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ABSTRACT
Video surveillance has developed considerably in the recent years.
Analyzing the data generated by such systems has become a ma-
jor challenge. To address this issue, we propose a framework
for the creation of rich Labeled Property Graphs from video
surveillance streams. It is based on 1) a Deep Learning pipeline
architecture for video data extraction, 2) a graph database module
to efficiently structure and store detections, and 3) a querying
module to interact with generated graphs, enhancing the auto-
matic analysis of scenes. Its modular architecture enables the
feature extraction steps from the videos to be easily maintained,
modified or interchanged. Our demonstration scenario shows
the process of generating scene graphs from videos of several
benchmark datasets. The audience will assist to an end-to-end
execution of the pipeline showing the generation process and
visualize generated graphs. They will have the opportunity to
formulate queries using an interface illustrating several use case
scenarios involving person re-identification and abandoned ob-
jects matching with their former owners.

1 INTRODUCTION
Video surveillance systems have developed considerably in recent
years. Automatic analysis of the data produced by such systems
has thus become a major challenge. Among the many potential
risks is that posed by abandoned luggage. Most approaches can be
broken down into two stages: the detection of static objects (mo-
tion estimation & background subtraction), and the recognition
of abandoned objects [11]. While these techniques are effective
in addressing challenges such as real-time alert triggering, they
do not allow to extract complex situations. In fact, with previous
approaches, it is often complex to identify luggage owners, even
more with generalized types of object, or for luggage exchange
or scenes including violence. They are therefore limited in terms
of expressiveness and generalisation.

In this paper, we present NeoSGG, a framework for automatic
detection and retrieval of complex scenes. Our use case here
is the detection of abandoned objects. Our approach relies on
Object Re-identification (Re-ID) and Scene Graph Generation
(SGG) to generalize problems of complex events detection. Re-ID
is a computer vision task involving identifying and tracking
persons or objects from cameras [13]. On the other hand, SGG
aims at transmuting a rich, contextual understanding of visual
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Figure 1: The NeoSGG Framework

scenes into a structured representation [7]. By mapping the video
scene’s objects into nodes and their spatio-semantic and temporal
relationships into edges in a Temporal Graphs, we capture a
detailed overview of scene content and the interactions among its
components. We propose 1) a Deep Learning pipeline to extract
the video content, 2) a graph data model to structure and store
the extracted content, and 3) a querying module for complex
pattern retrieval and adaptive scene analysis which we apply
here to the detection of abandoned luggage.

The key idea of our approach relies on the transformation of
video streams into graphs, allowing to bring deeper semantics
which can be exploited to enhance person Re-ID. Existing ap-
proaches capture high-level semantics to describe a video content
in an exclusive way, mainly focusing on models’ performances
and their inference speed [5]. In contrast, our approach choose to
transform the video into an expressive and detailed graph with
rich low level features and mid level semantics that enable for
reasoning and retrieving specific events meeting the query of
a user. Moreover, the modularity of our framework facilitates
the evolution of the various feature extractors, allowing them
to be more easily substituted or replaced, thus increasing its
maintainability, adaptability and scalability.
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2 THE NEOSGG FRAMEWORK
Wepropose the NeoSGG framework for transforming video surveil-
lance streams into rich and structured temporal graphs. It enables
the analysis of video content at spatiotemporal and semantic lev-
els. It consists of a pipeline for extracting visual content from
video surveillance streams and a graph database for structuring
and storing data, and enabling pattern retrieval.

2.1 Pipeline Architecture
Our pipeline applies different steps of feature extraction from
the videos and maps them into a graph using our Graph Data
Model (Section 2.2). Figure 1 shows the layout of our pipeline:
i) keyframe extraction, ii) object detection and instance segmen-
tation, iii) attribute recognition, iv) spatio-semantic relationship
detection and v) object re-identification. The pipeline ends with
a comprehensive interface which enables the end user to query
the graph database researching for complex scenes with a high
expressiveness.

Keyframe Extraction is the process of summarizing a video
stream by selecting the most representative images in terms
of visual content and motion. For computational efficiency, it
reduces the amount of data while preserving relevant scenes’
visual content.

Object Detection consists in detecting all instances of persons
and objects in an image. Detected objects of all classes are named
Detections and their positions are saved as bounding boxes or
contour polygons according to the chosen method.

Attribute Recognition refers to the task of identifying and
categorizing specific attributes from detections such as age, gen-
der, clothing color or other semantic features. There exists many
sub-categories such as Pedestrian Attributes Recognition (PAR)
or Facial Attributes Estimation (FAE).

Relationships Detection consists in understanding relation-
ships between detections in a keyframe. It covers either general
interaction between objects, as for Visual relationship Detection
(VRD), or Human-Object Interaction (HOI). Relationships may
be categorized as either spatial, focusing on the relative positions
of detections, or semantic, highlighting their interactions.

Re-Identification is the computer vision task of connecting
all instances of a detection over time across multiple keyframes.
It relies on extracting their visual features and matching them
using a distance metric and a re-ranking algorithm.

2.2 Graph Data Model and Querying
Graph Data Model. Conventional SGG approaches lead to poor
expressiveness from a graph database point of view [7]. To tackle
this issue, we propose to use a Graph Data Model to map and
structure features extracted from a video. Our model belongs to
the Labeled Property Graph [1] (LPG) category with temporal
data. It is made up of spatial layers representing a captured scene
at a discrete time 𝑡 ∈ 𝑇 (Def. 2.1).

Definition 2.1 (LPG Temporal Graph). Let G𝑇 be a temporal
graph which definition is given below: G𝑇 = (L, R𝑟𝑒𝑖𝑑 ) with
L being the set of spatio-temporal layers, R𝑟𝑒𝑖𝑑 the set of re-
identification edges, and 𝑇 the time series of keyframes.

The special feature of our model is that it includes re-identifi-
cation edges (Def. 2.3) between spatial layers (Def. 2.2) in order
to link instances of the same detection and facilitate querying.

Definition 2.2 (Spatial-Semantic Layers). The spatial-semantic
layer set L is defined as: L = {L𝑡 | 𝑡 ∈ [1, |L|]}. L𝑡 refers

to a spatial-semantic layer of the temporal graph G𝑇 and 𝑡 to
its observation time. Spatial-semantic layers L, composed of
detection nodes N and semantic or spatial relationships S, are
defined as: L = (N ,S). N(L𝑡 ) and S(L𝑡 ) denote respectively
sets of nodes and spatial-semantic relationships within a given
layer L𝑡 of the graph.

Nodes 𝑛 ∈ N belongs to a unique layer:

∀ 𝑛 ∈ N (L𝑡 ),∀ L𝑡 ′ | L𝑡 ′ ≠ L𝑡 , 𝑛 ∉ N(L𝑡 ′ )

Relationships 𝑠𝑛→𝑛′ link nodes from the same layer:

S(L𝑡 ) = {𝑠𝑛→𝑛′ = (𝑛, 𝑛′, 𝑎, 𝑐) | 𝑛 ∈ N (L𝑡 )
∧ 𝑛′ ∈ N (L𝑡 ) ∧ 𝑛 ≠ 𝑛′}

with 𝑎 a list of attributes of the spatial-semantic relationships
and 𝑐 its respective confidence in [0, 1].

Definition 2.3 (Re-identification Edges). The set of Re-ID edges
R𝑟𝑒𝑖𝑑 links nodes 𝑛 and 𝑛′ between spatial layers L𝑡 and L𝑡 ′ :

R𝑟𝑒𝑖𝑑 = {𝑟𝑛→𝑛′ = (𝑛, 𝑛′, 𝑠) | 𝑛 ∈ N (L𝑡 )

∧ 𝑛′ ∈ N (L𝑡 ′ ) ∧ L𝑡 ,L𝑡 ′ ∈ G𝑇 ∧ 𝑡 < 𝑡 ′}
with 𝑟𝑛→𝑛′ a re-identification edge in R𝑟𝑒𝑖𝑑 between nodes 𝑛
and 𝑛′ and 𝑠 the re-identification score in [0, 1].
Nodes 𝑛 ∈ N are re-identified at most once:

∀ 𝑛 ∈ N (L𝑡 ), 𝑡 > 0, ∄(𝑟𝑛→𝑛′ , 𝑟𝑛→𝑛′′ ) ∈ R2
𝑟𝑒𝑖𝑑

| 𝑛′ ∈ N (L𝑡 ′ ) ∧ 𝑛′′ ∈ N (L𝑡 ′′ ) ∧ 𝑡 < 𝑡 ′ ∧ 𝑡 < 𝑡 ′′

with 𝑛′ and 𝑛′′ belong to following layers.

Figure 2 gives the Graph Data Model [2] corresponding to
previous definitions. Each node 𝑛 ∈ G𝑇 is of type (:Detection)
where time 𝑡 ∈ 𝑇 is the property “timestamp”. Since our pipeline
identifies different categories for detections, a hierarchy of types
given by a thesaurus helps to target specific identifications.

Spatial and semantic relationships (Def. 2.2) are respectively
typed as [:SPAT] and [:SEM]with corresponding extracted prop-
erties (within a temporal layer L𝑡 ). Finally, Re-ID relationships
(Def. 2.3) are added between nodes from distinct layers while
checking the constraint of unicity.

[:SEM]

- predicate

- score

def 2.2 bis

:Detection
 - id

 - timestamp

 - bbox

 - confidence[:SPAT]

def 2.3

def 2.2

- id

- score

[:REID]

…
21 detection 

classes divided 

into 5 categories

:Bag
- label

- reid_feature

:Person
- gender

- age

- hair

- up_clothes

- down_clothes

…

- depth    - iou

- allen     - dist

- score

Figure 2: Temporal Graph Data Model
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Graph Querying. To extract complex events from the graph
G𝑇 we need paths on intra (SPAT, SEM) and inter layers (re-ID).
The former is a common expression pattern between nodes while
Re-ID requires a chain to be composed between layers:

Definition 2.4 (Re-identification Chain). A re-identification chain
is a sequence of distinct nodes linked by re-identification edges:

W𝑛0→𝑛𝑘 = (𝑛0, 𝑛1, ..., 𝑛𝑘−1, 𝑛𝑘 ), 𝑘 ∈ N∗

| ∀ 𝑖 ∈ N∗, 𝑖 ≤ 𝑘, ∄ 𝑟𝑛𝑖−1→𝑛𝑖 ∈ R𝑟𝑒𝑖𝑑

3 IMPLEMENTATION
Our framework relies on different modules for features extraction,
a Re-ID module, a mapping to the graph database and pattern
extractions. We focus here on the pipeline implementation.

Keyframe Extraction Module. The implemented method
for keyframe extraction [10] is based on ORB algorithm [9]. The
module takes a video stream and computes its keypoints and
descriptors. Keypoints are then associated with their two nearest
neighbors from previous keyframe using a KNN algorithm. An
image is returned as a new keyframe if the number of marked
keypoints (lowest distances with following images) falls below a
threshold. This method enables adaptive extraction, taking into
account visual changes in terms of object updates within images.

Object Detection Module. We use two different methods to
perform either object detection or instance segmentation.

First, YOLOv51 is a popular one-stage detector allowing a fast
inference for object detection. Its architecture computes feature
maps fusion at different scales to detect various size objects be-
longing to 80 classes and their coordinates. Five different model
sizes are available, offering a good compromise between inference
speed and detection performance.

Second, the PointRend [6] algorithm is built on top of a two-
stage segmentation models. It performs pixel-based segmentation
using small MLP networks to refine object borders. For feature
extraction, either Resnet50 and Resnet101 backbones can be
chosen from for inference speed or detection sharpness.

Attribute Recognition Module. For this module, we mainly
focused on Pedestrian Attribute Recognition (PAR). We trained a
multi-head CNN with a Resnet50 backbone and 9 classification
branches. We trained our model on Market-1501 attributes
dataset [8], consisting of 32,000 hand annotated images of 1,500
different identities.

Relationships Detection Module. This module extracts spa-
tial and semantic relationships between detections. Our spatial re-
lationships relies on the use of Adabins [3], a SOTA transformer-
based model dividing depth into bins whose centers are adap-
tively estimated for every keyframe. The model was trained on
the KITTI Depth [12] dataset consisting of 94,000 outdoor RGB
images and depth maps. We combined it with the RCC8 standard
applied to bounding boxes. Objects depth maps are employed to
estimate their relative depths denoted as: Same Plan, Behind and
In Front Of. Objects relative positions are determined by using
their bounding box coordinates according to the connectivity
classes (Disconnected, Externally Connected, Equal, Partially Over-
lapping, Tangential Proper Part, Tangential Proper Part Inverse,
Non-Tangential Proper Part).

The semantic relationship detection task relies on PViC [14], a
SOTA transformer-based detector. It uses box pairs positional em-
bedding to promote attention on spatially close object and visual
feature reintroduction using cross-attention to provide fine-grain
1YOLOv5: https://zenodo.org/records/4154370

contextual information in order to improve HOI classification.
The model was trained on HICO-DET [4], a benchmark dataset
for HOI detection and classification including 47,000 images with
117 predicates for 80 different object classes.

Re-IdentificationModule. This last module consists of three
main parts: a backbone model for feature extraction, a distance
metric to evaluate feature similarities and an ID reallocation al-
gorithm based on similarity scores. For feature extraction, we
selected the SOTA AGW baseline [13] which consists of a Resnet50
architecture with an additional GeM layer and nonlocal attention
blocks. We performed the training on Market-1501 dataset using
the configuration provided by the authors. Feature vectors of de-
tections between two consecutive keyframes are then compared
using a similarity matrix of which the coefficients are obtained
using the cosine similarity.

Finally, IDs are reassigned using a Hungarian Assignment al-
gorithm performed on the similarity matrix to maximize the sum
of similarity scores for the final combination.

Graph Database. Each detection from the pipeline is mapped
into a graph database using the Graph Data Model presented in
Section 2.2. For this, we rely on the Neo4j2 graph database.

The mapping of instances has been designed to be direct for
detected categories and their properties (object Detection & at-
tribute recognition), relationships between nodes (spatial, seman-
tics and Re-ID). Consequently, each keyframe produces a new
temporal layer L ∈ G𝑇 connected to others in the past.

The produced graph can be queried to extract events. Re-ID
chain patterns (Def. 2.4) are translated as Cypher queries:

MATCH (X) -[:REID*]-> (Y)

For intra-layer paths, it corresponds to a pattern query mixing
types and properties from both nodes and queries within a given
layer:

MATCH (X{a}) -[:SEM|SPAT{b}]-> (Y{c})

4 DEMONSTRATION PLANS
Our demonstration scenario consists of three main interactive
parts focusing on the execution of our pipeline and the process
of database querying using our interface. The aim is to demon-
strate the effectiveness of the NeoSGG framework for detecting
abandoned objects such as backpacks, handbags and suitcases.

Pipeline Showcase. We begin with the demonstration of
the pipeline with different steps for extracting structured scene
graphs from video surveillance streams as introduced in Sec-
tion 2.1. The audience will assist to each step of the full execution
of our NeoSGG framework on several benchmark videos from
PETS 20063 and AVSS 20074 benchmarks. The focus is placed on
abandoned luggage detection. However, the genericity of our
framework allows us to handle more complex situations, such as
scenes of violence.

Simple Pattern. A second part is dedicated to presenting our
interface and the generation process of Cypher queries. Figure 3
shows the visual aspect of our interface with a projection on the
graph using the Neo4j GDBMS. It offers a good level of abstrac-
tion, enabling a novice user to formulate Cypher queries without
any prior knowledge of database query language. The Query
Builder section is made up of check-boxes and inputs to modify
the various fields of Cypher queries and modulate its behavior.

2Neo4j: https://neo4j.com/
3PETS 2006: https://ftp.cs.reading.ac.uk/pub/PETS2006/
4AVSS 2007: https://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
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Figure 3: NeoSGG Interface with Abandoned Luggage Detection Use Case

The Query Viewer section allows more advanced users to mod-
ify the query directly. The query results appear as a temporal
graph in the bottom right section showing abandoned objects
(and their former owners) with their respective IDs, in the form
of pop-up windows displaying a full view of the corresponding
keyframes and their timestamps.

Below, we show an example of a Cypher query for the aban-
doned luggage use case:

MATCH (p1:Person) -[sem1:SEM]-> (b1:Bag),
(p1) -[spat1:SPAT]-> (b1),
(p1) -[:REID*1..2]-> (p2),
(p2) -[spat2:SPAT]-> (b2),
(b1) -[:REID*1..2]-> (b2)

WHERE sem1.predicate IN ["carry", "drag", "hold"]
AND NOT(spat1.allen="Disconnected")
AND spat2.allen="Disconnected"

RETURN p1.id, b1.id, p1.timestamp, p2.timestamp

It consists in detecting a pattern where a person p1 is spatially
close (spat1 not disconnected) to a bag-type object b1 and has
a semantic relationship with the latter such as carry, pull or
hold. We then recursively go back up the re-identification chain
(REID*) to find a keyframe in which the person and the bag are
disconnected.

ComplexUse Case.As previously mentioned, our framework
is not limited to the lost luggage use case. It can be used for
detecting specific use cases that are hardly detected with direct
machine learning algorithms. Below is an example of a query
designed to detect all the scenes of violence in which the assailant
attacks more than 5 different victims with a weapon:

MATCH (p1_1:Person) -[sem1:SEM {predicate: "hit"}]-
(p2_1:Person),

(p1_x:Person) -[semx:SEM {predicate: "hit"}]-
(p2_x:Person),

(p1_1) -[:REID*]-> (p1_x:Person),
(p1_1) -[:SEM_REL]- (w:Weapon)

WHERE NOT ( (p2_1) -[:REID*]-> (p2_x) )
WITH p1_1, count(*) AS NB
WHERE NB >= 5 RETURN p1_1, NB ORDER Y NB DESC

On the same principle as for the previous query, we first detect
all patterns in which a person p1_1 (the assailant) hits another

person p2_1. We then recursively descend the re-identification
chains to check whether the re-identified assailant p1_x strikes
different people (different p2_x re-ID with “NOT ”) with a weapon.
We finally return the ID of the assailants with a minimum number
of victims (here set to 5 or more).

Various types of queries will be applied on extracted graphs
to showcase the expressiveness of our approach.

ACKNOWLEDGMENTS
This research is financially supported by the French Ministry of
Defence - Innovation and Defence Agency.

REFERENCES
[1] Renzo Angles. 2018. The Property Graph Database Model. In Workshop on

Foundations of Data Management (Cali, Colombia) (AMW), Dan Olteanu and
Barbara Poblete (Eds.), Vol. 2100. CEUR-WS.org.

[2] Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michał
Podstawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2023.
Demystifying Graph Databases: Analysis and Taxonomy of Data Organization,
System Designs, and Graph Queries. ACM Comput. Surv. 56, 2, Article 31 (sep
2023), 40 pages.

[3] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. 2021. Adabins:
Depth estimation using adaptive bins. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 4009–4018.

[4] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia Deng. 2018.
Learning to Detect Human-Object Interactions. In WACV’18.

[5] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkatara-
man, Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu.
2018. Focus: Querying large video datasets with low latency and low cost. In
USENIX Symposium on OSDI. 269–286.

[6] Alexander Kirillov, YuxinWu, KaimingHe, and Ross Girshick. 2020. PointRend:
Image Segmentation As Rendering. In CVPR’20. 9796–9805.

[7] Hongsheng Li, Guangming Zhu, Liang Zhang, Youliang Jiang, Yixuan Dang,
Haoran Hou, Peiyi Shen, Xia Zhao, Syed Afaq Ali Shah, and Mohammed
Bennamoun. 2024. Scene Graph Generation: A comprehensive survey. Neuro-
computing 566 (2024), 127052.

[8] Yutian Lin, Liang Zheng, Zhedong Zheng, Yu Wu, Zhilan Hu, Chenggang
Yan, and Yi Yang. 2019. Improving Person Re-identification by Attribute and
Identity Learning. Pattern Recognition (2019).

[9] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski. 2011. ORB:
An efficient alternative to SIFT or SURF. ICCV’11 (2011), 2564–2571.

[10] Klaus Schoeffmann, Manfred Del Fabro, Tibor Szkaliczki, Laszlo Böszörmenyi,
and Jörg Keckstein. 2015. Keyframe extraction in endoscopic video.Multimedia
Tools and Applications 74, 24 (01 Dec 2015), 11187–11206.

[11] Sorina Smeureanu and Radu Tudor Ionescu. 2018. Real-time deep learning
method for abandoned luggage detection in video. In 2018 26th European Signal
Processing Conference (EUSIPCO). IEEE, 1775–1779.

[12] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and
Andreas Geiger. 2017. Sparsity invariant cnns. In 2017 international conference
on 3D Vision (3DV). IEEE, 11–20.

[13] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. H. Hoi. 2022. Deep Learning for
Person Re-Identification: A Survey and Outlook. IEEE Transactions on Pattern
Analysis amp; Machine Intelligence 44, 06 (jun 2022), 2872–2893.

[14] Frederic Z. Zhang, Yuhui Yuan, Dylan Campbell, Zhuoyao Zhong, and Stephen
Gould. 2023. Exploring Predicate Visual Context in Detecting Human–Object
Interactions. In ICCV’23. 10411–10421.

841


