
How to Make your Duck Fly: Advanced Floating Point
Compression to the Rescue

Panagiotis Liakos
Athens University of

Economics and Business
Athens, Greece

panagiotisliakos@aueb.gr

Katia Papakonstantinopoulou
Athens University of

Economics and Business
Athens, Greece
katia@aueb.gr

Thijs Bruineman
DuckDB Labs

Amsterdam, The Netherlands
thijs@duckdblabs.com

Mark Raasveldt
DuckDB Labs

Amsterdam, The Netherlands
mark@duckdblabs.com

Yannis Kotidis
Athens University of

Economics and Business
Athens, Greece
kotidis@aueb.gr

ABSTRACT

The massive volumes of data generated in diverse domains, such
as scientific computing, finance and environmental monitoring,
hinder our ability to perform multidimensional analysis at high
speeds and also yield significant storage and egress costs. Apply-
ing compression algorithms to reduce these costs is particularly
suitable for column-oriented DBMSs, as the values of individual
columns are usually similar and thus, allow for effective com-
pression. However, this has not been the case for binary float-
ing point numbers, as the space savings achieved by respective
compression algorithms are usually very modest. We present
here two lossless compression algorithms for floating point data,
termed Chimp and Patas, that attain impressive compression ra-
tios and greatly outperform state-of-the-art approaches. We focus
on how these two algorithms impact the performance of DuckDB,
a purpose-built embeddable database for interactive analytics.
Our demonstration will showcase how our novel compression
approaches a) reduce storage requirements, and b) improve the
time needed to load and query data using DuckDB.

1 INTRODUCTION

Data management systems have traditionally employed data
compression techniques for many decades now, as an effective
means for reducing storage space, network bandwidth and egress
costs [2]. In addition to more efficient disk and network I/O, the
merits of compression can also be observed with regards to the
overall database performance. As the number of records that
fit into the buffer space grows, so does the buffer hit ratio [2].
Moreover, the increased number of records that a page can ac-
commodate after compression allow for more effective clustering
of records used together [1].

Applying compression is particularly suitable for column stores,
that store the data of each column individually, and thus, can
easily employ different encoding techniques, depending on the
attribute types and value distributions. However, even though
several techniques allow for compressing text or integer numbers
by a factor of two or more, compressing floating point numbers
has not been equivalently effective. Available techniques offer

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

very modest savings, and general purpose compression algo-
rithms are very slow.

In this work, we present two algorithms for compressing float-
ing point data, termed Chimp and Patas, respectively. Chimp [4]
is a novel lossless streaming compression algorithm, providing
significant space savings that greatly outperform the current
state-of-the-art streaming approaches, while also being competi-
tive with much slower, yet extremely effective general purpose
compression schemes, as well as lossy approaches [3]. Chimp
performs a bitwise XOR operation between the current value and
a previous value to come up with a resulting set of bits that is
likely to contain a lot of zeros, as neighboring data points do not
change significantly. The choice of the previous value to be used
is based on the number of similar trailing bits with the current
value, in an effort to maximize the number of trailing zeros in
the resulting XORed value. We use two control bits for each data
point, to differentiate between a total of four possible encoding
formats, that enable us to minimize the bits needed to represent
each point. Moreover, due to the use of a sophisticated data struc-
ture that enables us to quickly retrieve the best candidate values,
Chimp preserves the compression and decompression speed of
earlier streaming approaches.

Patas is a variation of Chimp, that focuses on providing de-
compression speed that is comparable with that of reading un-
compressed data. To this end, Patas applies zero-padding to the
meaningful bits of each resulting XOR-ed value, to form 1-byte
aligned representations and avoid having to perform any bit-level
processing, as Chimp does. Naturally, these design choices have
an effect on the space savings of Patas, as there exists a trade-off
between the compression ratio we can achieve and the decom-
pression speed we may offer. Still, the space efficiency of Patas is
significantly better than what earlier streaming approaches offer.
Both Chimp and Patas are part of the embeddable DuckDB [9]
database for interactive analytics, as of its 0.6.0 release. The two
algorithms are used for the compression of double precision
floating point numbers, offering significant improvements in the
overall performance of the database.

For our demonstration, we have designed a user-friendly web
application that enables users to witness the impressive space
savings and performance benefits that Chimp and Patas provide,
as well as gain insights with regards to the added value that com-
pression algorithms may offer to an established and widely used
database tool. The underlying system features three identical set-
ups of DuckDB deployments that operate in three different modes

Demonstration Paper

Series ISSN: 2367-2005 826 10.48786/edbt.2024.80

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.80

s=vt vb128

NoIs trailing count > lοg2128+lοg264? Write '1'

Yes No
Is leadingt=leadingt-1?

Write:
'0' (1 bit)

non-leading bits

Write:
'1' (1 bit)

leading count (3 bits)
non-leading bits

Yes
Write '0'

Yes No
Is result=0?

Write:
previous (lοg2128 bits)

'0' (1 bit)

Write:
previous (lοg2128 bits)
leading count (3 bits)

'1' (1 bit)
center count (6 bits)

center bits

Figure 1: Chimp compression algorithm.

regarding floating point data: a) uncompressed, b) compressed
with Chimp, and c) compressed with Patas. The interface of the
web application comprises two main sections that the user can
interact with. The first, focuses on loading data to the database
and enables the user to inspect a number of available files with
raw data and submit one or more of them to be loaded in the
database. The second, provides a number of different predefined
queries and enables the user to submit them for execution. More
importantly, we provide an SQL editor with syntax highlighting
and offer more experienced users with the opportunity to submit
custom queries to freely explore the performance of the data-
base under the three different modes of operation. The results of
each load or query action are visualized using intuitive animated
charts that are updated after the completion of each request.

A full description of the Chimp algorithm along with extensive
experiments over a wide range of large real-world datasets can
be found in [4]. Here, we focus on the key points of Chimp,
its extension termed Patas, and the proposed demonstration
scenarios.

2 CHIMP

In this section, we provide the details of the Chimp compression
algorithm [4], focusing on the Chimp128 variant that exploits the
best of 128 previously encountered values. In what follows we
will use the term Chimp to refer to this variant.

2.1 Bitwise XOR operation

Similarly to earlier approaches [8], Chimp uses a bitwise XOR op-
eration to exploit similarities between consecutive measurements.
More specifically, the intent of this operation is to generate a
resulting value with long runs of leading and trailing zeros. The
bitwise XOR operation in Chimp is performed between the cur-
rent value 𝑣𝑡 and the best of 128 previous values in terms of most
trailing zeros, 𝑣𝑏128 , as shown in Figure 1. If the resulting number
of trailing zeros surpasses the number of bits needed to denote
the previous value used (𝑙𝑜𝑔2128 bits) plus the number of bits
required to specify the number of meaningful bits (𝑙𝑜𝑔264 bits),
then we make use of and actually store the previous value used

(two bottom-left cases of Figure 1). Otherwise, the use of 𝑣𝑏128 is
not particularly useful and, due to the flexibility of Chimp, we
can use the immediately previous value 𝑣𝑡−1 instead, and avoid
wasting additional bits to denote the previous value used (two
bottom-right cases of Figure 1).

2.2 Leading Zero Bits

Earlier approaches [8] use 5 bits to denote up to 31 leading zeros
in the resulting XORed value. We initially considered the use of
4 bits at 2-bit granularity to represent the length of leading zero
bits through the mapping 𝑓 : 𝐴 → 𝐵, where𝐴 = {0, 1, . . . , 2𝑛−1},
𝐵 = {0, 1, . . . , 2𝑛−1 − 1}, and 𝑛 ∈ N, given by

𝑓 (𝑥) =
{
𝑥
2 , when x is even, and
𝑥−1
2 , when x is odd

(1)

to encode the run of leading zeros using one fewer bit. In addition,
we used mapping 𝑓 ′ : 𝐵 → 𝐶 , where𝐶 = {0, 2, . . . , 2𝑛 − 2}, given
by 𝑓 ′ (𝑥) = 2𝑥 , to decode the run of leading zeros. It is evident
that the above mappings are lossy in the case of odd numbers,
with an error that is always equal to 1. Therefore, to preserve
all information for odd numbers, we have to encode a zero bit
along with the remaining XORed value. Despite this fact, this
representation is always at least as compact as that of earlier
approaches that always use 5 bits [4].

Moreover, Chimp further improves the space efficiency of the
leading zeros representation by exploiting their distribution, and
especially the fact that small values of runs are rarely encoun-
tered [4]. Thus, the final design for Chimp uses only 3 bits to
represent up to 24 leading zeros with an exponentially decay-
ing step between the mapped values. The actual steps used are
0, 8, 12, 16, 18, 20, 22, 24 and provide Chimp with improved com-
pression gains compared to the 4-bit representation with 2-bit
granularity for a wide range of datasets.

Additionally, there exist cases in which Chimp capitalizes on
similarities with regard to the number of leading zeros in consec-
utive XORed values to induce further savings. Chimp considers
two cases of XORed values whose number of trailing zeros is less
than a certain threshold. When a value’s number of leading zeros

827

is exactly equal to the previous value’s number of leading zeros,
we can simply write a single ‘0’ control bit, instead of spending 3
bits to specify this number again. Otherwise, we write control bit
‘1’ as well as the number of leading zeros. We note here that using
our 3-bit representation of leading zero bits, different numbers
are mapped to the same value, e.g., 16 and 17 are both mapped to
100 and are thus, considered equal. This favors the first case of
our strategy, and therefore, our overall approach becomes very
effective in terms of exploiting leading zero bits.

2.3 Detailed Chimp Compression

Chimp performs a bitwise XOR between the current value and
the best of 128 previous values in terms of most trailing zeros,
𝑣𝑏128 , and encodes the result with the following variable length
encoding scheme.

• The first value is stored with no compression.
• WhenXORwith the previous value hasmore than 𝑙𝑜𝑔2128+
𝑙𝑜𝑔264 trailing zeros, we store a single ‘0’ bit followed by
a 𝑙𝑜𝑔2128-bit index denoting the previous values used and
either:
– Control bit ‘0’: If the result is zero, i.e., the values are
identical.

– Control bit ‘1’: If the result is not zero, we store the
length of the number of leading zeros in the next 3 bits,
then store the length of the meaningful XORed value in
the next 6 bits. Finally store the meaningful bits of the
XORed value.

• When XOR has 𝑙𝑜𝑔2128 + 𝑙𝑜𝑔264 or less trailing zeros, we
store a single ‘1’ bit followed by either:
– Control bit ‘0’: If the number of leading zeros is exactly
equal to the previous leading zeros, we use that infor-
mation and just store the meaningful XORed value.

– Control bit ‘1’: We store the length of the number of
leading zeros in the next 3 bits and the meaningful bits
of the XORed value.

This operation is portrayed with the diagram of Figure 1.

3 PATAS

The goal of Chimp is to maximize the space savings for the rep-
resentation of floating point numbers while also preserving the
compression and decompression speed of earlier approaches. The
Patas variant we discuss here, aims at providing decompression
rates that are comparable with those of reading uncompressed
data, at the cost of slightly smaller space savings.

Chimp can exploit various patterns found in streams of float-
ing point values using the different control bits. However, not all
of these patterns are present in all data sets. The control bits also
come at a performance cost –as the decompression routine re-
quires branching and has data dependencies that prevent efficient
pipelined execution on modern CPUs. Patas offers faster decom-
pression by specializing on a single pattern instead –namely
when the control bits are ‘01’. By specializing on a single pat-
tern, branching and data dependencies during decompression are
avoided, and the decompression can be performed significantly
faster. In addition, Patas performs byte-aligning of values instead
of bit-aligning to further speed up decompression.

Specializing on this single pattern results in only a slightly
reduced compression ratio when this pattern is the most common
one in a given data set. When the other patterns occur more
frequently, the system can detect this and automatically fallback

to using Chimp to take advantage of the more flexible approach
taken by the Chimp algorithm.

Experimental results show that decompressing values using
the original Chimp algorithm is 5𝑥 slower than reading uncom-
pressed values.1 The Patas variation can decompress values in a
fraction of the time that Chimp needs, taking only twice as much
time as reading uncompressed values would require.2 Thus, Patas
provides faster decompression at the cost of slightly reduced com-
pression ratio.

Depending on the application at hand, the user may opt to
use Chimp to achieve the maximum space savings, Patas to get
more efficient decompression with a smaller compression ratio,
or store the data in uncompressed format, to achieve ultimate
decompression speed at the cost of acquiring no space savings at
all.

4 DEMONSTRATION SCENARIOS

Our demonstration is based on a web application with an in-
tuitive and user friendly interface that guides users to explore
the performance of a popular database under different modes
of operation regarding the representation of floating point val-
ues. More specifically, the web interface allows for submitting
HTTP requests to three web applications running in an identi-
cal containerized environment, that use an embedded DuckDB
database [9], configured to apply a) no compression, b) Chimp
compression, and c) Patas compression, respectively. The config-
uration commands used are shown in Figure 2. In this way, we
enable users to measure the impact of using compression while
also answering the question why Chimp and Patas are excellent
choices for handling massive volumes of floating point data.

PRAGMA force_compression=uncompressed

PRAGMA force_compression=chimp

PRAGMA force_compression=patas

Figure 2: DuckDB compression configuration commands

for floating point data.

Our demonstration comprises two parts: First, we focus on
loading raw data to the database and measure the respective
storage requirements and time needed. Second, we allow users
to issue queries, either by submitting one of the many available
predefined queries that investigate different aspects of query
processing, or by freely composing queries of their own. In both
cases, the interface offers real-time monitoring of CPU and mem-
ory utilization. We use a wide range of large scale real-world
open-access datasets extracted from the NEON repository [5–7],
and use the latest release of DuckDB, i.e., 0.6.1, that features
implementations of both Chimp and Patas algorithms.

4.1 Loading Data

In the first part of our demonstration, the user is presented with
the list of raw data files of Figure 3, that shows the name of the
file, and the number of available records. The user may view
the first lines of each file to gain insights on its attributes by
clicking a button next to the file name. Having viewed the in-
formation available, the user may select one or more files and
1https://github.com/duckdb/duckdb/pull/4878
2https://github.com/duckdb/duckdb/pull/5044

828

Figure 3: Loading data example. The user can select datasets

to be loaded and monitor the CPU and memory utilization

as well as the loading time required for each compression

mode.

submit them for insertion in the database. Then, the web appli-
cation sequentially executes the insertion in each of the three
database instances. If the user has selected more than one files
of the same dataset, the first file will loaded with a ‘CREATE
TABLE’ command, whereas a ‘COPY’ command will be used for
the rest of the files, as shown in Figure 4. After the execution
of these commands in each of the three databases, the user is
shown the size of the database and the time needed to complete
the loading, as we see in Figure 3.

CREATE TABLE table_name AS SELECT *
FROM read_csv('filename.csv', AUTO_DETECT=TRUE)

COPY table_name
FROM 'filename.csv' (DELIMITER ',', HEADER)"

Figure 4: DuckDB loading commands used for creating

tables and loading data from files.

Through this first part of the demonstration, both inexperi-
enced users and experts in data management, will gain insights
on the space savings the state-of-the-art floating point compres-
sion approaches offer and the impact these savings have on the
database performance during data ingestion.

4.2 Querying Data

In the second part of our demonstration, the user is given the
opportunity to query the three database instances. As we see in
Figure 5, the user may submit one of the many available prede-
fined queries offered or submit a query composed on the fly.

The first option is addressed to users that quickly want to grasp
the advantages of compression with regard to query processing,
through a series of carefully selected queries. The queries include
a) ungrouped aggregates, b) grouped aggregates with different
levels of cardinality, c) grouped aggregates with a filter, and
d) joins. The different parameters involved in the queries are
randomly updated as the user navigates in the web application
and submits queries for execution, so that we limit the chance
that the databases serve cached results.

Figure 5: Querying data example. The user can execute arbi-

trary queries and monitor CPU and memory utlization as

well as query execution time for each compression mode.

The second option, that allows for composing arbitrary queries,
is addressed to more experienced users that want to submit addi-
tional queries to the three database instances, to further evaluate
their performance. The users are provided with a rich SQL editor
with syntax highlighting and any syntax errors are reported to
help users compose valid queries.

While a query is executed, the user can monitor its impact
in terms of resource consumption, and after the execution the
user is presented with the number of rows in the result and
the time needed to process the query, as we see in Figure 5.
Through this second part of the demonstration, the users will
obtain a clear understanding of the impact of compression in
query processing, and the merits associated with the improved
I/O and better utilization of memory.

ACKNOWLEDGMENTS

Panagiotis Liakos has received funding from the Hellenic Foun-
dation for Research and Innovation (HFRI) and the General Sec-
retariat for Research and Technology (GSRT), under grant agree-
ment No 779. Yannis Kotidis has been supported by the European
Union under Horizon Europe project EVENFLOW agreement No
101070430.

REFERENCES

[1] P.A. Alsberg. 1975. Space and time savings through large data base compression
and dynamic restructuring. Proc. IEEE 63, 8 (1975), 1114–1122.

[2] G. Graefe and L.D. Shapiro. 1991. Data compression and database performance.
In [Proceedings] 1991 Symposium on Applied Computing. 22–27.

[3] Xenophon Kitsios, Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis
Kotidis. 2023. Sim-Piece: Highly Accurate Piecewise Linear Approximation
through Similar Segment Merging. Proc. VLDB Endow. 16, 8 (2023), 1910–1922.

[4] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: Efficient Lossless Floating Point Compression for Time Series Databases.
Proc. VLDB Endow. 15, 11 (2022), 3058–3070.

[5] National Ecological Observatory Network (NEON). 2021. 2D wind speed and
direction (DP1.00001.001). https://doi.org/10.48443/S9YA-ZC81

[6] National Ecological Observatory Network (NEON). 2021. Barometric pressure
(DP1.00004.001). https://doi.org/10.48443/RXR7-PP32

[7] National Ecological Observatory Network (NEON). 2021. IR biological temper-
ature (DP1.00005.001). https://doi.org/10.48443/JNWY-B177

[8] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin
Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. Proc. VLDB Endow. 8, 12 (2015), 1816–1827.

[9] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Ana-
lytical Database. In Proc. of the 2019 Int. Conf. on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. 1981–1984.

829

