RDF graph. A node’s types can be organized in a type
DAG (Directed Acyclic Graph) based on “subclassOf” relations.
The DAG may not be connected, e.g., FrenchCitizen is unrelated
to the student types.

Some records, such PG or RDF nodes w/o types (or labels),
or non-leaf JSON records, carry no explicit kind information.
Instead, their kind is implicitly encoded in the data structure. In
that case, and when there are several explicit types, we need a
method to decide which records are of the same kind (see Sec. 3.3).

We call kind name(s) of a record: for a tuple 𝑟∈𝑅, the relation
name 𝑅; XML element names; RDF node types and PG node/edge
labels (when present). Other records don’t have kind names.

The discussion for CSV datasets is largely the same as for
relational databases, except that value types may have to be
inferred through profiling (as opposed to stated in a schema).
Further, if a header is absent, attribute names are unknown; in
this case we give them simple distinct names 𝑎𝑡𝑡𝑟1, 𝑎𝑡𝑡𝑟2 etc.

3 DATA GRAPHS AND COLLECTION

GRAPHS

To abstract datasets of any model, we turn them into directed
graphs (Sec. 3.1). Then, we build from this graph, a much more

compact collection graph (Sec. 3.2) on which abstraction will
continue.

3.1 Conversion to a data graph

Target model: directed graphsWe need a common formalism
to represent (all aspects of) a relational, CSV, XML, JSON, RDF,
or PG dataset. Directed graphs are a natural format, since they
generalize all the models. The unified graph could either have
fine-granularity nodes and edges (each of which has only a label,
à la RDF), or large-granularity ones (which may have their own
attributes, à la PG). We prefer the former because (𝑖) it is more
natural to the data models of RDF, JSON and XML, and (𝑖𝑖) any
straightforward conversion to PGs would force turning some
dataset nodes into PG nodes, while others just become attributes.
Instead, our goal is to make such judgments at a higher (concep-
tual) level (which nodes are entities, and what are their attributes,
possibly nested?), based on a deeper analysis (Sec. 4).
Conversion into data graph We turn any dataset into a graph
𝐺0=(𝑁0, 𝐸0, _0) where 𝐸0⊆𝑁0×𝑁0 is a set of directed edges, and
_0 is a function labeling each node and edge with a string label,
that could in particular be 𝜖 (the empty label). The conversion
also prepares the ground for grouping all nodes of the same kind
(recall Sec. 2), into a collection (as we will discuss in Sec. 3.2).

RDF graphs map directly into𝐺0; nodes are labeled with URIs,
blank nodes, or literals, while edges are labeled with URIs.

XML documents lead to trees, where element names and text
node contents become node labels, attribute names become edge
labels, and all the other edges have an empty label (𝜖). If ID-IDREF
information is available from a schema, we leverage it to add
the corresponding edges; otherwise, we find ID-IDREF pairs by
profiling the data [1, 33]. For instance, from the XML fragment:
⟨paper id="p1" wB="a1 a2"/⟩ ⟨/paper⟩ ⟨paper id="p2"⟩...⟨/paper⟩
⟨authors⟩ ⟨author id="a1"⟩Eva⟨/author⟩ ⟨author id="a2"⟩...⟨/authors⟩
the attribute wB of the first paper becomes two edges labeled wB,
from the paper, to the two respective authors.

JSON documents similarly lead to trees, with a node for each
map, array, or leaf, and parent-child edges connecting them.

A CSV file leads to a node for each tuple; in turn, such a node
has edges (labeled with the attribute names, if the CSV file has a
header) going toward each attribute value.

A relational database is similarly modeled, with a node for
every tuple; in the presence of a constraint of the form “𝑅.𝑎 is
a foreign key referencing 𝑆.𝑏”, each node 𝑛𝑟 corresponding to
a tuple 𝑟 ∈ 𝑅 has an outgoing edge labeled 𝑎 pointing to the 𝑆
tuple node 𝑛𝑠 created for the respective tuple 𝑠 ∈ 𝑆 . Relational
databases have been modeled in this way for keyword search,
since [9].

From a property graph, we create a node for each PG node
and for each of its attributes; edges labeled with attribute names
connect them. For each PG edge 𝑒 from 𝑛𝑝1 to 𝑛𝑝2,𝐺0 has a node
𝑛𝑒 representing 𝑒 , with the label(s) of 𝑒 , and nodes representing
𝑒’s attributes, just like for PG node attributes. We also add to 𝐺0
an edge from 𝑛𝑝1 to 𝑛𝑒 , and one from 𝑛𝑒 to 𝑛𝑝2.
Normalized graph In 𝐺0, some edges have empty (𝜖) labels,
while others carry meaningful labels. Regardless of the input
data model, for uniformity, we transform 𝐺0 into a normalized

graph 𝐺=(𝑁 ,𝐸,_), copying all the nodes of 𝐺0 and all its 𝜖-label

edges, and replacing each 𝐺0 edge of the form 𝑛1
𝑙−→𝑛2 where

𝑙≠𝜖 by two unlabeled edges 𝑛1→𝑥𝑙 , 𝑥𝑙→𝑛2 where 𝑥𝑙 is a new
intermediary node labeled 𝑙 . All subsequent abstraction steps
apply on the normalized graph 𝐺 .

96

Figure 3: Sample normalized graph.

Fig. 3 shows a sample normalized graph 𝐺 . It describes three
papers (one is only partially shown), which are published in (pIn)
conferences. The papers are written by (wb) authors, described
by their name and email. Note the inverse “has written” (hW)
edges going from the authors to papers. Author 21 is invited (inv)
by the conference organizers. As Fig. 3 shows, the graph may
contain: (𝑖) nodes such as papers, whose information content is
deeply nested, and (𝑖𝑖) several cycles (in-cycle edges are shown in
red). Note the expressive-type values in Fig. 3: person names are
highlighted in yellow, dates in pink, and emails in light blue.

3.2 Building the collection graph

We now proceed to building the structure at the core of our en-
tity and relationship detection, called collection graph. Sec. 3.3
explains how we partition nodes into collections; this step iden-
tifies structural similarity among nodes in the graph. Sec. 3.4
shows how we organize this information in a graph that models
the links between the various collections.

3.3 Node partitioning into collections

We aim at a partition 𝑃={𝐶𝑖 }, 1≤𝑖 of the graph nodes 𝑁 , such
that

⋃
𝑖𝐶𝑖=𝑁 and the𝐶𝑖s, called equivalence classes or collections,

are pairwise disjoint. Intuitively, each equivalence class should
hold a set of nodes reflecting real-world objects of the same kind.
As discussed in Section 2, "kind" information is encoded explicitly,
in data model-specific ways in some data models, and implic-
itly encoded in others. Two principles guide our partitioning:
(⋆) Whenever "kind" information is explicit, we should lever-
age it, as it reflects the dataset producers’ application-domain
knowledge; (■) The number of equivalence classes should re-
main "reasonable", e.g., at most in the hundreds (as opposed to
thousands or more). This is because abstractions are meant for
novice users, which should not be overwhelmed with detail.

Partitioning is simplest for models explicitly assigning only
one "kind" to their records: relational, CSV and XML.

𝐺 nodes coming from a relational database or CSV are par-
titioned as follows. Let 𝑅(𝑎1, ..., 𝑎𝑛) be a relation (or CSV file).
The nodes created from any tuple 𝑟∈𝑅 are equivalent to each
other. The nodes created from attribute values 𝑟 .𝑎𝑖 , for 𝑟∈𝑅 and
an attribute 𝑎𝑖 , are equivalent. All nodes introduced by normal-
ization, labeled 𝑎𝑖 , and connecting a tuple node to its 𝑎𝑖 value,
are equivalent.

For 𝐺 nodes derived from XML, we proceed as follows.
• If a schema is present: XML elements of the same type are
equivalent. Otherwise, XML element nodes with the same
label are equivalent.
• The nodes created from edges connecting an element to
an attribute are partitioned into equivalence classes by

the element name followed by the attribute name. For
example, from the XML snippet in Sec. 2, we obtain one
class for paper@id, one for paper@writtenBy, and one for
author@id.
• For each equivalence class 𝑥 whose nodes have text chil-
dren, we create the equivalence class denoted 𝑥# which
groups all such children. In the same XML example, this
leads to paper@id# for the values of these attributes, author#
for all the text children of author elements, etc.

For RDF graphs, many graph summarization methods could
be used (see Sec. 7). Following principle (⋆) above, we use types
(whenever available) in order to partition the nodes2. Nodes hav-
ing at least one type could be partitioned according to their set
of types, or just by their most general types (the set of DAG
roots), or the most specific (the DAG leaves). Following principle
(■), we choose to group them by the set of their most general
types, to obtain fewer equivalence classes. Untyped nodes can be
grouped based on the labels on their immediate neighbors (labels
of their incoming and outgoing edges in the 𝐺0). It has been
shown [16, 39] that grouping RDF nodes by the set of their outgo-
ing properties artificially creates many equivalence classes, e.g., a
node describing an article, having a title, authors, year, and a note,
is not equivalent to another one having the same properties ex-
cept the note. To mitigate this, [39] proposes a heuristic merging
the equivalence classes into at most 𝑟 classes. Avoiding the need
for users to specify 𝑟 , the Typed Strong summary [24, 25] groups
untyped nodes based on a notion of property clique, as follows.
Two properties 𝑝1, 𝑝2 that have a common subject are part of the
same outgoing property clique; similarly, if 𝑝3, 𝑝4 have a common
object, they are in the same incoming property clique. To each
node is thus associated exactly one outgoing and one incoming
property clique; one, but not both, may be empty. Two untyped
nodes are equivalent when they have the same incoming and the
same outgoing property clique.

Figure 4: Normalized RDF sample depicting partitioning.

For instance, consider the (normalized) RDF graph in Figure 4.
Properties title and author are in the same outgoing clique because
of 𝑛1; title and abstract are in the same outgoing clique because
of 𝑛2, and similarly for abstract and year, because of 𝑛3. As a
result, all properties in this example are part of the same outgoing
property clique3, thus nodes 𝑛1, 𝑛2 and 𝑛3, sharing also an empty
incoming clique, are equivalent. We adopt this technique since it
needs no parameter, and it has been shown to keep the number
of equivalence classes under control, while building meaningful
“same-kind” equivalence classes [25].

In graphs derived from PGs, we apply the same method as
for RDF, except that node and edge labels replace RDF types. No
subclass relationships hold between labels, therefore, we group
labeled 𝐺 nodes by their complete set of labels.

In JSON, “kind” information is not explicitly present; nodes
do not have types, and many have empty labels. Instead, we note
that (𝑖) nodes occurring on the same labeled path from the JSON
2RDF provides the very general RDF:Thing type, generalizing all other types. Since
it is not informative, we ignore it, and use only the meaningful dataset types.
3Some RDF properties are generic, e.g., rdf:comment, and could be attached to
nodes having nothing to do with each other. Generic properties are few, and
fixed (application-independent); summarization disregards them when comput-
ing cliques [25].

97

Figure 5: Sample equivalence classes obtained from JSON.

Figure 6: Sample collection graph corresponding to the

normalized graph in Fig. 3.

document root are often of the same kind (to form the paths, we
assign the special name map to all map nodes, array to all array
nodes, and concatenate node and edge labels); (𝑖𝑖) map nodes
having the same (or similar) attribute names typically contain
similar information. Therefore, we first group nodes by their
incoming path; then, we compute outgoing property cliques (just
like the Typed Strong summary does with RDF properties, Fig. 4),
and fuse two path-based equivalence classes whenever they have
the same property cliques. For instance, in Fig. 5, the snippet
on the left leads to the equivalence classes on the right. The
equivalence class on the path array.map.friends.array.map is fused
with the one on array.map, since they have the same property
clique. Thus, an edge links array to map and map has a (new) child
equivalence class mail.

3.4 The collection graph

We call collection graph the graph whose nodes are the collections
𝐶𝑖 , and having an edge𝐶𝑖→𝐶 𝑗 if and only if for some nodes𝑛𝑖∈𝐶𝑖 ,
𝑛 𝑗∈𝐶 𝑗 , 𝑛𝑖→𝑛 𝑗∈𝐸.

Fig. 6 shows the collection graph for the graph in Fig. 3. Here,
in each collection, all nodes have the same label, shown in the
collection; this does not hold in general, e.g., in a collection of RDF
nodes, each node has a different label. Shaded areas, 𝑐𝑤 attributes,
dotted arrows and numbers on arrows will be explained in Sec. 4.

Importantly, even if the data is acyclic, the collection graph

may have cycles (shown in red in Fig. 6). For instance, in the
XML snippet below, some list nodes are children of item nodes and
viceversa, leading to a cycle between the list and item collections.
⟨description⟩ ⟨list⟩ ⟨item⟩ ⟨list⟩... ⟨/list⟩ ⟨/item⟩... ⟨/list⟩
⟨/description⟩

4 MAIN ENTITIES AND RELATIONSHIPS

Some collections can be seen as “the main ones”, while others
contain “fields (or attributes)” of the main collections, potentially
nested several levels deep. For instance, in Fig. 6, intuitively, paper,
author and/or conf seem the most interesting entity collections; it
appears natural that year, abstract and title etc. would be part of
paper; similarly, mail and name are part of author.

In general, collection graphs may have hundreds of nodes,
and their structure may be quite complex (involve several cycles,
etc.) Towards determining main entities and relationships in such
graphs, in this section, our goals are to:

(1) Identify a set of main entity collection nodes: a node in
each of these collections is the root of a main entity in
𝐺 . Sec. 4.1 discusses a set of simple baselines, while in
Sec. 4.2 we introduce more elaborate methods, based on
data weights and PageRank [15] scoring.

(2) For each main entity collection node, find which other
collections of nodes “belong to” (should be viewed as be-
ing part of) the main collection ones. We call this task
entity boundary detection, and provide algorithms for it in
Sec. 4.3.

Sec. 4.4 shows how we report to the users the most important
𝐸𝑚𝑎𝑥 entity collections (for a given integer 𝐸𝑚𝑎𝑥). Each of these
is a subgraph containing a main entity collection node, and all the
other collections within its boundaries. We identify and report
all relationships between the most important entity collections
(Sec. 4.5); as in Fig. 2, their number is moderate if 𝐸𝑚𝑎𝑥 is low.
Main entity eligibility criteria Leveraging classical E-R de-
sign [44], we identify two criteria a collection must satisfy, to
be considered as a potential main entity. (𝐶1) It should contain
more than one node, discouraging one-node collections as degen-
erate “entity sets”. Also, the node in such a singleton collection
is typically a container to many nodes from another, potentially
interesting collection, e.g., in XMark, the (only) people element
is the parent of all person nodes. (𝐶2) It must have at least two
child collections and/or at least one child collection having a leaf
child. This adapts to our setting the intuition that “entities have
attributes”: (𝑖) childless collections do not qualify; (𝑖𝑖) collections
with a single child that is a leaf do not qualify, e.g., nodes of the
name collection in Fig. 6 have no internal structure (just a string);
(𝑖𝑖𝑖) collections with a single, non-leaf child do not qualify; they
act more as “containers” for their children. For instance, in the
XHTML search results grouped in pages below:
⟨top⟩ ⟨page⟩ ⟨result⟩...⟨/result⟩ ⟨result⟩... ⟨/result⟩ ⟨/page⟩

⟨page⟩... ⟨/page⟩... ⟨/top⟩
the page collection has as single child, namely result, with the
actual data; the result collection is eligible, but page one is not.

4.1 Simple baselines for selecting main entity

collection nodes

The intuition that “children collections belong to their parents”,
e.g., title belongs to paper, would suggest the root(s) of the col-
lection graph as main collections. However, this may be inap-
plicable: the collection graph may have no root, if it is cyclic as
in Fig. 6.

Alternatively, we could select the collections with the high-

est numbers of nodes, based on the intuition that they cover a
large part of a dataset. This may also be inappropriate in some
cases, e.g., in Fig. 3, the name collection is the largest, because
it contains both people names and conference names, but name
says very little of what the dataset is about.

Another intuition is that important entities are likely to have
many attributes. Thus, we can select the collections having the

highest number of children in the collection graph. For in-
stance, paper nodes have four children: year, abstract, title, and
wb. This method, however, does not account for deeply nested
structure. Thus, instead, we could count 𝑘-desc (descendants at
distance 𝑘 , e.g., 1 for children, 2 for children and grandchildren,
etc.) etc. and select the collections with the highest values.

A variant denoted 𝑘-leaf, for some integer 𝑘 , consists of count-
ing only leaf descendants, since data content in leaf (value)
nodes (paper titles, paper author names etc.) is more important

98

than the structural nodes which only serve to “organize” the
values.

These simple baselines have limitations: they depend on a
fixed distance 𝑘 , and do not reflect the distribution of data nodes
in the graph, or the global graph structure.

4.2 Weight-based selection of the main entity

collections nodes

We now describe more elaborate ways to select main entities,
based on the cardinalities and structure of a data graph.

4.2.1 DAG weight computation (wDAG) . We start by defining
a notion of data weight as follows. We assign to each leaf node 𝑛
an own weight 𝑜𝑤 (𝑛) equal to the number of𝐺 edges incoming
𝑛. In general, in tree data, 𝑜𝑤 = 1 for all leaf nodes, e.g. the
𝑜𝑤 of the value node “Léa” is 1. However, this does not hold for
graphs, such as in RDF where a literal may be the value of many
triples, thus 𝑜𝑤>1. Next, we define the 𝑜𝑤 of a leaf collection

as the sum of the 𝑜𝑤 of its nodes, e.g., in Fig. 6, 𝑜𝑤 (title#)=2 and
𝑜𝑤 (name#)=5. Further, for each edge 𝐶𝑖→𝐶 𝑗 in the collection
graph, we attach an edge transfer factor 𝑓𝑖, 𝑗 as the fraction of
nodes in𝐶 𝑗 having a parent node in𝐶𝑖 ; 0<𝑓𝑖, 𝑗≤1. Each 𝑓𝑖, 𝑗 labels
one solid arrow in Fig. 6; it quantifies how much 𝐶 𝑗 is part of its
parent 𝐶𝑖 . For instance, there are 5 name nodes, but two belong
to conferences, thus the transfer factor from name to conf is 2/5.

Now, we describe how wDAG works. The intuition is that
“children weight propagates to parents”, that is, the ancestors of
leaf nodes should reflect the weight of their descendants. Such
ancestor-descendant relationships are well defined for directed
acyclic graphs (DAGs) only. Therefore, we (𝑖) compute all the
cycles that the collection graph may have, (𝑖𝑖) label every edge
as being part of some cycle(s) or not, and (𝑖𝑖𝑖) propagate weights
along each path made exclusively of edges that do not participate
in any cycle (we call these non-cyclic paths). In-cycle edges appear
in red in Fig. 6,

In details, we assign to each collection a collection weight

𝑐𝑤 , which on leaf collection is initialized to 𝑜𝑤 , and on others, to
0. Then, for each non-leaf collection 𝐶0, and non-cyclic path of
the form𝐶0→𝐶1→𝐶2→. . .𝐶𝑙 where𝐶𝑙 is a leaf collection, we add
𝑜𝑤 (𝐶𝑙) · Π0≤ 𝑗≤𝑙−1 (𝑓𝑗, 𝑗+1) to 𝑐𝑤 (𝐶0): observe the multiplication
of transfer factors along the edges. For instance, the collection
author in Fig. 6 obtains 𝑐𝑤 = 6, i.e. 3 spread from mail# and 3 from
name#.

While wDAG reflects collection hierarchies, its drawback is to
ignore the collection graph structure encoded by cycles.

4.2.2 PageRank weight computation (wPR). PageRank (PR, in
short) [15] is a well-known rank computation method for graphs,
including cyclic ones. Starting from an initial node weight dis-
tribution, PR iteratively reallocates weights among nodes, each
node distributing its weight among its children. Our method wPR
starts by creating G𝑃𝑅 , the collection graph with inverted col-
lection edges (dotted green edges in Fig. 6), to reflect that leaf
collections transmit their weight towards their ancestors. Next,
as in the classical PR, each of the |𝑃 | collection nodes is assigned a
score of 1

|𝑃 | , and each edge outgoing a node 𝑛 is given the weight
1

|out_degree(𝑛) | . Finally, as in PR, we iterate until convergence. We
denote the node weight computed in this way wPR.

4.2.3 Data-weighted PageRank computation (w𝑑𝑤PR). A draw-
back of wPR is that it does not take into account the number of

nodes in each collection. This contradicts our goal (Sec. 1) of se-
lecting entities which cover a large part of the dataset. One could
think of initializing the PageRank nodes scores with 𝑐𝑤 as defined
in Sec. 4.2.1; however, PageRank final node scores are indepen-
dent of the initial ones. Instead, we devise the w𝑑𝑤PR method
where cardinalities are reflected in the PR edges weights. w𝑑𝑤PR
builds G𝑃𝑅 and initializes node scores to 1

|𝑃 | , as in Sec. 4.2.2. Next,
we assign to each edge in G𝑃𝑅 a weight, shown as label of each
green dotted edge in Fig. 6:

(1) For each collection𝐶𝑖∈G𝑃𝑅 with some outgoing edges, the
weight of each outgoing edge 𝐶𝑖→𝐶 𝑗∈G𝑃𝑅 is the number
of data edges (in G) corresponding to that edge, divided by
the total number the data edges outgoing 𝐶𝑖 nodes. Note
that these weights sum up to 1 for each𝐶𝑖∈G𝑃𝑅 , following
the PR convention.

(2) For each collection 𝐶𝑖∈G𝑃𝑅 without outgoing edges, we
create an edge from 𝐶𝑖 to every node 𝐶 𝑗∈G𝑃𝑅 , with a
weight equal to the number of data nodes in 𝐶 𝑗 , divided
by the total number of nodes in the graph G. Such weights
would also sum up to 1 for each 𝐶𝑖 .

Finally, as in PR, we iterate until convergence. We denote the
node weight computed in this way w𝑑𝑤PR.
Weights from edge countsObserve that we compute G𝑃𝑅 edge
weights from edge (not node) counts. To see why, consider an
address shared by two companies (thus, two incoming edges).
Intuitively, each company has this address, not just half of it.
More generally, shared nodes should weigh as many times as they
are shared; this is reflected by counting incoming edges.

4.3 Determining entity boundaries

We now discuss methods for deciding which nodes of the col-
lection graph should be part of (contribute to) which entity col-
lection node. Different methods are more naturally suited to
different ways of selecting the main collections, as follows.

4.3.1 Boundaries for baseline methods. Our baseline meth-
ods for selecting main collections, 𝑘-desc and 𝑘-leaf (Sec. 4.1),
naturally lead to defining the boundary of a collection 𝐶∗ as: all
the nodes (respectively, all the leaves) reachable from 𝐶∗ at a
distance of at most 𝑘 . We call these methods bound

desc
, respec-

tively, bound
leaf

.

4.3.2 Boundary when using DAG weights. wDAG (Sec. 4.2.1)
leads to a different notion of boundary: any collection that trans-
fers weight to 𝐶 , is within the boundary of 𝐶 . We call this the
DAG propagation boundary (boundDAG) of𝐶 . In Fig. 6, name
is within the boundary of conf as well as within the boundary of
author, which further includes the name and email collections.

4.3.3 Boundary when using PR weights. When using wPR
or w𝑑𝑤PR, weight transfers are global and iterative, potentially
among all the collections, thus, they do not lead to a clear way of
deciding which nodes should be part of a boundary. Further, the
boundDAG boundary method does not reflect the weight trans-
fers across cyclic paths, thus, it is not consistent with the PR
propagation principle.

Instead, we devise flooding-style boundary computation meth-
ods, which exploit the edges along paths rooted in𝐶 , a collection
just selected as a “main” one. (𝑖) We say an edge 𝐶𝑖→𝐶 𝑗 is at-
most-one, if each node from 𝐶𝑖 has at most one child in 𝐶 𝑗 . As in
conceptual data modeling, this is an indication that 𝐶 𝑗 may hold
attributes of records in𝐶𝑖 . (𝑖𝑖) We say𝐶𝑖→𝐶 𝑗 is strong, if at least

99

𝑓𝑚𝑖𝑛 of the nodes in𝐶 𝑗 have a parent in𝐶𝑖 , for a fixed 0<𝑓𝑚𝑖𝑛≤1.
The flood boundary computation method bound

fl
includes

in the boundary of 𝐶 any node reachable from 𝐶 along a path
consisting of edges that are at-most-one and/or strong. Finally,
the acyclic flood boundary computationmethod bound

fl-ac

proceeds like boundfl, but only along edges that are not in any
cycle.

In general, entity boundaries may overlap, i.e., a collection 𝐶𝑠
may end up within the boundaries of two distinct collections
𝐶 ′ and 𝐶 ′′, e.g., in Fig. 6, name may be within the boundaries of
author as well as conference. A non-leaf collection may also be
shared together with all its descendants. A shared collection is
reported in each of the main entities it belongs to, e.g., description...
(the ... denotes nested structure) in Fig. 2. This provides a quick-
glance view of each main entity collection, with all its attributes.

4.4 Selecting the entity collections to report

We have described alternative ways of determining a best col-
lection, methods for assigning a boundary to a collection, and
suitable (collection score, collection boundary) method pairs.

Now, we show how to put such a combination at work to
identify main entities. In a greedy fashion, we repeat the steps:

(1) Elect the best eligible (recall the criteria early in Sec. 4)
node 𝐶𝐸 (Sec. 4.1 or 4.2, in blue in Fig. 6) as a root of a
main entity;

(2) Compute the boundary of 𝐶𝐸 (Sec. 4.3, shaded areas in
Fig. 6);

(3) Update the collection graph to reflect the selection of 𝐶𝐸
and its boundaries;

until a certain maximum number 𝐸𝑚𝑎𝑥 of entities have been
selected, or these entities together cover a sufficient fraction
𝑐𝑜𝑣𝑚𝑖𝑛 of the data (that is: the sum of 𝑜𝑤 over all the collections
within 𝐶𝐸 ’s boundary, is at least 𝑐𝑜𝑣𝑚𝑖𝑛 times the number of
leaves in 𝐺).

We still need to explain step (3) above: how to reflect, on
the collection graph, the selection of a collection 𝐶𝐸 as main
collection, and the other collections within its boundary, before
chosing the next main entity.

When using a simple baseline (Sec. 4.1), any collection within
the boundary of 𝐶𝐸 , is excluded from all future main entity se-
lections.

When using weights (Sec. 4.2), in contrast, we need to update
the graph so as to identify the next main entity with the largest
weight if one excludes all nodes and edges from the previously
chosen main collection 𝐶𝐸 and its boundary. In details, we start
by marking as excluded all nodes in 𝐶𝐸 ; then, in a breadth-first
fashion, starting from 𝐶𝐸 , edges outgoing 𝐶𝐸 nodes are disabled,
then their target nodes, then their outgoing edges etc., until all
nodes and edges within the boundary of 𝐶𝐸 have been traversed.
Leaf nodes may thus be excluded, which brings their own weight
𝑜𝑤 to 0, thus reducing 𝑜𝑤 of some leaf collections within 𝐶𝐸 ’s
boundary. For instance, once author is selected with name in its
boundary, the 𝑜𝑤 of name decreases to 2. Then, the scores of
all graph collections (wDAG, respectively, wPR or w𝑑𝑤PR) are
recomputed.

The set of all reported main entities is denoted E.

4.5 Selecting the relationships between the

main entities

Having selected the main entities E={𝐶1, . . . ,𝐶𝐸𝑚𝑎𝑥 } and their
boundaries, every oriented path in the collection graph that goes

𝐶 𝐶 properties

P
𝑝

𝑑𝑜𝑚𝑎𝑖𝑛(𝑝)
𝑟𝑎𝑛𝑔𝑒 (𝑝)

𝐶 kind
name(s)

𝑑𝑝𝑖
collection-label
profile of 𝐶,𝑑𝑝𝑖

compare

K 𝑘

vote to
classify 𝐶

as 𝑘

l compare

classify 𝐶
as winner
class 𝑘∗

Figure 7: Outline of the classification algorithm.

from a given 𝐶𝑖 to another 𝐶 𝑗 is reported as a relationship. For
instance, in Fig. 6, if the main entities are author (with mail and
name in its boundary) and paper (with year, title and abstract in
its boundary), the relationships reported are: paper

wB−−−→ author,

author
hW−−−→ paper, and paper

pIn.conf.inv
−−−−−−−−−→ author.

If the scores lead to reporting three main entities, the two
above entities and also conf (with name and inv in its boundary),

the relationships are: paper
wB−−−→ author, author

hW−−−→ paper, paper
pIn
−−−→ conf, and conf

inv−−→ author.
The set of all reported relationships is denoted R.

4.6 Multi-traversed non-main entities

As shown in Sec. 4.5, a reported relationship may traverse several

non-reported collections, e.g., paper
pIn.conf.inv
−−−−−−−−−→ author. In some

cases, (non-main) collections are traversed by several reported re-
lations. Such collections may help to better understand the R
relationships. As a post-processing heuristic, the eligible non-
main, multi-traversed collections are promoted to be shown as
entities in the abstraction (not just on relationship labels). For
example, if two R relations traverse the (eligible) conf collection,
it will be shown as an entity; pIn and inv are not eligible.

5 MAIN ENTITY CLASSIFICATION

To each entity collection 𝐶∈E, we seek to assign one or a few
classes with intuitive names. For that, we analyze: the kind names
of 𝐶 nodes; their data property names; the expressive-type values
found for these properties (recall Sec. 2). Alg. 1 and Fig. 7 outline
our algorithm: solid arrows connect associated data items and
trace the classification process, while dotted arrows go from a
set to one of its elements.

5.1 Semantic resources

We rely on a set of classes K , e.g., Person, and a set of proper-
ties P which may be associated to the classes, in the following
sense. For each property 𝑝∈P, the set 𝑑𝑜𝑚𝑎𝑖𝑛(𝑝)⊆K describes
classes to which one belongs if one has property 𝑝; for instance,
𝑑𝑜𝑚𝑎𝑖𝑛(birthday)={Person} states that having a birthdaymeans
one is a Person. Similarly, 𝑟𝑎𝑛𝑔𝑒 (𝑝) states the classes to which
belong the values of 𝑝 . For instance, 𝑟𝑎𝑛𝑔𝑒 (birthday)={Date}.

To populateK andP, users may specify a few terms of interest
to them; we started with the terms Person, Place, Organization,
Creative Work, Event and Product. Users may also specify proper-
ties for their classes, e.g., they may expect a Product to have price
or quantity. We manually identified 101 properties for our six
concepts. More significantly, to scale up, we leverage a knowl-

edge base (KB, in short), a large RDF graph of general-purpose
information.
Anchoring concepts to KB classes We mapped each of the
initial 6 concepts to a class from 𝐵, the given KB, e.g., Person is
mapped into https://dbpedia.org/ontology/person.

100

Acquiring P properties from a KB Given a knowledge base
𝐵 and a class 𝑘 ∈K , we harvest from 𝐵 the properties 𝑃𝑘 that
resources of class 𝑘 may have, as: 𝑃𝑘 = {𝑟 | ⟨a,r,b⟩ ∈ 𝐵 ∧
⟨a,type,k⟩ ∈ 𝐵}. For example, YAGO4 [41] contains the triples
⟨Paris, type, Place⟩, ⟨Paris, country, France⟩ and ⟨Paris,
river, Seine⟩. Thus, we add country and river to the set 𝑃𝑃𝑙𝑎𝑐𝑒 .
Acquiring P properties from GitTables [32] As a second
source of semantic knowledge, we use GitTables [32], a reposi-
tory of 1.5M tables extracted from GitHub. It aligns each attribute
name to properties from DBPedia [3] and/or schema.org, and
provides domain and range information for these properties. For
instance, for site, GitTables proposes ceo, with domain:["Company",
"Firm"] and range: ["Person", "Text"]. For each GitTables property 𝑝 ,
we add domain(𝑝) and range(𝑝) to K .

5.2 Expressive-type collection-label profiles

Next, we summarize the expressive-type values of𝐶 nodes’ prop-
erties, e.g., author nodes in Fig. 3 have values of the Person, Loca-
tion, and Email expressive types (on colored background). Recall
(from Sec. 2)T , the set of such expressive types.We callT -vector
an array of natural numbers indexed by the types in T .

Each leaf collection in our collection graph contains a set of
values, each of which can be represented (serialized) in a string.
For a string 𝑠 , let len𝑠 denote its length, #T𝑠 be the T -vector
count of expressive-type values in 𝑠 , and lenT𝑠 be the T -vector
of the total length of these values. For instance, if 𝑠 is “France
and Germany are part of NATO”, len𝑠 is 34, #T𝑠 [Location]=2,
#T𝑠 [Organization]=1, and #T𝑠 is 0 for the other expressive types,
whereas lenT𝑠 [Location]=13, lenT𝑠 [Organization]=4, and lenT𝑠 is
0 elsewhere. The expressive types profile of a string 𝑠 is the
triple (len𝑠 , #T𝑠 , lenT𝑠).

For a collection 𝐶 and a label 𝑥 , we denote by 𝑁𝐶,𝑥 the set of
text values of 𝑥-labeled children of 𝐶 nodes. For example, if 𝐶 is
the author collection in Fig. 6, 𝑁𝐶, name contains the nodes {32, 34,
36} (recall the graph in Fig. 3). The collection-label profile of𝐶
and 𝑙 is the triple (Σ𝑠∈𝑁𝐶,𝑥

len𝑠 , Σ𝑠∈𝑁𝐶,𝑥
(#T𝑠), Σ𝑠∈𝑁𝐶,𝑥

(lenT𝑠))
where the last two are T -vector sums. We denote the first, second
and third components of the collection-label profile by len𝐶,𝑥 ,
#T
𝐶,𝑥

, lenT
𝐶,𝑥

, respectively. Continuing with the collection 𝐶 of
author nodes, len𝐶,name is 9 (length of “Léa”, “Eva” and “Bob”
combined), #T

𝐶,name[Person]=3 and #T
𝐶,name is 0 in all other po-

sitions, while lenT
𝐶,name[Person] is 9 and 𝜎T

𝐶,name is 0 in all the
other positions.

5.3 Classification algorithm

Alg. 1 details our classification algorithm, also illustrated in Fig. 7.
We attempt to classify 𝐶 in one or a few classes 𝑘∈K , leveraging
three different signals: 1 the kind names of𝐶 nodes (if available),
compared with those ofK classes; 2 the labels of𝐶’s properties,
compared with those of P properties; 3 the expressive-type
profiles of 𝐶 , combined with P range information.

For 1 , if 𝐶 nodes have one or few kind names, we compute
theirWord2Vec [38] similarity 𝑠𝑖𝑚𝑤 (𝐶, 𝑘) with each class 𝑘 using
Eq. 1 (in blue in Fig. 7, lines 1 to 3 in Alg. 1): we sum the pairwise
cosine similarities of each keyword𝑤 in 𝑠1 and 𝑠2, embedded in
a multidimensional Word2Vec-based vector 𝑒 (𝑤). For instance,
medical and service are the keywords in the class medicalService
and that class and hospital have a high 𝑠𝑖𝑚𝑤 .

𝑠𝑖𝑚𝑤 (𝑠1, 𝑠2) =
∑

𝑤𝑖 ∈𝑠1,𝑤𝑗 ∈𝑠2
𝑐𝑜𝑠𝑠𝑖𝑚 (𝑒 (𝑤𝑖), 𝑒 (𝑤 𝑗)) (1)

Next, each data property 𝑑𝑝𝑖 outgoing𝐶 may “vote” to classify
𝐶 in one or several classes (violet in the figure), as follows. For 2 ,
we compute 𝑠𝑖𝑚𝑤 (𝑑𝑝𝑖 , 𝑝) between the name of 𝑑𝑝𝑖 and that of
each 𝑝∈P (𝑠𝑖𝑚𝑤 at line 7). For 3 , we check if expressive values
of a class 𝑘∈𝑟𝑎𝑛𝑔𝑒 (𝑝) make up a large fraction of 𝑑𝑝𝑖 values of
𝐶 nodes, to reflect the similarity between those named entities
types and classes in 𝑟𝑎𝑛𝑔𝑒 (𝑝). This is quantified by Eq. 2:

𝑠𝑖𝑚T (𝐶,𝑑𝑝𝑖 , 𝑝) =

∑
𝑘∈𝑟𝑎𝑛𝑔𝑒 (𝑝), #T

𝐶,𝑑𝑝𝑖
[𝑘]>0 (len

T
𝐶,𝑑𝑝𝑖

[𝑘])

|𝑟𝑎𝑛𝑔𝑒 (𝑝) | · len𝐶,𝑑𝑝𝑖
(2)

Next, if 𝑠𝑖𝑚𝑤 (𝑑𝑝𝑖 , 𝑝) (averaged with 𝑠𝑖𝑚T (𝐶,𝑑𝑝𝑖 , 𝑝) when
this is not 0) is higher than a threshold 𝛼 (lines 4 to 11), 𝑑𝑝𝑖 casts
a “vote” to classify 𝐶 into each class 𝑘 ∈𝑑𝑜𝑚𝑎𝑖𝑛(𝑝). The weight
of this vote is modulated as follows (lines 12 to 14):

• The percentage 𝑠𝑢𝑝𝑝 (𝑑𝑝𝑖 , 𝑐) of 𝐶 nodes having property
𝑑𝑝𝑖 (a more frequent property 𝑑𝑝𝑖 should weigh more);
• Times the score 𝑠𝑐𝑜𝑟𝑒 (𝑑𝑝𝑖 , 𝑝) (the higher the score is, the
more the domain constraint(s) of 𝑝 matter, because it is
more likely that 𝑝 and 𝑑𝑝𝑖 mean the same or similar thing);
• Divided by |𝑑𝑜𝑚𝑎𝑖𝑛(𝑝) | (to let 𝑝 “splits its vote” equally
among all classes in 𝑑𝑜𝑚𝑎𝑖𝑛(𝑝) and reward properties
with few domain that type 𝐶 most precisely).

As classification result (at right in black in Fig. 7, lines 15 to
26), we pick the class(es) 𝑘∗ with the highest modulated score
if this value is above a threshold \ , otherwise, the most general
class in K , e.g. Thing. If there are ties, we may use: (𝑖) the class
hierarchy of K ; (𝑖𝑖) 𝐶 properties having names typically associ-
ated to identifiers (e.g., name or label). For (𝑖), 𝐶 is classified in
the most specific class, e.g. Human wins against Being. For (𝑖𝑖), if𝐶
has such a property 𝑝 and if the expressive-type profile of 𝐶 and
𝑝 contains only named entities of a single K class, we classify 𝐶
in that class. In Fig. 3, the author collection may be classified in
several classes, but the property name has led to Person entities
only, thus it will be classified as Person. If there is no sufficient
insight to classify 𝐶 , we assign it the most general class in K .

Regardless of the classification success, as an extra help to
users, our E-R diagram also shows the kind name (Sec. 2) most
popular among the nodes in𝐶 , if these nodes do have kind names.
For instance, in Fig. 2, XML element names are shown.

6 EVALUATION

Abstra is implemented in Java, leveraging the graph creation
(including entity extraction) and Postgres-based store of Connec-
tionLens [2]. We experimented on a Linux server with an Intel
Xeon Gold 5218 CPU @ 2.30GHz and 196GB of RAM, and relied
on PostgreSQL v9.6 for storing the data.

We focus our evaluation on JSON,PG,RDF andXML datasets,
given their popularity, and because their complexity make their
abstraction more challenging (Sec. 6.1). The questions we study
are: (𝑖) what is the best-performing main entity selection method?
(Sec. 6.2), (𝑖𝑖) does this method succeed in identifying the main
entities, their boundaries, and the main relationships in a dataset?
(Sec. 6.3), (𝑖𝑖𝑖) how well does the classification algorithm perform?
(Sec. 6.4), (𝑖𝑣) how efficiently can abstractions be computed? (Sec. 6.5)
and (𝑣) how do they compare to inferred schemas? (Sec. 6.6).

101

Algorithm 1: Classifying a collection 𝐶 .
Input: Collection𝐶 , properties P, classes K

1 foreach kind name 𝑙 of𝐶 do

2 foreach 𝑘 ∈ K do

3 K𝑐 [𝑘] ← 𝑠𝑖𝑚𝑤 (𝑙, 𝑘)

4 foreach 𝑑𝑝𝑖 property of some nodes in𝐶 do

5 foreach 𝑝 ∈ P do

6 if 𝑠𝑖𝑚T (𝐶,𝑑𝑝𝑖 , 𝑝) > 0 then

7 𝑠 ← 𝑠𝑖𝑚𝑤 (𝑑𝑝𝑖 ,𝑝)+𝑠𝑖𝑚T (𝐶,𝑑𝑝𝑖 ,𝑝)
2

8 else

9 𝑠 ← 𝑠𝑖𝑚𝑤 (𝑑𝑝𝑖 , 𝑝)
10 if 𝑠 > 𝛼 then

11 𝑠𝑐𝑜𝑟𝑒 (𝑑𝑝𝑖 , 𝑝) ← 𝑠𝑐𝑜𝑟𝑒 (𝑑𝑝𝑖 , 𝑝) + 𝑠

12 foreach 𝑝 ∈ P do

13 foreach 𝑘 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛 (𝑝) do
14 K𝑐 [𝑘] ← K𝑐 [𝑘] + 𝑠𝑢𝑝𝑝 (𝑑𝑝𝑖 ,𝑐) ·𝑠𝑐𝑜𝑟𝑒 (𝑑𝑝𝑖 ,𝑝)

|𝑑𝑜𝑚𝑎𝑖𝑛 (𝑝) |

15 if𝑚𝑎𝑥 (K𝑐) > \ then

16 if 𝑎𝑟𝑔_𝑚𝑎𝑥 (K𝑐) has just one element 𝑘∗ then
17 Classify𝐶 as 𝑘∗

18 else

19 if ∃𝑘∗ ∈ 𝑎𝑟𝑔_𝑚𝑎𝑥 (K𝑐) such that 𝑘∗ is a specialization of all
the other 𝑎𝑟𝑔_𝑚𝑎𝑥 (K𝑐) classes then

20 Classify𝐶 as 𝑘∗

21 else if 𝐶 has an identifier-related property and all their entity
profiles lead to a single 𝐾𝐸 entity type then

22 Classify𝐶 as that type

23 else

24 Classify𝐶 as the most general class in K

25 else

26 Classify𝐶 as the most general class in K

6.1 Datasets, semantic resources, and settings

We evaluated Abstra on JSON, PG, RDF and XML synthetic
and real-life, open datasets. Tab. 1 shows, for each dataset, the
number of nodes and edges in𝐺0 (the graph obtained by loading
the dataset) and the normalized graph 𝐺 ; ⋄ indicates synthetic
datasets (as opposed to real-world). Since each RDF edge is la-
beled, normalization (Sec. 3.1) adds many extra nodes and edges.

For JSON, we wrote the Researchers dataset generator. Each
researcher has a first and last name, id, H-index, status, gender,
age, date of birth, and continent. It also includes: the titles of
their three best papers, and a list of five co-authors (each with a
first name and a last name). Real-life JSON datasets comprise a
dataset of commits and push events in GitHub repositories [54],
Prescriptions [57] (medical prescriptions), NYTimes articles [5],
three datasets from Yelp [60], a crowd-sourced app to review
businesses, and bibliographic notices from CoreResearch [51].

For PG datasets, we used two datasets generated based on the
LDBC benchmark [21]: LDBCsmall, used in [12], and LDBC0.3 ob-
tained using the generator. We also wrote a custom generator to
obtain Movies250K. Each movie has a title, a synopsis, a duration,
a year and a number of entries. Some movies are also typed as
sequel. Movie directors have a first and a last name while actors
also have a nationality. Actors and movie directors are also both
typed as Person in addition to their own type. Cinemas have a
name and a city. Awards have a label, a year and a boolean indi-
cating whether it is for international nominations. Each movie is
projected in some cinemas at a specific date, and some of them
received awards. Each actor has played in some movie(s); for
each acting, a role is associated. Finally, movie directors have
supervised the production of one or several movies.

Dataset name |𝑁0 | |𝐸0 | |𝑁 | |𝐸 |
JSON

CoreResearch 2,112,023 2,112,022 2,112,025 2,112,024
GitHub 5,094 5,093 5,096 5,095
NYTimes 1,053,979 1,053,978 1,053,981 1,053,980
Prescriptions 14,214,033 14,214,032 14,214,035 14,214,034
Researchers ⋄ 4,505,657 4,505,656 4,505,659 4,505,658
YelpBusiness 8,111,982 8,111,981 8,111,984 8,111,983
YelpCheckIn 659,653 659,652 659,655 659,654
YelpTips 9,998,068 9,998,067 9,998,070 9,998,069

PG

LDBCsmall ⋄ 9,851 43,011 48,621 77,546
LDBC0.3 ⋄ 2,306,540 10,907,534 11,890,404 19,167,734
Movies250K ⋄ 12,386,250 14,817,871 23,140,245 21,507,996

RDF

BSBM4M ⋄ 1,134,834 4,000,740 4,755,392 7,241,116
BSBM16M ⋄ 5,344,748 16,038,464 19,870,744 29,051,992
Conferences ⋄ 121 184 273 304
EnelShops 14,694 51,639 56,426 83,464
Foodista 190,271 1,019,801 1,162,086 1,943,630
LUBM1M ⋄ 248,261 1,035,610 1,076,519 1,656,516
NASA 53,528 99,423 140,540 174,024

XML

Mondial 129,567 135,588 130,756 136,777
PubMed 49,035 49,034 49,037 49,036
XMark1 ⋄ 3,392,392 3,392,391 3,392,394 3,392,393
XMark4 ⋄ 13,615,551 13,615,550 13,615,553 13,615,552
Wikimedia 1,824,185 1,768,803 1,872,877 1,817,495

Table 1: Datasets used in the evaluation.

For RDF, we used BSBM [10] and LUBM [29] benchmarks, as
well as our generator of graphs about scientific papers (having a
title, a DOI and a year) written by authors (with first name, last
name, affiliation university, birthdate, gender, mail and honorific
prefix) and published in conferences (with a place, a year, an
organizer, and a duration). Authors are also invited in conferences,
thus leading to cycles. We used real-life datasets about: gas and
electricity in Italy (EnelShops [52]), food recipes (Foodista [53])
and NASA flights [56].

For XML, we used XMark [45] documents, as well as the real-
life PubMed [58], Mondial [55] and WikiMedia [59] datasets.

As knowledge bases (Sec. 5), we used YAGO4 [41] and Wiki-
Data, which lead to 565 P properties (on top of the 101 we had
manually identified). From GitTables [32], we derived 4.187 P
properties; 3.687 (respectively, 3.898) among them have domain
(respectively, range) statements, involving a total of 810 classes.

Settings Unless otherwise specified, we used 𝐸𝑚𝑎𝑥=5 (se-
lect at most 5 main entities), 𝑐𝑜𝑣𝑚𝑖𝑛=1.0 (Sec. 4.4), 𝛼=0.8, \=0.3
(Sec. 5), which worked best in our experiments.

6.2 Quality of the main entity selection

methods

We assessed through a user study, the quality of the main entities
E and relationships R selected as described in Sec. 4. For this task,
we built four dataset samples, one for each data model, as subsets
of datasets in Tab. 1. The samples are small enough (Tab. 2) for
users to inspect them to decide if our abstractions are relevant,
yet sufficiently complex to test our algorithms.

The JSON sample is extracted from the Researchers dataset.
The PG sample is extracted from LDBCsmall. It contains forums,
in which posts and comments are posted by people who study or
work at an institution. Each forum, post or comment may have
some tags. The RDF sample is a subset of Conferences. The

102

Dataset name |𝑁0 | |𝐸0 | |𝑁 | |𝐸 | |C|
Researchers (JSON) 569 665 684 780 26
LDBC (PG) 445 791 1082 1280 78
Conferences (RDF) 145 256 369 448 32
XMark (XML) 847 863 904 920 126

Table 2: Datasets used in the user relevance feedback.

XML sample is extracted from XMark1. It depicts items to be
sold in auctions, people with nested addresses, some of which are
interested in open auctions; there are also closed auctions. Items
for sale have nested descriptions and categories they belong to.
There is also a category hierarchy. As in larger datasets, items
are in several continents (e.g. ⟨africa⟩ and ⟨asia⟩ tags).

We abstracted each sample using 11 methods (first column
of Tab. 3), each of which pairs a way to select the next main col-
lection (Sec. 4.1, 4.2) with a method for determining its boundary
(Sec. 4.3). We showed the abstractions as E-R diagrams, where
they could click to unfold nested attributes, to a group of 16 eval-
uators (graduate and post-graduate researchers) and asked them
to rank them, for each sample, based on what a good abstrac-

tion is: “Does it capture all important entities? Are there spurious
entities?”; “Are the relationships informative? Do they help under-
stand the entities?”; “Do each entity’s attributes logically belong
there? Are any attributes missing?”. For each abstraction method
and sample dataset, Tab. 3 reports the number of times that the
method was ranked first, respectively in the top-3 methods. The
(leaf-1, boundleaf) is omitted, since it always leads to an empty
abstraction: the only collections with a non-zero score (Sec. 4.1)
are not eligible (Sec. 4). We show in bold the best-performing
method(s) for each dataset.

On JSON, our weight-based methods perform (much) better
than the baselines, except (3-desc, bounddesc) which coincides
with the weighted methods. All weight-based abstractions of this
dataset led to the same result. In the JSON sample abstraction,
we fused the “co-authors” collection with the one of researchers
because they both have similar properties (recall Sec. 3.3). On
the PG sample, again all weight-based methods lead to the same
result, and are ranked best; some simple baselines come close.
They compute similar results as the weighted ones, but they
either miss the comment entity (even though important) or report
the organization entity, which can be nested into the person entity.
On the RDF sample, users prefer some simple baselines to the
weight-based methods. This is because all weight-based methods
included university within the person entity, given that university
only appears there; in contrast, users preferred to see university
as a separate entity. The XML sample, with the most complex
structure, lead to more diverse evaluations. (wPR, boundfl-ac)
and (w𝑑𝑤PR, boundfl-ac) win, followed by (wPR, boundfl) and
(w𝑑𝑤PR, boundfl). Users downgraded baseline methods, which
fail to reflect the complex XMark structure.

In the Totals, (2-leaf, boundleaf) is ranked 1st most often: this
method only chooses tuple-like entities, with named properties
having atomic values. The samples used here were simple, to ease
user evaluation. In real-life datasets with hundreds of collections
(see Tab. 4), (2-leaf, boundleaf) can only return 𝐸𝑚𝑎𝑥 such entities,
which degrades its coverage. The methods (wPR, boundfl-ac) and
(w𝑑𝑤PR, boundfl-ac) are close behind in the 1st place ranking,
and they both score best in the top-3 ranking. Based on this,
and the remark that only (w𝑑𝑤PR, boundfl-ac) leverages both
complex graph structure and data cardinalities, from now on, we
focus on the (w𝑑𝑤PR, boundfl-ac) abstractionmethod, which

performed best, as it fulfils our main objectives (Sec. 1).

Abstraction method JSON PG RDF XML Total
1st top3 1st top3 1st top3 1st top3 1st top3

(1-desc, bounddesc) 2 8 8 14 16 16 2 5 28 43
(2-desc, bounddesc) 1 15 0 8 0 8 2 10 3 41
(3-desc, bounddesc) 11 15 1 13 0 15 0 5 12 48
(2-leaf, boundleaf) 1 9 8 14 16 16 5 7 30 46
(3-leaf, boundleaf) 1 3 8 14 16 16 0 8 25 41
(wDAG, boundDAG) 11 15 8 16 0 12 4 7 23 50
(wPR, boundfl) 11 15 8 16 0 1 6 11 25 43
(wPR, boundfl-ac) 11 15 8 16 0 12 7 13 26 56

(w𝑑𝑤PR, boundfl) 11 15 8 16 0 1 6 11 25 43
(w𝑑𝑤PR, boundfl-ac) 11 15 8 16 0 12 7 13 26 56

Table 3: Users’ ranking of dataset sample abstractions.

Results are at https://team.inria.fr/cedar/projects/abstra/.

Dataset name |𝐶 |,|E |,|R |𝑐𝑜𝑣 E entities (max depth / number of nodes)
JSON

CoreResearch ⟳48, 1, 0 1.0 Notice (5 / 39,767)
GitHub ⟳ 343, 1, 0 1.0 Repository (8 / 30)
NYTimes 116, 1, 0 1.0 Document (9 / 4,482)
Prescriptions 4814, 1, 0 1.0 Prescription (3 / 239,930)
Researchers ⟳ 25, 1, 1 1.0 Researcher (5 / 38,090)
YelpBusiness 122, 1, 0 1.0 Business (4 / 150,346)
YelpCheckIn 6, 1, 0 1.0 Check-in (3 / 131,930)
YelpTips 12, 1, 0 1.0 Tip (3 / 908,915)

PG
LDBCsmall ⟳ 61, 4, 9 1.0 Post (6 / 3,189); Comment (6 / 471); Forum (9 /

381); Person (6 / 50)
LDBC0.3 ⟳ 82, 6, 16 1.0 Comment (9 / 523,222); Post (6 / 324,825); Fo-

rum (16 / 31,097); Tag (4 / 16,080); Organiza-
tion (6 / 7,955); Person (13 / 3,514)

Movies250K ⟳ 38, 4, 3 1.0 playedIn (9 / 1,758,142); Actor (12 / 1,099,489);
Movie (8 / 250,000); Director (10 / 124,818)

RDF
BSBM4M ⟳ 340, 6, 7 1.0 Offer (3 / 226,800); Review (5 / 113,400); Prod-

uct (5 / 11,340); ProductFeature (3 / 10,519);
Producer (3 / 232)

BSBM16M ⟳ 724, 6, 7 1.0 Review (3 / 1,324,146); Offer (3 / 914,000); Per-
son (3 / 134,570); Product (5 / 45,700); Producer
(3 / 921); Vendor (3 / 464)

Conferences ⟳ 29, 2, 2 0.83 Author (5 / 20); Paper (3 / 10)
EnelShops 46, 1, 0 1.0 Shop (6 / 1,136)
Foodista ⟳ 49, 4, 20 0.47 Recipe (5 / 32,782); Food (3 / 7,651); Tool (3 /

150); PreparationMethod (3 / 149)
LUBM1M 108, 5, 3 1.0 Publication (11 / 60,342); UndergraduateStu-

dent (5 / 59,437); GraduateStudent (6 / 9,259);
ResearchAssistant (6 / 5,454); TeachingAssis-
tant (6 / 4,156)

Nasa ⟳ 61, 5, 13 0.95 Spacecraft (5 / 6,692); Launch (5 / 5,090); Image
(3 / 303); MissionRole (3 / 142); Person (3 / 59)

XML
Mondial ⟳ 168, 5, 8 0.85 City (3 / 3,152); Province (3 / 1,455); Country

(4 / 231); Organization (4 / 168); River (4 / 135)
PubMed 26, 1, 0 1.0 PubMedArticle (5 / 957)
XMark1 ⟳ 136, 5, 10 0.91 Person (4 / 25,500); Item (7 / 21,750);

Open_Auction (8 / 12,000); Closed_Auction
(8 / 9,750); Category (2 / 1,000)

XMark4 ⟳ 136, 5, 10 0.90 Person (4 / 102,000); Item (7 / 87,000);
Open_Auction (8 / 48,000); Closed_Auction
(8 / 39,000); Category (2 / 4,000)

Wikimedia 59, 2, 0 1.0 Page (4 / 54,750); Namespace (3 / 32)

Table 4: Main entities found in the application datasets.

6.3 Main entity collections in all datasets

We now study the main entities E and relationships R identi-
fied by the (w𝑑𝑤PR, boundfl-ac) abstraction method, in all our
datasets (Tab. 4). A⟳ indicates that the dataset’s collection graph
has cycles (14 datasets out of 23). For each main entity, we also
report a human-readable label (not yet our classification - see
Sec. 6.4) obtained as follows. When the nodes in the collection
share an explicit kind name, e.g., Post in LDBC data, we show it
in normal font. Otherwise, we provide ourselves a label, shown
in italic, e.g., Notice in CoreResearch. After each collection label,
we show (within parenthesis) the maximal depth, in the data,

103

Dataset Collection (Class, relevance)
JSON

CoreResearch Notice (CreativeWork, H)
GitHub Repository (Thing, L)
NYTimes Document (CreativeWork, H)
Prescriptions Prescription (CreativeWork, M)
Researchers Researcher (Person, H)
YelpBusiness Business (Thing, L)
YelpCheckIn Check-in (Thing, L)
YelpTips Tip (Thing, L)

PG
LDBCsmall Post (Thing, L); Comment (Comment, H); Forum (Blog,

H); Person (Person, H)
LDBC0.3 Comment (Comment, H); Post (Thing, L); Forum (Blog,

H); Tag (Thing, L); Organisation (Organisation,H); Per-
son (Person, H)

Movies250K playedIn (Play, M); Actor (Actor, H); Movie (Movie, H);
Director (Person, H)

RDF
BSBM4M Offer (Offer, H); Review (Review, H); Product (Product,

H); ProductFeature (Product, H); Producer (Thing, L)
BSBM16M Review (Review, H); Offer (Offer, H); Person (Person,

H); Product (Product, H); Producer (Thing, L); Vendor
(Thing, L)

Conferences Author (Person, H); Paper (CreativeWork, H)
EnelShops Shop (Restaurant, M)
Foodista Recipe (Recipe, H); Food (Food, H); Tool (Thing, L);

PreparationMethod (Thing, L)
LUBM1M Publication (CreativeWork, H); UndergraduateStudent

(Person, H); GraduateStudent (Person, H); ResearchAs-
sistant (Person, H); TeachingAssistant (Person, H)

Nasa Spacecraft (Spacecraft, H); Launch (LaunchPad, H); Im-
age (ImageObject, H); MissionRole (SpaceMission, H);
Person (Person, H)

XML
Mondial City (City, H); Province (Province, H), Country (Coun-

try,H); Organization (Organization,H); River (River, H)
PubMed PubMedArticle (CreativeWork, H)
XMark1 Person (Person, H); Item (Product, H); Open Auction

(Product, M); Closed Auction (Product, M); Category
(Thing, L)

XMark4 Person (Person, H); Item (Product, H); Open Auction
(Product, M); Closed Auction (Product, M); Category
(Thing, L)

Wikimedia Page (Thing, L); Namespace (Thing, L)
Table 5: Quality of E collection classification.

of an entity from that collection and the number of nodes in
the collection. Our JSON datasets lead to one entity and no re-
lationships. This is because (𝑖) unlike the sample used in Sec. 3,
they feature no shared entities; (𝑖𝑖) they don’t use references in
the style of XML ID-IDREF. In BSBM4M, the collection Prod-
uct is multi-traversed (recall Sec. 4.6) by the relationships Re-
view.reviewFor.Product.productFeature.ProductFeature and Of-
fer.product.Product.productFeature.ProductFeature.

Tab. 4 shows that from each dataset, the selected entities

are frequent, coherent, and semantically central: this con-
firms that our approach, based on the collection graph and the
main entity selection method (w𝑑𝑤PR, boundfl-ac), attain their
goal. The main entity depth varies from 2 (XMark) to 11 (LUBM1M),
with 3 and 5 being frequent values. This shows that (w𝑑𝑤PR,
boundfl-ac) identifies nested entities of various depths, which
fixed-depth baseline methods (Sec. 4.1) cannot do. Finally, the
node coverage (𝑐𝑜𝑣 in Tab. 4) shows that, in general, our ab-

stractions represent most of the dataset, thus fulfilling our
objective (recall Sec. 1).

6.4 Quality of main entity classification

We now analyze the quality of the semantic classes assigned to
main entities through classification (Sec. 5). We inspected sam-
ple entity instances, and ranked the assigned class’ relevance
high (H), medium (M) or low (L). We graded H if the class
describes the entities well, e.g., a Person or Author class for au-
thors, CreativeWork or Publication for articles, etc. We graded
M acceptable (if suboptimal) classes, and L any clear misclassifi-
cation, e.g., Place instead of Person, as well as Thing (not enough
insight to classify). Tab. 5 shows for each dataset and collection,
the assigned class, and the relevance values. As in Tab. 4, names
in italics are those we manually chose for collections that lack a
kind name.

Out of 68 collections, 76.4% (52) obtained an informative class
through classification: 86.5% (45) are rated H, and 13.5% (7) are
rated M. In contrast, 23.6% (16) collections were classified as
Thing, among which: 12 have informative kind names, and 4
(the JSON ones) do not. In all L-rated results, the linguistic and
semantic signal from entities is below the algorithm’s thresholds
(Sec. 5). This happens for two reasons: an entity has very few
properties with not-so-informative names, e.g., Yelp check-ins
have only user_id and date; most (or all) of the entity’s prop-
erties have no equivalent in P, e.g., GitHub properties such as
allow_forking and ssh_url, etc.

A classification examples illustrates the combined effect of
property matching (step 2 in Sec. 5.3) and expressive types
(step 3). The Notice entity has 20 properties, such as publisher,
downloadUrl and doi. Values of the publisher property include the
Organization and Person expressive types. Classification iden-
tifies three P properties matching the data property publisher:
editor, illustrator and publisher, which vote towards the following
classes: Creative work, Written work, Work and Book. How-
ever, publisher adds more support for Creative work, since the
expressive-type collection-label profile for Notice and publisher
(Sec. 5.2) matches the publisher data property range, raising the
𝑠𝑖𝑚T (𝐶,𝑑𝑝𝑖 , 𝑝) value in favor of Creative work, which is best in
this case. In other cases, the classification is due to 𝑠𝑖𝑚(𝑑𝑝𝑖 , 𝑝)
and P domain typing, e.g., for PubMedArticle, the properties Pub-
MedLink, DOI and KeywordList all voted towards Creative work;
for XMark items, seller voted towards the Offer, Order, BuyAction,
Demand, Flight and Product classes, however, quantity only voted
for Product and helped it be selected.

In conclusion, classification was overall successful, lever-
aging the property names, expressive types encountered in their
values, and the background information (K and P). In general,
classification quality depends on the overlap between the dataset
vocabulary, and the background information: class types may not
be found for very specific entities, e.g., GitHub. Even when the
classification is not very precise, e.g., Creative work for (medical)
Prescriptions, it is still useful (in particular in this example, where
the collection has no kind name to guide the users).

6.5 Scalability of the abstraction computation

In this section, we study the performance of graph abstraction
as a function of the input data size.

We measure the execution time of the all steps involved in the
abstraction computation method using (w𝑑𝑤PR, boundfl-ac). To
study this, we use four of our synthetic, controlled-size datasets:
Researchers (JSON),Movies (PG), BSBM (RDF), andXMark (XML),
and show the results in Fig. 8; all axes are logarithmic. Identifying
the main collections takes most time; this is due to the cost of
updating the graph (excluding nodes as described in Sec. 4.4)

104

Figure 8: Abstraction computation times on synthetic JSON, PG, RDF and XML datasets, using (w𝑑𝑤PR, boundfl-ac).

before recomputing weights. Collection identification is faster
on the JSON dataset as there are few entities selected, thus few
graph updates. The time taken to identify relationships (Sec. 4.5)
is negligible (thus not shown). This is because this task only
manipulates the collection graph, much smaller than the graph.

All our abstractionmethods scale up linearly in the data

size. The methods using bounddesc and boundleaf (not plotted
to avoid clutter) are faster, since they do not recompute weights.
However, as shown in Sec. 6.2, their results are of lower quality.

6.6 Inferred schemas vs. abstractions

Abstractions have different goals and uses than dataset schemas.
Schemas define a notion of data validity, and are used by code
that processes the data; abstractions aim to give human users a
simple, first glance at the data. Schemas have technical features
such as inheritance, property cardinalities, etc. that abstraction
voluntarily leave out. They contain interconnected types, while
abstraction wrap some collections into the main collection bound-
aries, to facilitate understanding. At the same time, abstractions
share with schemas, in particular those inferred from the data,
e.g., [4, 5, 12, 13, 43, 47], the goal to compactly describe a dataset.

Keeping this in mind, we tested recent schema extractors for:
JSON [4, 47], PGs [12, 13], and RDF graphs, respectively [43]. We
report results on datasets from Tab. 1. For JSON, on the CoreRe-
search, Prescriptions, YelpTips, YelpBusiness and YelpCheckIn
datasets, respectively, [4] produces schemas of 128, 7,221, 191,
18 and 12 nodes, while [47] leads to schemas of 146, 4,218, 144,
21 and 12 nodes. The schema itself is a JSON document, and we
count its nodes as a measure of its complexity. Clearly, schemas
of more than hundreds of nodes are unsuited as abstractions.
For PGs, on the LDBC dataset, [12] creates a schema of 10 types
connected by 22 edges. While compact, it contains several nodes
for the same concept, e.g., three nodes labeled “Post”, but with
slightly different properties. Our abstractions are more compact
(Tab. 4), and prefer node kinds over structural precision. For RDF,
the LUBM schema [43] features 23 node shapes (types), one for
each RDF type, and 187 property shapes (an RDF property such
as worksFor leads to 9 property shapes: worksForProfessor, worksFor-
Chair, etc.). Such precision leads to many syntactic details, going
against our need for clarity.

These results confirm that compact abstractions are needed

to give human users a first idea of a dataset. They helpfully
complement schemas, whose objectives are different.

6.7 Experiment conclusion

The abstraction method (w𝑑𝑤PR, boundfl-ac) attains the best re-
sults overall, even on complex, cyclic collection graphs. This
method successfully identifies the central dataset entities, when
their structure ranges from simple (depth 2 in Tab. 4) to very com-
plex (depth 11). Classification, with record kind names, property
names, expressive types in their values, and semantic resources,

is overall successful identifying what each main entity is about.
Abstra sets parameters’ default values to w𝑑𝑤PR, boundfl-ac and
thresholds in Sec. 6.1. Our abstractions are computed in linear
time in the input size. Intuitive, and more compact than (inferred)
schemas due to their focus on structured entities (as opposed to
node types), they provide useful first-glance dataset summaries.

7 RELATEDWORK AND CONCLUSION

Data summarization builds concise, structured summaries from
large (semi)structured datasets. A lot of summarization methods
exist; recent surveys include [17, 37]. As explained in Sec. 3, we
picked the Typed Strong summary [25] for RDF to comply with
our principle (⋆): it leverages RDF types (kinds) when present,
and relies on property cliques which tolerate some heterogene-
ity among properties of equivalent nodes, keeping summaries
compact. Beyond [25], we abstract many non-RDF data formats,
and propose novel methods for detecting complex entities.

Related to summarization is the problem of schema infer-

ence from the data [34], most recently studied for JSON [4, 5, 36,
47] and graphs [12, 13, 28, 43]. As discussed in Sec. 6.6, schemas
and abstractions have different goals; schemas are more detailed
and technical, thus, less suited for first-time dataset users.

Several works recommend a relational schema for a semi-

structured dataset, e.g. [11, 14, 20, 46]. Each of the resulting
relations can be seen as a (flat) entity. However, they do not meet
our goals: (𝑖) multiple-valued attributes are always separated
from their parents, leading to many relations; (𝑖𝑖) to improve
performance for a given workload, records of the same kind may
be stored separately, making data harder to understand by users.

Entity classification (Sec. 5) is related to works seeking to infer
column and table names, as well as column types, to find which

tables can be unioned or joined, e.g., [1, 22, 32, 35]. In contrast,
we also abstract semistructured data, to help understand it; we
do not aim for schema compatibility between datasets.

Works such as [8, 30, 40, 42] aim to help users understand
heterogeneous datasets stored in data lakes. [8] only handles
relational and NoSQL (JSON-style) databases. [30] builds and
annotates schemas with semantic information for tree-structured
data, leveraging [42]. They only return tree models for semi-
structured data sources, while our abstractions/E-R diagrams
may be (cyclic) graphs; also, we identify entity boundaries. [40]
blends keyword search and navigation to help explore a relational
datalake; abstraction can be seen as a complementary task.

In follow-up work, inspired by data journalism applications,
we study dataset exploration along paths connecting expressive-
type value collections, in the collection graph [7].

ACKNOWLEDGMENTS

This work is partially funded by DIM RFSI PHD 2020-01 and AI
Chair SourcesSay project (ANR-20-CHIA-0015-01) grants.

105

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.
2018. Data Profiling. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00878ED1V01Y201810DTM052

[2] Angelos Christos Anadiotis, Oana Balalau, Catarina Conceicao, Helena Gal-
hardas, Mhd Yamen Haddad, Ioana Manolescu, Tayeb Merabti, and Jingmao
You. 2021. Graph integration of structured, semistructured and unstruc-
tured data for data journalism. Information Systems (July 2021). https:
//doi.org/10.1016/j.is.2021.101846

[3] Sören Auer et al. 2007. DBpedia: A Nucleus for a Web of Open Data. In The
Semantic Web. Berlin, Heidelberg, 722–735.

[4] Mohamed Amine Baazizi, Clément Berti, Dario Colazzo, Giorgio Ghelli, and
Carlo Sartiani. 2020. Human-in-the-Loop Schema Inference for Massive JSON
Datasets. In EDBT. https://doi.org/10.5441/002/edbt.2020.82

[5] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.
2019. Parametric schema inference for massive JSON datasets. VLDB J. 28, 4
(2019). https://doi.org/10.1007/s00778-018-0532-7

[6] Nelly Barret, Ioana Manolescu, and Prajna Upadhyay. 2022. Abstra: toward
generic abstractions for data of any model (demonstration). In CIKM.

[7] Nelly Barrret, Antoine Gauquier, Jean Jia Law, and Ioana Manolescu. 2023.
PathWays: entity-focused exploration of heterogeneous data graphs (demon-
stration). In ESWC.

[8] Amin Beheshti, Boualem Benatallah, Reza Nouri, and Alireza Tabebordbar.
2018. CoreKG: A Knowledge Lake Service. Proc. VLDB Endow. 11, 12 (aug
2018), 1942–1945. https://doi.org/10.14778/3229863.3236230

[9] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. 2002.
Keyword searching and browsing in databases using BANKS. In ICDE. https:
//doi.org/10.1109/ICDE.2002.994756

[10] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL benchmark.
IJSWIS 5, 2 (2009), 1–24.

[11] Philip Bohannon, Juliana Freire, Jayant R. Haritsa, Maya Ramanath, Prasan
Roy, and Jérôme Siméon. 2003. Bridging the XML Relational Divide with
LegoDB. In ICDE. 759–761. https://doi.org/10.1109/ICDE.2003.1260859

[12] Angela Bonifati, Stefania-Gabriela Dumbrava, Emile Martinez, Fatemeh
Ghasemi, Malo Jaffré, Pacome Luton, and Thomas Pickles. 2022. DiscoPG:
Property Graph Schema Discovery and Exploration. PVLDB 15, 12 (2022).
https://www.vldb.org/pvldb/vol15/p3654-bonifati.pdf

[13] Angela Bonifati, Stefania Dumbrava, and Nicolas Mir. 2022. Hierarchical
Clustering for Property Graph Schema Discovery. In EDBT. https://doi.org/
10.48786/edbt.2022.39

[14] Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas,
Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. 2013.
Building an efficient RDF store over a relational database. In SIGMOD. 121–132.
https://doi.org/10.1145/2463676.2463718

[15] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hy-
pertextual Web Search Engine. Comput. Networks 30, 1-7 (1998), 107–117.
https://doi.org/10.1016/S0169-7552(98)00110-X

[16] Stéphane Campinas, Renaud Delbru, and Giovanni Tummarello. 2013. Ef-
ficiency and precision trade-offs in graph summary algorithms. In IDEAS,
Bipin C. Desai, Josep Lluís Larriba-Pey, and Jorge Bernardino (Eds.). ACM.
https://doi.org/10.1145/2513591.2513654

[17] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos,
Ioana Manolescu, Georgia Troullinou, and Mussab Zneika. 2019. Summarizing
Semantic Graphs: A Survey. The VLDB Journal 28, 3 (June 2019). https:
//hal.inria.fr/hal-01925496

[18] Wei Chen, Fangzhou Guo, Dongming Han, Jacheng Pan, Xiaotao Nie, Jiazhi
Xia, and Xiaolong Zhang. 2019. Structure-Based Suggestive Exploration: A
New Approach for Effective Exploration of Large Networks. IEEE Transactions
on Visualization and Computer Graphics 25, 1 (2019), 555–565. https://doi.org/
10.1109/TVCG.2018.2865139

[19] Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2011. Schemas for safe and
efficient XML processing. In ICDE. IEEE Computer Society. https://doi.org/
10.1109/ICDE.2011.5767960

[20] Alin Deutsch, Mary F. Fernández, and Dan Suciu. 1999. Storing Semistructured
Data with STORED. In SIGMOD. 431–442. https://doi.org/10.1145/304182.
304220

[21] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social network
benchmark: Interactive workload. In SIGMOD.

[22] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and RenéeMiller. 2022. Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. https://arxiv.org/abs/2210.01922. https://doi.org/10.
48550/ARXIV.2210.01922

[23] Kun Fu, Tingyun Mao, Yang Wang, Daoyu Lin, Yuanben Zhang, Junjian Zhan,
Xian Sun, and Feng Li. 2021. TS-Extractor: large graph exploration via sub-
graph extraction based on topological and semantic information. Journal of
Visualization 24 (2021). https://doi.org/10.1007/s12650-020-00699-y

[24] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. 2019. Incremental
structural summarization of RDF graphs. In EDBT. Lisbon, Portugal. https:
//hal.inria.fr/hal-01978784

[25] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. 2020. RDF graph
summarization for first-sight structure discovery. The VLDB Journal 29, 5
(April 2020). https://doi.org/10.1007/s00778-020-00611-y

[26] François Goasdoué, Ioana Manolescu, and Alexandra Roatis. 2013. Efficient
query answering against dynamic RDF databases. In EDBT, Giovanna Guerrini
and Norman W. Paton (Eds.). ACM, 299–310. https://doi.org/10.1145/2452376.
2452412

[27] Roy Goldman and Jennifer Widom. 1997. DataGuides: Enabling Query For-
mulation and Optimization in Semistructured Databases. In VLDB. http:
//www.vldb.org/conf/1997/P436.PDF

[28] Benoît Groz, Aurélien Lemay, Slawek Staworko, and Piotr Wieczorek. 2022.
Inference of Shape Graphs for Graph Databases. In ICDT, Dan Olteanu and
Nils Vortmeier (Eds.), Vol. 220. 14:1–14:20. https://doi.org/10.4230/LIPIcs.
ICDT.2022.14

[29] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web Semantics 3, 2-3 (2005),
158–182.

[30] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An Intelligent
Data Lake System. In SIGMOD (San Francisco, California, USA) (SIGMOD ’16).
New York, NY, USA, 2097–2100. https://doi.org/10.1145/2882903.2899389

[31] Jiawei Han, Micheline Kamber, and Jian Pei. 2012. Data min-
ing concepts and techniques, third edition. http://www.amazon.de/
Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_
hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1

[32] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2021. GitTables:
A Large-Scale Corpus of Relational Tables. CoRR abs/2106.07258 (2021).
arXiv:2106.07258 https://arxiv.org/abs/2106.07258

[33] Lan Jiang and Felix Naumann. 2020. Holistic primary key and foreign key
detection. J. Intell. Inf. Syst. 54, 3 (2020), 439–461. https://doi.org/10.1007/
s10844-019-00562-z

[34] Kenza Kellou-Menouer, Nikolaos Kardoulakis, Georgia Troullinou, Zoubida
Kedad, Dimitris Plexousakis, and Haridimos Kondylakis. 2021. A survey on
semantic schema discovery. The VLDB Journal (2021).

[35] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2022. SANTOS: Relationship-
based Semantic Table Union Search. https://arxiv.org/abs/2209.13589. https:
//doi.org/10.48550/ARXIV.2209.13589

[36] Hanâ Lbath, Angela Bonifati, and Russ Harmer. 2021. Schema Inference for
Property Graphs. In EDBT. https://doi.org/10.5441/002/edbt.2021.58

[37] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Sum-
marization Methods and Applications: A Survey. ACM Comput. Surv. 51, 3,
Article 62 (June 2018).

[38] TomasMikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations ofWords and Phrases and Their Compositionality.
In NIPS.

[39] Thomas Neumann and Guido Moerkotte. 2011. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In ICDE, Serge
Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan (Eds.). IEEE
Computer Society. https://doi.org/10.1109/ICDE.2011.5767868

[40] Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahar Ghadiri
Bashardoost, Erkang Zhu, Ken Pu, and Renée J. Miller. 2021. RONIN: Data
Lake Exploration. Proc. VLDB Endow. 14, 12 (2021), 2863–2866. https:
//doi.org/10.14778/3476311.3476364

[41] Thomas Pellissier Tanon, GerhardWeikum, and Fabian Suchanek. 2020. YAGO
4: A Reason-able Knowledge Base. In ESWC.

[42] Christoph Quix, Rihan Hai, and Ivan Vatov. 2016. Metadata Extraction and
Management in Data Lakes With GEMMS. Complex Syst. Informatics Model.
Q. 9 (2016), 67–83.

[43] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 2033. Extraction of
Validating Shapes from very large Knowledge Graphs. PVLDB (2033).

[44] Raghu Ramakhrishnan and Johannes Gehrke. 2003. Database Management
Systems (3rd edition). McGraw-Hill.

[45] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. 2002. XMark: A Benchmark for XML Data
Management. In PVLDB. https://doi.org/10.1016/B978-155860869-6/50096-2

[46] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J.
DeWitt, and Jeffrey F. Naughton. 1999. Relational Databases for Querying
XML Documents: Limitations and Opportunities. In VLDB. 302–314. http:
//www.vldb.org/conf/1999/P31.pdf

[47] William Spoth, Oliver A Kennedy, Ying Lu, Beda Hammerschmidt, and
Zhen Hua Liu. 2021. Reducing Ambiguity in JSON Schema Discovery. In
SIGMOD.

[48] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative
Knowledgebase. Commun. ACM 57, 10 (Sept. 2014). https://doi.org/10.1145/
2629489

[49] www-DTD 2008. W3C XML Document Type Specification.
https://www.w3.org/TR/REC-xml/#dt-doctype.

[50] www-XSD 2012. W3C XML Schema Definition Language (XSD).
https://www.w3.org/TR/xmlschema11-1/.

[51] xxx-coreresearch 2022. CoreResearch JSON dataset. Available online at
https://core.ac.uk/services/dataset.

[52] xxx-enel 2022. ENELShops RDF Dataset. Available online at https://old.
datahub.io/dataset/enel-shops.

[53] xxx-foodista 2022. Foodista RDF dataset. Available online at https://old.
datahub.io/dataset/foodistal.

[54] xxx-github 2022. GitHub JSON dataset. Available online at https://api.github.
com/events.

106

[55] xxx-mondial 2022. Mondial XML dataset. Available online at
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/
repository.html#mondial.

[56] xxx-nasa 2022. NASA flights RDF dataset. Available online at https://old.
datahub.io/dataset/data-incubator-nasa.

[57] xxx-prescription 2022. Prescription JSON dataset. Available online at https:
//www.kaggle.com/datasets/roamresearch/prescriptionbasedprediction.

[58] xxx-pubmed 2022. PubMed biomedical database (XML). Available online at
https://www.ncbi.nlm.nih.gov/books/NBK25501/.

[59] xxx-wikimedia 2022. WikiMedia XML dump. Available online at https:
//dumps.wikimedia.org/frwikinews/20221001/.

[60] xxx-yelp 2018. Yelp open dataset: An all-purpose dataset for learning. https:
//www.yelp.com/dataset.

107

