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ABSTRACT
As data continues to grow at an unprecedented rate, the com-
plexity of database systems also increase significantly, requiring
information systems (IS) architects to constantly adapt their data
model and carefully select the optimal solution(s) for storing and
managing data that align with new queries, settings, and con-
straints. Having a tool to visually show the impact of different
changes, will help IS architects in their decision making. In this
paper, we propose a framework to demonstrate the impact of
denormalization of data models on their cost and consequently
IS architects can choose the best trade-off.

1 INTRODUCTION
Data’s explosion especially characterized by the 3V (Volume,
Variety & Velocity) has opened up major research issues re-
lated to modeling, manipulating, and storing massive amounts of
data [15]. The resulting so-called NoSQL systems correspond to
four families of data structures: key-value oriented (KVO), wide-
column oriented (CO), document oriented (DO), and graph oriented
(GO).

Guaranteeing the efficiency and availability of information is
challenging for Information Systems (IS). Better restructuring of
database schemas is needed but often driven by subjective choices,
which does not take all the factors into account. Approaches from
the literature [1–5, 7, 8, 13, 14, 16] are also essentially oriented
towards a specific NoSQL solution or family; therefore the opti-
mal solution may be missed, by not taking into account IS use
cases.

The main issue is to provide the optimal data model for a given
IS use case. To solve this issue, we need the cost estimation of a
solution according to the data model, statistics and queries [12].
This issue is hardly tackled for NoSQL solutions, especially when
choosing the target architecture and structure.

In our previous works, ModelDrivenGuide [9, 10] transforms
data models by proposing a set of data models providing choices
instead of focusing on a dedicated solution. Then, it reduces the
search space by taking into account the use case (set of queries).
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This article proposes FACT-DM, a framework that integrates
the input data model and its use case for a given input setting
of execution environment, generates all data models and high-
lights subset of them proposed by our previous heuristic [9, 10].
Moreover, this framework introduces a multidimensional cost
calculator used for sorting data models, based on time, finan-
cial and environmental costs. Providing a visualisation, FACT-DM
eases decision-making for IS architects as existing solutions lack
such tool.

2 FACT-DM FRAMEWORK
Our proposed framework includes 3 components: the Data Mod-
els Generator (DMG), theMultidimensional Cost Calculator (MCC)
and the Visualization Tool (VT). Our approach ModelDrivenGuide
in [9, 10] was used in the DMG component to generate all possi-
ble logical data models (Fig. 1), it also applies a heuristic to return
a subset of data models adapted to the use case. This modeling
approach is based on data models and refinement rules.

The MCC component then calculates the costs of data models
using a multidimensional cost model. The latter assesses the
performance, financial cost, and environmental impact of each
data model to determine its overall cost in order to compare with
others. The following sections explain each of these components.

2.1 Data Models Generator (DMG)
ModelDrivenGuide starts from the conceptual model, then goes
from one logical data model 𝑀 to another by applying refine-
ment rules recursively [10]. Left part of Figure 1 shows the input
conceptual model and settings. The refinement rules we use are:
Merge (two concepts linked by a reference transformed into one
concept), and Split (one concept into two new concepts).

In the following, denormalization of data models will refer
to the combination of merge and split transformation rules. All
denormalized data models are produced by recursively splitting
and merging keys/rows of logical data models.

This generation process produces all possible data models but
the number of possibilities explodes as splits on𝑀 can be applied
on each key and merges are bidirectional.

Thus, the DMG component relies on a heuristic [9] to produce
a list of denormalized data modelsM, as it prevents duplicates
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Figure 1: FACT-DM: A Framework for Data Model Transformation

and reduces the search space by prioritizing data models that
align with the use case.

2.2 Multidimensional Cost Calculator (MCC)
Besides conventional measures like response time and through-
put, NoSQL database systems demand higher requirements due
to the massive amount of data they need to handle (which incurs
significant costs) in terms of storage, processing and communi-
cation.

In order to choose the optimal data model out of the set of
proposed possible ones M, we suggest a cost model that auto-
matically calculates the costs of logical data models to compare
them.

Definition 2.1. Let𝑀 ∈ M a data model and Q = {𝑞1,...,𝑞𝑛 } be
a set of queries from the use case. The multidimensional cost
function C of𝑀 regarding Q is defined by:
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where 𝜙 ∈ {𝑇, 𝐸, 𝐹 } are cost functions on the data model𝑀 either
independent (𝑇 (𝑀), 𝐸 (𝑀), 𝐹 (𝑀)) or dependent (𝑇 (𝑀,𝑞𝑖 ), 𝐸 (𝑀,𝑞𝑖 ),-
𝐹 (𝑀,𝑞𝑖 )) on queries 𝑞𝑖 ∈ Q , with their related query’s average
daily occurrences 𝜔𝑞𝑖 . 𝑇, 𝐸, 𝐹 are sub-functions corresponding
respectively to the time, environmental and financial dimensions
of the cost model.

To achieve this choice, we need to measure costs with com-
mon parameters: data volumes #𝑑𝑜𝑐 and servers #𝑠𝑟𝑣 . Each cost
dimension relies on the volume of: stored data 𝑉𝑆𝐷𝐷 , processed
data on servers𝑉𝑅𝐴𝑀 and transferred data among servers𝑉𝐶𝑂𝑀 .
Moreover, the combination of these volumes varies based on the
data model and queries computation.

The optimization and cost functions are detailed in [11].

2.2.1 Time Cost Dimension. The time cost of a data model
can vary according to several factors, including the size and com-
plexity of the data model, the used storage type and processing
infrastructure, and the speed of the network. It is expressed in
seconds (s).

It exploits both parallelism with sharding and local indexing
with distribution which varies with different denormalizations.

Definition 2.2. Let 𝑇 (𝑀,𝑞) be the time cost of a query 𝑞 ∈ Q
on a data model 𝑀 ∈ M. Let 𝑇 (𝑀) be the query independent
time cost of the data model𝑀 . We denote:

𝑇 (𝑀,𝑞) =
𝑉𝑇
𝑅𝐴𝑀

(𝑀,𝑞)
𝐶𝑇
𝑅𝐴𝑀

+ 𝑉𝑆𝑆𝐷 (𝑀,𝑞)
𝐶𝑇
𝑆𝑆𝐷

+ 𝑉𝐶𝑂𝑀 (𝑀,𝑞)
𝐶𝑇
𝐶𝑂𝑀

𝑇 (𝑀) = 0

𝑇 (𝑀,𝑞) is calculated based on data volumes in Bytes and speed
constants expressed in GB/s.

Notice that 𝑇 (𝑀) = 0 since the computation time is only
dependent on queries.

2.2.2 Environmental Cost Dimension. Processing queries has
an impact on the energy consumption. In fact, the environmental
cost depends on data accesses like CPU, RAM, storage and com-
munication. The cost calculator needs to quantify the amount of
data processed for each query on each of the data models.

Measuring the exact environmental impact is an impossible
task, especially as most studies focus on the global impact of
systems1 rather than detailed individual treatments. Our aim
is to estimate consumption for comparing data models, and not
obtaining a precise impact. The environmental 𝐸 cost is expressed
in kg CO2e.

Notice that the environmental footprint of a server is indepen-
dent of queries where servers whole lifecycles are studied [6].
We can consider that, on average, a single server corresponds
to 320 kg of CO2e/year (0.87671 kg CO2e/day). In our case, 𝐸 is
influenced by the number of servers required by a data model.
Indeed, some data models contain more redundancy and require
more RAM and disk space, hence the number of servers required.

Definition 2.3. Let 𝐸 (𝑀,𝑞) be the environmental cost of a
query 𝑞 ∈ Q on a data model 𝑀 ∈ M. Let 𝐸 (𝑀) be the in-
dependent environmental cost of the data model𝑀 . We denote:

𝐸 (𝑀,𝑞) = 𝑉 𝐸
𝑅𝐴𝑀 (𝑀,𝑞) ×𝐶𝐸

𝑅𝐴𝑀 +𝑉𝑆𝑆𝐷 (𝑀,𝑞) ×𝐶𝐸
𝑆𝑆𝐷

+𝑉𝐶𝑂𝑀 (𝑀,𝑞) ×𝐶𝐸
𝐶𝑂𝑀

𝐸 (𝑀) = #𝑠𝑟𝑣 ×𝐶𝐸
𝑠𝑟𝑣

where 𝐸 (𝑀)&𝐸 (𝑀,𝑞) are expressed in kg CO2e.

2.2.3 Financial Cost Dimension. The financial cost of a data
model has few dependency on query execution, since most of the
expenses come from the number of servers #𝑠𝑟𝑣 depending on
the pricing model (e.g., pay-as-you-go or subscription). However,
most service providers have fees for data transfers outside of the
datacenter2. Our cost model distinguishes internal from external
communications. The financial cost 𝐹 is expressed in currency
(e.g., e, $).
1Evaluating the Carbon Footprint of a Software Platform Hosted in the Cloud
2Azur bandwith pricing
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Figure 2: (a) Dashboard and (b) Use Case Queries and Set-
tings

Figure 3: TPC-C Data Model as a Class Diagram and its
Signature

Definition 2.4. Let F(M) be the financial cost of a query 𝑞 ∈ Q
on a data model𝑀 ∈ M. Let 𝐹 (𝑀) be the independent financial
cost of the data model𝑀 . We denote:

𝐹 (𝑀,𝑞) = 𝑉 𝑒𝑥𝑡
𝐶𝑂𝑀 (𝑀,𝑞) ×𝐶𝐹

𝐶𝑂𝑀

𝐹 (𝑀) = #𝑠𝑟𝑣 ×𝐶𝐹
𝑠𝑟𝑣

where 𝐹 (𝑀) and 𝐹 (𝑀,𝑞) are expressed in currency (e.g., e, $).

2.3 Visualization Tool (VT)
Our framework is implemented in Java3 and integrates a Visu-
alization Tool which shows the entire process as presented in
Figure 1.

2.3.1 Framework Inputs. The FACT-DM framework takes as
inputs a conceptual model in the XMI format4. It also relies on a
use case (i.e., queries) applied on the schema accompanied with
their frequencies and Quality of Service (QoS i.e., max execution
time per query). To tune the simulation, more inputs like the
volume of data, the number of servers and queries’ frequency are
given.

2.3.2 Data Models Generation. Data models are transformed
in the data model generator component and stored as signatures
(see in Figure 3). Then, the cost calculator considers the use case
to generate a multi-dimensional cost for each data model

2.3.3 Graph of Data Models. Data model signatures and costs
are visualized in a dashboard as a graph of data models (right

3GitHub link of FACT-DM
4XML Metadata Interchange: OMG specifications

part of Fig. 1) by using graphstream5. A node is a data model and
edges correspond to transformations (merges and splits).

To visualize costs, nodes’ color uses the RGB (Red Green Blue)
system, where each color corresponds to time, environmental,
and financial costs, respectively. Darker nodes indicate data mod-
els with higher costs, while lighter-colored nodes represent more
optimal data models. To showcase the reduction of the search
space by our generation heuristic, avoided data models are de-
picted in gray. Furthermore, nodes outlined in red represent data
models for which the QoS was not respected (i.e., the maximum
time allowed to execute a query).

2.3.4 Dashboard. An information panel is displayed as in
Figure 2(a):

• Search box: it allows searching for nodes in the graph using
their ID (i.e., unique signature),

• Data model information: it is displayed by clicking on a
node and includes the node’s signature, time, environmen-
tal and financial costs, and queries time costs on this data
model,

• Graph information: includes minimal, maximal and aver-
age costs among all graph’s data models.

Additionally, the tool allows to interact with data models’ costs
by varying different parameters: data volume, number of servers,
frequencies and QoS.

3 DEMONSTRATION
To demonstrate the framework, the user gives a conceptual model,
its use case and settings. For this, we use the TPC-C6 benchmark,
focusing on an input data model with three rows: Warehouse,
Customer, and Order depicted in Figure 3. We also apply the
use case in Figure 2(b), mixing filter and join queries. The first
scenario shows the generation of denormalized data models and
the effect of the heuristic. Using our TPC-C example and use case,
the DMG component generates naively 2,731 data models while
only 36 data models are produced by our heuristic.

3.1 One Setting Scenario
The second scenario focuses on the interaction with the graph of
data models produced during the first step. The 2,731 data models
are displayed as a graph in a two dimensional chart that depicts
environmental vs. time costs in logarithmic scales.

As shown in Figure 4(a), the graph includes all data models
proposed by the DMG component in Section 2. The colored part
of the graph is the sub-graph containing the 36 data models gen-
erated by our heuristic taking into consideration the use case.
Grey nodes are the 2,695 data models that were not generated
by the search space reducing heuristic. Some of these data mod-
els were redundant, others were not necessary for the use case
queries. This reduction eases the selection of an optimal data
model for the user.

We will also navigate on the graph from a node (e.g., the initial
data model) to another to see the impact of transformations
on data models and see the path taken by the heuristic. The
demonstration will show the corresponding costs and observe
that optimal data models are among the 36 ones produced by the
heuristic. The correlation between transformations and costs will
demonstrate the benefits (or lack thereof) of denormalization.

5GraphStream 2.0 - A Dynamic Graph Library
6TPC-C Benchmark
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Figure 4: Display of Data Models wrt. their costs (a) #doc=1k warehouses, #srv=10 and (b) #doc=1Mwarehouses and #srv=10k

3.2 Settings Variation Scenario
The third scenario will tune the settings of simulation. We will
interact with the costs by changing data volume, number of
servers and QoS thresholds. The two figures (a) and (b) in Figure 4
depict two instances of settings with graphs of the generated
data models. The corresponding costs on two different settings
(#𝑑𝑜𝑐 = 1, 000, #𝑠𝑟𝑣 = 10) and (#𝑑𝑜𝑐 = 1𝑀 , #𝑠𝑟𝑣 = 10, 000)
demonstrate the impact of settings on data models.

Initially, we observe that as the data volume increases, costs
increase from Figure 4(a) to 4(b), and nodes show increased sepa-
ration, indicating a greater variation in data models costs within
larger settings. Furthermore, we observe that data models DM1
and DM2, which have relatively lower costs in figure (a), fall into
a more expensive range in figure 4(b). In contrast, data model
DM3, which had the highest costs in the small setting, proves to
be more optimal in the larger setting. On the other hand, data
model DM4 maintains a nearly consistent ranking among other
data models in both settings. This consistency suggests that this
data model may potentially be optimal in the long run.

Additionally, we notice in Figure 4(b) a larger number of nodes
are outlined in red. These data models have time costs that do
not adhere to the QoS thresholds specified by the user, leading
to their disqualification.

4 CONCLUSION
This paper proposed FACT-DM, a framework to generate various
data models using denormalization while taking into considera-
tion a given use case. In order to compare these data models and
determine the optimal one(s), our multidimensional cost model
integrates time, environmental and financial dimensions to de-
fine the cost of each data model and to rank them in order to
lead the choice. In this framework, we propose a visualization
tool, that implements our entire process and allows to compare
different data models.
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