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ABSTRACT
Logica (= Logic + aggregation) is a freely available, open-source,
feature-enhanced version of Datalog that automatically compiles
logic rules to several SQL platforms, i.e., a lightweight, serverless
SQLite engine, a multi-user client-server PostgreSQL system, and
a highly scalable, parallel BigQuery instance. Logica combines
the beginner-friendly declarative features of Datalog (intuitive,
pattern-based queries in the style of QBE), with advanced analyt-
ical features needed by data science practitioners when process-
ing large, real-world datasets. The system has been used for data
science applications and training in industry, and in graduate-
level courses in academia. Logica allows beginners to seamlessly
progress from traditional (toy) examples to intermediate and
advanced use cases.

1 INTRODUCTION
Datalog has a long and venerable history in databases [16, 17],
e.g., as a family of languages for theoreticians studying the ex-
pressive power of queries [2], as a logical foundation for non-
monotonic reasoning [25, 26], and as a language for teaching the
foundations of databases [1]. After much excitement and research
activity in the late 1980s and early 1990s, interest temporarily
waned1, before it saw a resurgence in academia and industry in
the 2000s [7, 12] which continues to this day [3]. Datalog now
has many applications, bridging the gap between specification
and implementation, e.g., in program analysis [14, 18, 20], declar-
ative networking [13, 15], knowledge graphs [5], and ML/AI
[4, 9, 27]. For these and other use cases, a number of specialized
Datalog systems and prototypes have been implemented (e.g.,
see [5, 11, 14] among many others).

Somewhat surprisingly, however, despite these many success-
ful application areas, there has been a lack of freely available,
scalable implementations of Datalog that support real-world data
science applications. In contrast, Python’s success in data science
can be explained by the fact that it is widely available and that
it is both, an excellent language for beginners and a production-
level language for data science, ML, and AI applications, i.e., there
is a continuous path—from beginner to expert—within a single
framework. If the user-friendly, declarative features of Datalog
could be combined with the robust, well-engineered features of
SQL databases in a widely available implementation, a similar
path would allow beginners to advance from simple, declarative
queries to more complex data-intensive analysis use cases.

In this demonstration, we present our answer to this challenge:
Logica is a freely available, open-source Datalog variant, designed
to combine the declarative features of a logic-based rule language
with features needed in real-world data science applications. The
1“No practical applications of recursive query theory . . . have been found to date" by
Michael Stonebraker in Readings in Database Systems, 3rd Edition is symptomatic.
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compact syntax inspired by logic programming is well-suited for
both simple OLAP-style aggregations and more complex tasks
encountered in data science. Logica is a descendant of Yedalog [6]
(and thus Dyna [9]) and inherits several features through this
lineage, e.g., a programmer-friendly syntax for aggregators, func-
tional predicates, user-defined functions, and complex data types.
Logica source code, tutorials, and demonstration notebooks are
available online [22, 23].

compilerco
mpil

er

compiler

single-user lightweight

serverless

multi-userscalable

client-server

cloud-based data warehouse
massively parallel computing

Figure 1: Logica programs can be executed on a single-user SQLite
engine; a multi-user, client-server PostgreSQL system; and the
massively parallel BigQuery data warehouse in the cloud.

Logica rules feature both, (i) the traditional positional Datalog
syntax, making pattern-based, QBE-style queries intuitive and
convenient, especially for low-arity relations (e.g., knowledge
graphs represented as triples), and (ii) the name-based syntax
known from SQL. This latter feature makes SQL queries, and
thus Logica, more robust to schema changes2 and is a practical
necessity when dealing with schemas involving more than a
handful of columns.

In Section 2 we introduce a few of the key features of Logica
by example, starting from simple Datalog queries, to intermediate
ones, and ending with more advanced, analytical examples. The
use of Logica in practice (e.g., in notebook environments) is
discussed in Section 3. In Section 4 we describe the plans for our
interactive Logica demonstration: it will feature not only the
examples discussed in the next section, but several additional
examples that users can execute live, from their own laptops,
during the conference. Finally, in Section 5, we summarize the
unique features of Logica and our future plans for using Logica
in education.

2 LOGICA BY EXAMPLE
2.1 Some Datalog Basics
Datalog rules are implications of the form head :- body, i.e.,
whenever the conjunction of literals (atoms or their negation) in
the body is true, the logic atom in the head is true as well.
2For example, adding new columns to a schema will regularly “break” queries in
positional syntax, while queries with name-based syntax often remain unaffected.
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Transitive Closure. The following rules derive a new, transi-
tive relation Ancestor(x,y) from a given relation Parent(x,y).
The first rule states that parents are ancestors. The second, re-
cursive rule specifies that a fact Parent(x,z) and a derived fact
Ancestor(z,y) can be joined to derive a new fact Ancestor(x,y):

1 Ancestor(x,y) :- Parent(x,y);
2 Ancestor(x,y) :- Parent(x,z), Ancestor(z,y);

Note that predicates (relation names) begin with an uppercase
letter in Logica, while logical variables are denoted in lowercase.
Rules are terminated by a semicolon, as in SQL. Similar to Query-
by-Example (QBE) [1, 29], Datalog is a pattern-based language,
i.e., multiple occurrences of the same variable in a rule body (e.g.,
z in the second rule above) correspond to an implicit join.

Graph Queries. The ease of computing transitive closures indi-
cates that Datalog is a powerful graph query language, sharing
features with specialized languages, such as SPARQL and Cypher.
Regular path queries (RPQs) [28], can be expressed easily via rules,
making Datalog an excellent choice for querying knowledge- and
provenance graphs [8]. Assume you want to compute LCA(x,y,a),
the lowest common ancestor a of two nodes x and y in a given
family tree or provenance graph. An elegant, declarative solution
is:

1 CA(x,y,a) :- Ancestor(x,a), Ancestor(y,a), x != y;
2 NonLCA(x,y,a) :- CA(x,y,a), CA(x,y,b), Ancestor(b,a);
3 LCA(x,y,a) :- CA(x,y,a), ∼ NonLCA(x,y,a);

The first rule defines a common ancestor a of two distinct
nodes x and y (via an implicit join on a). The second rule finds
common ancestors a for which a “better” (i.e., lower) ancestor b
exists. These non-LCA ancestors are then discarded by the third
rule, which uses negation3 to derive all remaining true LCAs.

2.2 Logica Variables & Named Arguments
The Logica examples above employ the classic positional Datalog
syntax, i.e., in which an 𝑛-ary predicate occurrence 𝑃 (𝑥1, . . . , 𝑥𝑛)
must include terms (logic variables or data values) in all 𝑛 ar-
gument positions. This facilitates pattern-based (i.e., QBE-style)
queries with implicit joins, and is intuitive and convenient for
relations with few attributes (columns) as shown in the graph
queries above. However, traditional (non-graph) relations often
have many more columns, and the positional syntax becomes
inconvenient, error-prone, and unnecessarily brittle (queries reg-
ularly break, e.g., when new columns are added to base relations).
To this end, Logica also supports named arguments so that queries
can only refer to those attributes that are needed to specify the
desired query.

Confronting the Real World. In a more realistic setting, the bi-
nary Parent(x,y) relation abovewill be populated from a Person()
table that has many more columns. For simplicity, we use a 4-ary
relation with attributes name:, dob: (date-of-birth), mother:, and
father: here. Symbols ending in a colon (color-coded green) are
attribute names and are often (but not always) followed by data
values (e.g., strings) or logic variables.

A base table for Person() may include facts of the form:

1 Person(name: "Joe Doe",dob:"1990-08-15"),
2 mother:"Jane Doe",father:"John Doe");
3 Person(name: "John Doe",dob:"1966-05-20"),
4 mother:"Alice Wang",father:"Robert Doe");

3In Logica a negated literal “¬𝐴” is written as “∼𝐴”.

From such a base table with named arguments, we can popu-
late the binary parent relation (with positional syntax) as follows:

1 Parent(x,y) :- Person(name:x, mother:mother, father:father),
2 y in [mother,father];

The person atom in the body of the rule uses only three at-
tributes (i.e., does not mention dob:) and introduces logic vari-
ables x, mother, and father, respectively, representing domain
values. The second conjunct in the rule body, i.e., the construct
“y in [mother,father]” effectively specifies a disjunction (the par-
ent y can be either themother or the father of x) andwould require
two, nearly identical, rules in standard Datalog syntax.

The attribute:variable pattern (e.g., “mother:mother” above) is
quite common, so Logica defines a convenient abbreviation: By
omitting a logic variable, an implicit variable with the same name
as the attribute becomes available. In this way, we can write the
previous rule even more concisely as follows:

1 Parent(x,y) :- Person(name:x, mother:,father:),
2 y in [mother,father];

Translating Recursive Rules. Several variants and fragments
of Datalog exist and they can differ significantly in their handling
of recursion and negation, and consequently in their expressive
power and computational complexity [1]. Many SQL systems
now support a limited form of (linear) recursion through common
table expressions (CTEs). When compiling Datalog to SQL there
are two natural approaches: (1) employ the WITH RECURSIVE con-
struct and CTEs, or (2) unroll recursive rules to a fixed depth 𝑘 .
Both approaches have advantages and disadvantages, e.g., (1)
cannot handle non-linear recursion, while (2) may result in in-
complete answers when the recursion depth required exceeds
the fixed “unroll-depth” 𝑘 set for a given program. Experience
with Logica’s approach (2) has rarely presented a real limitation:
A double-recursive variant of the Ancestor program above, e.g.,
can handle chains of length 𝑂 (2𝑘 ) given an unroll-depth of 𝑘 .

2.3 A Data Science Use Case
Consider a data engineer working for the Seattle Public Library
(SPL), who is tasked with analyzing loan data for decision support
and new library services. She accesses the external LibraryLoans()
table via the library’s PostgreSQL database, and begins to explore
the data in her Jupyter notebook. First, she wants to visualize
the types of materials (books, e-books, DVDs, etc.) that are popu-
lar, i.e., having more than 30K checkouts per type. For materials
which have no checkouts in a givenmonth, missing values should
be padded with zeros, to keep the plotting code simple.

1 LoansByMonth(material:PopularMat(), month:AnyMonth()) += 0;
2 LoansByMonth(material:, month:)+= loans :-
3 LibraryLoans(material:, month:,loans:),
4 material = PopularMat();
5

6 PopularMat() = material :- MatCount(material) > 30000;
7 MatCount(material) += 1 :- LibraryLoans(material:);
8 AnyMonth() = i + 1 :- i in Range(12);

She defines a new result relation LoansByMonth() that aggre-
gates loans by material-type and month, for popular materials.
The function PopularMat(), defined in L6 and used in L1 and
L4 includes only materials with more than 30K checkouts total.
MatCount() sums up checkouts for each material-type. The exter-
nal LibraryLoans() contains counts of loans, grouped by material
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Figure 2: Logica dataflow graph for the Seattle Library example

and month. The multi-valued function AnyMonth() returns inte-
gers 1, . . . , 12matching the representation used in LibraryLoans()

for the months of the year.
Figure 2 depicts the dataflow for the result relation (with di-

amond shape) LoansByMonth() of the SPL example above. This
graph is automatically generated by Logica, when the program
is run in a Jupyter notebook. The output depends on the external
database table LibraryLoans() in PostgreSQL and intermediate
grounded functional predicates (rounded boxes) MatCount() and
PopularMat().

Migrating from PostgreSQL to BigQuery. In our demon-
stration scenario [23], the engineer is happy with the result,
but notices that query evaluation took more than 15 seconds.
While this is fine for an initial exploration, a deeper analysis
on an even larger volume has been requested, so the engineer
changes the Logica directive @Engine("psql") in the notebook to
@Engine("bigquery"). After pushing the data to Google’s scalable,
distributed BigQuery data warehouse, she is pleased to see that
once the data is loaded to BigQuery the very same Logica rules
now take less than 2 seconds to execute.4

3 LOGICA & DATALOG FOR THE REST OF US
Figure 1 depicts the high-level architecture of Logica: A Python-
based source-to-source compiler translates Logica rules to one of
the supported SQL dialects (SQLite, PostgreSQL, or BigQuery),
each with its unique performance characteristics and use cases.

The Triangle of Power. For light-weight, embedded, and single-
user applications, the SQLite engine is an excellent choice. It has
the additional benefit that SQLite (like Python) is often readily
available on most users’ machines. On the other hand, when
business data resides in a multi-user, client-server database, the
Logica-to-PostgreSQL compiler option will be convenient for
declarative data science applications. Since PostgreSQL (unlike
BigQuery) requires composite types to be explicitly defined, the
Logica compiler had to be extended with type inference [21].
For applications that need scalable compute resources to handle
large volumes of data and to perform complex analysis tasks, the
Logica-to-BigQuery compiler will be the platform of choice.

First Things First. Logica installation via Python is easy, and
python3 -m pip install logica

will do the trick. Logica can be directly run in a terminal and
requires no extra packages when compiling to SQLite, since

4The SPL dataset is about 3GB in size and has 14 million rows [23].

Python 3 comes with SQLite built in. This provides a convenient
on-ramp for data analysis: A user can start running their first
Logica programs with SQLite and as their needs grow, move to
PostgreSQL or BigQuery.

Using Notebooks. Logica has been integrated with Jupyter. To
use Logica in a notebook, simply install Logica, and then run

from logica import colab_logica

After that, the %%logica Jupyter magic will be available in the
notebook. Users can then write their Logica programs in a note-
book cell, and on the magic line specify a comma-separated list
of predicates that they would like to be executed [23]. Results of
the execution will then be shown in the notebook UI and stored
in pandas dataframes, whose names coincide with the Logica
predicate symbols. This provides a simple and seamless integra-
tion of data analysis, visualization, and ML workflows through
notebooks.

Database Access. Logica can read and write tables that exist in
a user’s database. For example, to populate a database table with
the derived facts of the Logica predicate MatCount() above, the
user simply adds the line:

@Ground("MatCount");

While a Logica program is executing in a notebook, the user
can monitor progress via a dynamically updating dataflow graph
(cf. Figure 2) where node colors indicate whether a relation is still
being computed (grey) or has been finalized (green).

4 DEMONSTRATION PLAN

Core Demo. After a brief introduction and motivation, our Log-
ica demonstration will include the following steps:

(1) A gentle introduction to declarative (Datalog) querying
with Logica, using classic examples such as Ancestor(x,y)
(for computing transitive closures), intermediate graph
queries such as LCA(x,y), and their application for query-
ing provenance [8] and knowledge graphs via RPQs [28].

(2) Intermediate examples that highlight the commonalities
and differences between standard Datalog rules and sys-
tems and Logica: programmer-friendly syntax enhance-
ments (for mixing positional and named arguments), data
science extensions for user-defined functions and aggrega-
tion (e.g., the SPL example above), composite data types,
and notebook integration.

(3) An advanced data science use case (expanding on the SPL
example) that involves multiple SQL engines simultane-
ously to illustrate data import/export and performance
differences.

Go Logica and Logica-to-Go. In addition to giving a live demo
of the Logica system using interactive notebooks (“Go Logica!”),
we plan to invite conference attendees to participate in the demon-
stration session by running Logica notebooks in the cloud through
Google colab [23]. In this way, participants will get a first-hand
experience of the power of declarative rules for data science.

During the conference we will also provide a “Logica-to-Go”
clinic for interested participants, i.e., a 5–10 minute installation
walk-through whose goal is to empower participants to run their
own instance of Logica with Python and SQLite. We believe
that many attendees will have Python 3—and thus also SQLite—
pre-installed on their laptop computers, making installation of a
minimal, SQLite-based Logica system straightforward. By leaving
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the demo-session with a self-contained Logica installation and
beginner’s tutorial, participants will be independent of online
and cloud resources, and will be able to experiment on their own
laptops with declarative querying and data analysis examples,
whether on their way home from the conference with unreliable
internet access, or cast away on an island like Robinson Crusoe.

5 CONCLUSIONS
Datalog has had a long and venerable (some might say turbulent)
history in the database community [16, 17]. Database theory [1]
cannot be imagined without it, but it is the many new (or redis-
covered) applications that have led to a resurgence of Datalog
in industry and academia in the last 10–20 years. Despite the
more abundant and novel use cases, and the continued interest
in declarative, Datalog-like languages in academia and industry,
it is somewhat surprising that there is a shortage of freely avail-
able, scalable Datalog systems, i.e., which can handle practical
database and data science applications, in addition to the usual
toy examples encountered in a database theory course.

Powerful Datalog engines have been developed in industry
and research labs (e.g., see [5, 6, 11] among many others [16]), but
these are often not freely available, can be hard to install and use,
or may even have been abandoned. Instructors who are eager to
teach foundations of databases, declarative programming, or new
applications [12, 13] may also find it difficult to identify suitable
systems. While there are some excellent open-source systems
(e.g., for teaching relational languages [24]), and specialized sys-
tems (e.g., for answer set programming [10]), these are generally
not suitable for data-intensive or data science applications.

The first author has developed Logica, a powerful open-source
tool that combines the elegance and declarative expressiveness of
logic rules, with down-to-earth practical language features, e.g.,
for user-defined functions, aggregation, and complex data types
that are necessary for real-world data science applications [22].
The core of the system is a source-to-source compiler that gen-
erates SQL code for different systems, currently SQLite, Post-
greSQL, and BigQuery. With our demonstration, and using var-
ious examples, we will illustrate that there is a common path,
from beginner to expert analyst, that data science students and
practitioners can follow, all while staying in the framework of
declarative, rule-based data science.

The last author has extensive experience teaching database and
information science courses at the undergraduate and graduate
level, and has recently begun, assisted by the second author, to
use Logica for teaching, e.g., as a declarative modeling and query
language, and for checking and enforcing integrity constraints
(in the context of data cleaning and repair).

Plans for the Future. We believe that Logica fills an important
practical need by combining the powerful features of a declara-
tive rule language with the robust features of well-engineered
SQL database systems, resulting in a novel hybrid language that
supports a wide range of users and uses. Logica’s ability to han-
dle large, real-world datasets provides a promising avenue for
teaching, and we plan to develop new course materials using
Logica in the future. We are also planning Logica extensions (or
a preprocessor) to automatically translate RPQs to Datalog—e.g.,
similar to [8]—to better support use cases involving provenance
and knowledge graphs. For OLAP-style workloads we are also
considering to add DuckDB [19] as a new target platform.
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