
MM-evoque: Query Synchronisation in Multi-Model Databases∗

Pavel Koupil
Department of Software

Engineering, Charles University
Prague, Czech Republic

pavel.koupil@matfyz.cuni.cz

Jáchym Bártík
Department of Software

Engineering, Charles University
Prague, Czech Republic

jachym.bartik@matfyz.cuni.cz

Irena Holubová
Department of Software

Engineering, Charles University
Prague, Czech Republic

irena.holubova@matfyz.cuni.cz

ABSTRACT
As multi-model databases become increasingly prevalent, the
evolving multi-model schemas pose a significant challenge to
query validity. This demo paper introduces MM-evoque, a novel
tool designed to propagate schema changes across multi-model
databases and synchronise not only data but also respective
queries to remain valid and performant.

To cover all the popular models and their combinations, MM-
evoque is based on the categorical representation of multi-model
data. To cover non-standard multi-model query languages of
the underlying database systems, we use a conceptual multi-
model query language MMQL. This demo paper introduces the
functionality of MM-evoque in several types of use cases.

1 INTRODUCTION
Unlocking the power of multi-model database management sys-
tems (DBMSs)1 is not just about keeping pace with the present
majority; it is a strategic leap into the future of data complexity.
Regrettably, our extensive survey [11] reveals significant vari-
ations in multi-model database management systems (DBMSs)
even in the core aspects – the supported models, the way they
are combined, as well as the multi-model query languages. This
situation brings many new challenges to multi-model data man-
agement. We have already proposed several solutions based on
the categorical representation of multi-model data, the so-called
schema category [8]. This abstract graph representation backed
by the formalism of category theory enabled us to build a family
of tools for modelling and transformations [10], schema infer-
ence [9], data migration under evolving schema [5], or querying
using SPARQL-like query language MMQL [6].

In this paper, we further extend our toolset with a new com-
plementary member called MM-evoque2. It extends the function-
alities we already provide with an important novel feature –
propagation of changes in the multi-model schema to respective
queries. The main contributions can be summarised as follows:

• Since we use the unifying categorical representation, we
support any combination of existing popular data mod-
els (relational, key/value, document, column, array, and
graph) that can be mutually embedded, referenced, or
overlapped (i.e., redundancy is naturally supported too).

• The graph categorical representation can be queried us-
ing a SPARQL-like query language MMQL that is then
decomposed and translated to a set of Database-Specific
Languages (DSLs) of underlying DBMSs where they are
executed. The results are combined into the final result.

∗Supported by the GAČR project no. 23-07781S and GAUK project no. 292323.
1https://db-engines.com/en/ranking
2https://www.ksi.mff.cuni.cz/~koupil/mm-evoque/ (including a demo video)

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

• We introduce a set of schema-modification operations
(SMOs) to modify the categorical schema. As each schema
is represented as a sequence of operations creating it, the
user can return to any previous version.

• The schema changes are propagated to underlying data
and respective queries over the data. We ensure synchro-
nisation of the queries when needed and possible. If the
correction is ambiguous or cannot be done automatically,
the user is informed at least.

• We present a prototype implementation of MM-evoque
demonstrating the indicated advantages in several use
cases and shielding the user from the implementation
specifics of particular DBMSs.

Paper Outline. In Section 2, we review related work. Section 3
introduces the categorical representation of multi-model data
and the categorical query language MMQL. Section 4 describes
the presented tool and a bigger example. In Section 5, we outline
its demonstration.

2 RELATEDWORK
The evolution management is challenging even for a single model.
There exist approaches, e.g., for relational DBMSs [13], NoSQL
systems [14], and first approaches for multi-model DBMSs [5].
But they focus primarily on data adaptation/migration.

Considering also queries, we can encounter related approaches
with different aims and motivations. Query rewriting [4] focuses
on transforming a query to a more efficient version. Query adap-
tation [2] focuses on adapting query plans to changing environ-
mental conditions at runtime. In contrast, in this paper, we aim at
query synchronisation reflecting the evolution of the schema, in
particular of multi-model data. Several approaches also exist here,
though subtly less represented. Most of them focus on a single
model (relational or XML) [1]; some consider aggregate-oriented
NoSQL models [12], or polystores [3].

From its beginning, our approach targets all popular models
and existing types of their combinations. It provides an intuitive
conceptual graph layer and SPARQL-like querying, both covertly
backed by the category theory.

3 CATEGORICAL MODEL AND QUERYING
Let us first remember the basic notions of category theory. A
category C = (O,M, ◦) consists of a set of objects O, set of mor-
phismsM, and a composition operation ◦ over themorphisms en-
suring transitivity and associativity. Each morphism is modelled
as an arrow 𝑓 : 𝐴 → 𝐵, where𝐴, 𝐵 ∈ O,𝐴 = 𝑑𝑜𝑚(𝑓), 𝐵 = 𝑐𝑜𝑑 (𝑓).
And there is an identity morphism 1𝐴 ∈ M for each object𝐴. The
key aspect is that a category can be visualised as a multigraph,
where objects act as vertices and morphisms as directed edges.

Schema Category. The schema category [8] forms the core of
conceptual modelling in all our tools. It is defined as a tuple
S = (OS,MS, ◦S). Objects in OS correspond to the domains of

Demonstration Paper

Series ISSN: 2367-2005 818 10.48786/edbt.2024.78

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.78

the ER model’s entity types, attributes, and relationship types.
Morphisms (of semantics “has a property”, “has an identifier”,
“has a role”, or “is a”) in MS connect appropriate pairs of objects.
The explicitly defined morphisms are denoted as base, obtained
via the composition ◦ as composite.

Since the terminology within the particular models differs, we
use a unification of respective model-specific terms [8]. A kind
corresponds to a class of items represented in each model, e.g.,
a relational table or a collection of JSON documents. A record
corresponds to one item of a kind, e.g., a table row or a JSON
document. Depending on a particular model, a record consists of
simple or complex properties having their domains.

The decomposition of a schema category S, eventually partial
or overlapping, is defined via a set ofmappings [8]. For each kind,
the mapping specifies where and how its records are stored in a
selected single-/multi-model DBMS using a so-called access path,
which recursively describes the structure of a kind.

Example 3.1. In Figure 5 on the left, we can see a schema category
describing customers, their friendships, products, and orders. It is decom-
posed andmapped to relational (violet) and document (green) models. □

Multi-Model Query Language (MMQL). The MMQL [6] is a
SPARQL-like model-agnostic query language based on pattern
matching. TheMMQL expression consists of a projection (SELECT)
that defines the structure of the result and a selection (WHERE)
where graph patterns can be defined along with filter conditions
(FILTER). We also support common constructs such as ORDER BY,
LIMIT, or aggregation functions. Graph patterns are expressed
using triples 𝑝 : 𝑠 → 𝑜 , where 𝑜 , 𝑠 (e.g., variables or constants)
correspond to objects from OS and 𝑝 maps to morphisms in MS.
For query 𝑞, patterns in selection form a selection category S𝜎𝑞
(a subcategory of S) and patterns in projection form a projection
category S𝜋𝑞 (a subcategory of S𝜎𝑞).

Example 3.2. Figure 5 on the right shows two MMQL queries 𝑞1:
“For each pair of friends, return their names and surnames” and 𝑞2: “Find
the most expensive order ordered by Anne and return its price”. □

Multi-Model Schema Evolution Language (MMSEL). The MM-
SEL [5] consists of 8 basic schema modification operations (SMOs)
– see Table 1 – that enable the gradual creation (and deletion)
of any consistent schema category. Hence, each operation is as-
signed with prerequisites that must be fulfilled.

Table 1: Basic SMOs

SMO Behaviour Prerequisitity

𝑐𝑟𝑒𝑎𝑡𝑒 (𝑂) Creates object𝑂 with a unique
identifier and default parameters.

–

𝑐𝑟𝑒𝑎𝑡𝑒 (𝑚,𝐷,𝐶) Creates morphism𝑚 : 𝐷 → 𝐶
with a unique signature and default
parameters.

𝐷,𝐶 ∈ OS

𝑑𝑒𝑙𝑒𝑡𝑒 (𝑂) Deletes object𝑂 . 𝑂 ∈ OS ,𝑂 can participate
only in 1𝑂 ∈ MS

𝑑𝑒𝑙𝑒𝑡𝑒 (𝑚) Deletes morphism𝑚. 𝑚 ∈ MS
𝑟𝑒𝑛𝑎𝑚𝑒 (𝑂,𝑛) Changes the name of object𝑂 to 𝑛. 𝑂 ∈ OS
𝑚𝑜𝑣𝑒 (𝑚,𝑝) Sets 𝑑𝑜𝑚 (𝑚) to 𝑐𝑜𝑑 (𝑝 [𝑙𝑎𝑠𝑡]) ,

i.e. to the end of a path 𝑝 .
𝑚 ∈ MS ,
𝑑𝑜𝑚 (𝑝 [𝑓 𝑖𝑟𝑠𝑡]) = 𝑑𝑜𝑚 (𝑚)

𝑐𝑜𝑝𝑦 (𝑂) Creates a copy𝑂′ of object𝑂
(with a new unique identifier)

𝑂 ∈ OS

𝑐𝑜𝑝𝑦 (𝑚,𝐷,𝐶) Creates a copy𝑚′ : 𝐷 → 𝐶 of
morphism𝑚 (with a new unique
signature)

𝐷,𝐶 ∈ OS ,
𝐷 = 𝑐𝑜𝑝𝑦 (𝑑𝑜𝑚 (𝑚)) ,
𝐶 = 𝑐𝑜𝑝𝑦 (𝑐𝑜𝑑 (𝑚))

In addition, we have operations 𝑎𝑑𝑑𝑀𝑎𝑝𝑝𝑖𝑛𝑔() and 𝑑𝑒𝑙𝑒𝑡𝑒-
𝑀𝑎𝑝𝑝𝑖𝑛𝑔(), which enable one to add/delete mapping of a kind,
i.e., data migration.

Basic SMOs form more user-friendly composite SMOs, such as,
e.g., (un)group or join/split [5]. Correct composition ensures that
we only need to define the propagation of basic SMOs.

4 MM-EVOQUE
MM-evoque was built on categorical representation, MMQL, and
MMSEL to support query synchronisation. Currently, it supports
the following models/DBMSs: PostgreSQL3 (relational and docu-
ment, i.e., multi-model), Neo4j4 (graph), MongoDB5 (JSON docu-
ment), and Apache Cassandra6 (columnar model).

In Figure 1, we provide a screenshot of MM-evoque. On the
left, we can see MMQL queries synchronised with the schema
category from Figure 5 visualised on the right.

Figure 1: A screenshot ofMM-evoque

Example 4.1. Consider Figures 2–5 and queries 𝑞1, 𝑞2 from Exam-
ple 3.2.

Figure 2 shows a naive relational schema with several redundant
values in table Orders (version 1). We also depict the mapping of S to the
relational model, where the violet objects represent kinds (tables), and
their neighbours represent their properties (columns). The efficiency of
𝑞1 and 𝑞2 is satisfactory for low numbers of customers and products.

In Figure 3, we decided on the normalisation of the data. We applied
the respective SMOs to S (version 2) and triggered their propagation to
data [5]. Their propagation to queries ensured by MM-evoque does not
change 𝑞1. But for 𝑞2, it adds the new relationship tables to the selection
of MMQL; thus, the SQL translation contains more joins.

In Figure 4 (version 3A), we try to use the document model instead.
Hence, the schema category S remains unchanged, but the data is mi-
grated from the relational to the document model (green). Queries 𝑞1
and 𝑞2 are slightly (technically) modified since we assume that every
graph pattern must start in the root of a kind. However, we still have a
problem with data redundancy (friends of customers and products) in
this solution.

In Figure 5 (version 3B), we utilise the multi-model paradigm and
migrate the data to a combination of relational (violet) and document
(green) models. 𝑞1 and 𝑞2 are synchronised, respectively, and we gain a
good performance for both. □

4.1 Workflow
Having the old and new versions of the schema category, denoted
S and S′, and the MMQL query 𝑞 to be synchronised with the
changes, the workflow of MM-evoque is as follows:

(1) The sequence of basic SMOs which changed S to S′ is
determined (as composite SMOs consist of basic ones).

3https://www.postgresql.org/
4https://neo4j.com/
5https://www.mongodb.com/
6https://cassandra.apache.org/_/index.html

819

SELECT {
 _:knows friend ?friendA ;
 friend ?friendB .
 ?friendA fName ?friendAFName ;
 lName ?friendALName .
 ?friendB fName ?friendBFName ;
 lName ?friendBLName .
} WHERE {
 ?friendA -4/5 ?friendB .
 ?friendA 2 ?friendAFName ;
 3 ?friendALName .
 ?friendB 2 ?friendBFName ;
 3 ?friendBLName .
 FILTER(?friendA < ?friendB)
}

SELECT c1.name, c1.surname, c2.name,
 c2.surname
FROM Knows k
 JOIN Customer c1 ON k.id1 = c1.id
 JOIN Customer c2 ON k.id2 = c2.id
WHERE c1.id < c2.id

q1 SELECT {
 SUM(?price) AS ?totalPrice .
} WHERE {
 ?orders 12 ?customer ;
 10 ?price .
 ?customer 2 "Anna" .
}
ORDER BY (?totalPrice) DESC
LIMIT 1

SELECT SUM(o.price) AS totalPrice
FROM Customer c
 JOIN Orders o ON c.id = o.id
WHERE c.name = 'Anna'
ORDER BY totalPrice
LIMIT 1

q2

pid title price

P5 Sourcery 350

P7 Pyramids 275

Pr
od

uc
tid1 id2

1 2

1 3

Kn
ow

s

pid

title

price

street city

postCode

price quantity

oid

name

id

surname

1
2

3
4 5

6
7 8

9

10 11

12 13
14

15

16

Orders
{id,pid}

Product
{pid}

Customer
{id}

Knows
{id,id}

id name surname

1 Mary Smith

2 John Newlin

3 Anne Maxwell

quantity

1

1

2

priceoid

3502023001

2502023001

2023002 275

id pid

1 P5

1 P7

2 P7

street

Ke Karlovu

Ke Karlovu

city postCode

Prague 110 00

Prague 110 00

Technická Prague 162 00

C
us

to
m

er O
rd

er
s

Figure 2: Version 1 – a naive mapping to the relational model (PostgreSQL)

SELECT {
 _:knows friend ?friendA ;
 friend ?friendB .
 ?friendA fName ?friendAFName ;
 lName ?friendALName .
 ?friendB fName ?friendBFName ;
 lName ?friendBLName .
} WHERE {
 ?friendA -4/5 ?friendB .
 ?friendA 2 ?friendAFName ;
 3 ?friendALName .
 ?friendB 2 ?friendBFName ;
 3 ?friendBLName .
 FILTER(?friendA < ?friendB)
}

SELECT c1.name, c1.surname, c2.name,
 c2.surname
FROM Knows k
 JOIN Customer c1 ON k.id1 = c1.id
 JOIN Customer c2 ON k.id2 = c2.id
WHERE c1.id < c2.id

q1 SELECT {
 SUM(?price) AS ?totalPrice .
} WHERE {
 ?orders 17/-18/12 ?customer ;
 10 ?price .
 ?customer 2 "Anna" .
}
ORDER BY (?totalPrice) DESC
LIMIT 1

SELECT SUM(o.price) AS totalPrice
FROM Customer c
 JOIN Ordered r ON c.id = r.id
 JOIN Orders o ON r.oid = o.oid
 JOIN Items i ON o.oid = i.oid
 JOIN Product p ON i.pid = p.pid
WHERE c.name = 'Anna'
ORDER BY totalPrice
LIMIT 1

q2

id name surname

1 Mary Smith

2 John Newlin

3 Anne Maxwell

C
us

to
m

er id1 id2

1 2

1 3

Kn
ow

s quantity

1

1

2

priceoid

3502023001

2502023001

2023002 275

pid

P5

P7

P7

Ite
m

s pid title price

P5 Sourcery 350

P7 Pyramids 275

Pr
od

uc
t

Order
{oid}

Product
{pid}

street city

postCode

price quantity

oid

pid

title

price

Items
{oid,pid}

6
7 8

9

10 11

14
15

16

Customer
{id}name

id

surname
Knows
{id,id}

Ordered
{id,oid}

1
2

3
4 5

13

18

12
17

O
rd

er
ed

O
rd

er

oid

2023001

2023002

id

1

2

oid

2023001

2023002

street

Ke Karlovu

Technická

city postCode

Prague 110 00

Prague 162 00

Figure 3: Version 2 – a mapping to a normalized relational schema (PostgreSQL)

O
rd

er

Order
{oid}

Product

street city

postCode

price quantity

oid

pid

title

price

Items

6
7 8

9

10 11

14
15

16

Customername

id

surname
Knows

Ordered

1
2

3
4 5

13

18

12
17

{ _id : 2023001,
 customer: { id: 1, name: Mary, surname: Smith, knows: [
 { id: 2, name: John, surname: Newlin},
 { id: 3, name: Anne, surname: Maxwell}
] },
 street: Ke Karlovu, city: Prague, postCode: 110 00,
 items: [
 { pid: P5, title: Sourcery, quantity: 1, price: 350, currentPrice: 350 },
 { pid: P7, title: Pyramids, quantity: 1, price: 250, currentPrice: 275 }
] } { _id : 2023002,

 customer: { id: 2, name: John, surname: Newlin},
 street: Technická, city: Prague, postCode: 162 00,
 items: [
 { pid: P7, title: Pyramids, quantity: 1, price: 275, currentPrice: 275 }
] }

SELECT {
 _:knows friend ?friendA ;
 friend ?friendB .
 ?friendA fName ?friendAFName ;
 lName ?friendALName .
 ?friendB fName ?friendBFName ;
 lName ?friendBLName .
} WHERE {
 ?orders -18/12 ?friendA .
 ?orders -18/12 ?friendB .
 ?friendA -4/5 ?friendB .
 ?friendA 2 ?friendAFName ;
 3 ?friendALName .
 ?friendB 2 ?friendBFName ;
 3 ?friendBLName .
 FILTER(?friendA < ?friendB)
}

db.orders.find(
 { "customer.id": { $lt: "customer.knows.id"}
 }, {
 "_id": 0,
 "customer.name" : 1,
 "customer.surname" : 1,
 "customer.knows.name" : 1,
 "customer.knows.surname" : 1
 }
);

q1 SELECT {
 SUM(?price) AS ?totalPrice .
} WHERE {
 ?orders -18/12 ?customer ;
 -17/10 ?price .
 ?customer 2 "Anna" .
}
ORDER BY (?totalPrice) DESC
LIMIT

db.orders.aggregate(
 [
 { $match: {"customer.name" : "Anna"}},
 { $unwind: "$items" },
 { $group: {
 _id: "$_id",
 totalPrice: { $sum: "$items.price"} } },
 { $project: { _id: 0, totalPrice: 1} },
 { $sort: { totalPrice: -1 } },
 { $limit: 1}
]
);

q2

Figure 4: Version 3A – a mapping to the document model (MongoDB)

SELECT {
 _:knows friend ?friendA ;
 friend ?friendB .
 ?friendA fName ?friendAFName ;
 lName ?friendALName .
 ?friendB fName ?friendBFName ;
 lName ?friendBLName .
} WHERE {
 ?friendA -4/5 ?friendB .
 ?friendA 2 ?friendAFName ;
 3 ?friendALName .
 ?friendB 2 ?friendBFName ;
 3 ?friendBLName .
 FILTER(?friendA < ?friendB)
}

SELECT c1.name, c1.surname, c2.name,
 c2.surname
FROM Knows k
 JOIN Customer c1 ON k.id1 = c1.id
 JOIN Customer c2 ON k.id2 = c2.id
WHERE c1.id < c2.id

q1 SELECT {
 SUM(?price) AS ?totalPrice .
} WHERE {
 ?orders -18/12 ?customer ;
 -17/10 ?price .
 ?customer 2 "Anna" .
}
ORDER BY (?totalPrice) DESC
LIMIT 1

db.orders.aggregate(
 [
 { $match: {"customer.name" : "Anna"}},
 { $unwind: "$items" },
 { $group: {
 _id: "$_id",
 totalPrice: { $sum: "$items.price"} } },
 { $project: { _id: 0, totalPrice: 1} },
 { $sort: { totalPrice: -1 } },
 { $limit: 1}
]
);

q2id name surname

1 Mary Smith

2 John Newlin

3 Anne Maxwell

{ _id : 2023002,
 customer: { id: 2, name: John, surname: Newlin},
 street: Technická, city: Prague, postCode: 162 00,
 items: [
 { pid: P7, title: Pyramids, quantity: 1, price: 275 }
] }

pid title price

P5 Sourcery 350

P7 Pyramids 275

id1 id2

1 2

1 3
{ _id : 2023001,
 customer: { id: 1, name: Mary, surname: Smith},
 street: Ke Karlovu, city: Prague, postCode: 110 00,
 items: [
 { pid: P5, title: Sourcery, quantity: 1, price: 350 },
 { pid: P7, title: Pyramids, quantity: 1, price: 250 }
] }

C
us

to
m

er
Kn

ow
s

Pr
od

uc
t

O
rd

er

Order
{oid}

Product
{pid}

street city

postCode

price quantity

oid

pid

title

price

Items

6
7 8

9

10 11

14
15

16

Customer
{id}name

id

surname
Knows
{id,id}

Ordered

1
2

3
4 5

13

18

12
17

Figure 5: Version 3B – a multi-model mapping (PostgreSQL and MongoDB)

820

Table 2: Basic SMOs and their impact on MMQL query constructs

𝑐𝑟𝑒𝑎𝑡𝑒 (𝑂) 𝑐𝑟𝑒𝑎𝑡𝑒 (𝑚,𝐷,𝐶) 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑂) 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑚) 𝑟𝑒𝑛𝑎𝑚𝑒 (𝑂,𝑛) 𝑚𝑜𝑣𝑒 (𝑚,𝑝) 𝑐𝑜𝑝𝑦 (𝑂) 𝑐𝑜𝑝𝑦 (𝑚,𝐷,𝐶) 𝑎𝑑𝑑𝑀𝑎𝑝𝑝𝑖𝑛𝑔 ()
𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑝𝑝𝑖𝑛𝑔 ()

S𝜎𝑞 0 0 0 |∞ 0 | 1 |∞ 0 0 0 0 0 | 1
VALUES 0 0 0 |∞ 0 | 1 0 0 0 0 0 | 1
FILTER 0 0 0 |∞ 0 | 1 0 0 0 0 0 | 1
S𝜋𝑞 0 0 0 |∞ 0 | 1 0 0 0 0 0 | 1
DISTINCT 0 0 0 |∞ 0 | 1 0 1 0 0 0 | 1
ORDER BY 0 0 0 |∞ 0 | 1 0 0 0 0 0 | 1
LIMIT 0 0 0 0 0 0 0 0 0 | 1
Aggregations 0 0 0 |∞ 0 |∞ 0 ∞ 0 0 0 | 1

(2) MMQL query 𝑞 is translated into a set of constructs. The
selection category S𝜎𝑞 and projection category S𝜋𝑞 are cre-
ated according to respective graph patterns of 𝑞.

(3) Using Table 2, we determine whether 𝑞 can be synchro-
nised as𝑚𝑎𝑥 (𝑖𝑚𝑝𝑎𝑐𝑡 (𝑠𝑚𝑜, 𝑐𝑜𝑛𝑠𝑡𝑢𝑐𝑡)) from all pairs (SMO,
affected MMQL construct) occurring in 𝑞. If the result is 0,
we can synchronise 𝑞 and preserve its original behaviour.
If the result is 1, we can synchronise 𝑞, but its behaviour
may change (see Section 4.2). Otherwise, the changes are
too critical that we cannot easily adapt the query.

(4) If the user agrees with the proposed changes, we apply
the SMOs to S𝜎𝑞 and S𝜋𝑞 . We use the fact that both are
subcategories of S, so we identify SMOs that affect them.

(5) The modified query 𝑞′ is translated to a new version of
DSL queries.

4.2 SMO-to-MMQL Propagation
Let us discuss the impact of SMOs from Table 1 to S𝜎𝑞 and S𝜋𝑞 .

Operation 𝑐𝑟𝑒𝑎𝑡𝑒 (𝑂), i.e., creating a new object𝑂 ∈ OS, is not
propagated to OS𝜎𝑞 , i.e., it does not impact 𝜎 . Similarly, operation
𝑐𝑟𝑒𝑎𝑡𝑒 (𝑚,𝐷,𝐶), i.e., forming an association between two objects
𝐷,𝐶 ∈ OS, does not affectMS𝜎𝑞 .

7

The 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑂) prerequisite ensures that 𝑂 cannot participate
in non-identity morphisms. So, we delete a whole kind with a
single property. This has a critical impact on 𝜎 if 𝑂 ∈ OS𝜎𝑞 .

Operation 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑚) is propagated as follows: (i) We try to
modify S𝜎𝑞 by replacing𝑚 with𝑚′ ∈ MS, s.t.𝑚 and𝑚′ form a
comutative diagram (i.e., the semantics is preserved). (ii) If there is
no such𝑚′, we remove all unreachable subgraphs of S𝜎𝑞 . (iii) The
unreachable variables are also removed from S𝜋𝑞 , filtering, aggre-
gation, and result modifiers. Removing an unreachable variable
may cause, e.g., a result containing more records when filtering,
a result differently ordered using ORDER BY, etc.

Operation 𝑟𝑒𝑛𝑎𝑚𝑒 (𝑂,𝑛) is not propagated to 𝜎 as there is no
binding between object names and MMQL variable names.

Operation𝑚𝑜𝑣𝑒 (𝑚, 𝑝) only changes the morphisms, leaving
the MMQL variables unchanged. Thus, the move operation has
no impact on the evaluability of 𝑞 except for the clause DISTINCT
and aggregation functions. In the former case, a different result
may be returned. In the latter case, the root of the aggregation
may be changed. Nevertheless, the modification of S𝜎𝑞 may be
significant in the DSL statement, where, e.g., the join or graph
traversal may be more complex as we change a base𝑚 ∈ MS to
a composite one.

Operations 𝑐𝑜𝑝𝑦 (𝑂) and 𝑐𝑜𝑝𝑦 (𝑚,𝐷,𝐶) do not impact 𝜎 . How-
ever, the second one could simplifyMS𝜎 by replacing a composite
morphism with a base morphism𝑚′.

7Note that the attributes in the projection of 𝜎 must be explicitly specified.

The propagation of𝑎𝑑𝑑𝑀𝑎𝑝𝑝𝑖𝑛𝑔()/𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑝𝑝𝑖𝑛𝑔() depends
on the underlying logical representation of the data. The follow-
ing complications may arise: (i) We do not change S, but only
the mapping. Hence, there should not be any changes in 𝑞. But,
as depicted in Figure 4, we might need to synchronise the query
with the newly defined kinds, as every graph pattern must start
in the root of a kind. (ii) MMQL statement does not change, yet
target DSL does not allow particular MMQL construct. Then,
such construct is evaluated utilisingMM-quecat [7] as a so-called
postponed statement, which is not propagated into the target DSL.

5 DEMONSTRATION OUTLINE
In our presentation, we will first demonstrate the described func-
tionality of MM-evoque using the example depicted in Figures 2–
5. Next, we will demonstrate additional features, such as the
representation of the schema category using a sequence of oper-
ations or the support for versioning and redundancy.

As the tool is currently a prototype part of a robust research
aim of efficient unifying multi-model data management, we will
also introduce the broader context and discuss the open problems
and challenges.

REFERENCES
[1] Carlo A. Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2010.

Update Rewriting and Integrity ConstraintMaintenance in a Schema Evolution
Support System: PRISM++. Proc. VLDB Endow. 4, 2 (nov 2010), 117–128.

[2] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive
Query Processing. Found. Trends Databases 1, 1 (jan 2007), 1–140.

[3] Jérôme Fink, Maxime Gobert, and Anthony Cleve. 2020. Adapting Queries to
Database Schema Changes in Hybrid Polystores. In Proc. of SCAM ’20. IEEE,
127–131.

[4] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2021. Data Depen-
dencies for Query Optimization: A Survey. 31, 1 (jun 2021), 1–22.

[5] Pavel Koupil, Jáchym Bártík, and Irena Holubová. 2022. MM-evocat: A Tool
for Modelling and Evolution Management of Multi-Model Data. In Proc. of
CIKM ’22. ACM, 4892–4896.

[6] Pavel Koupil, Daniel Crha, and Irena Holubová. 2023. A Universal Approach
for Simplified Redundancy-Aware Cross-Model Querying. Available at SSRN
4596127 (2023).

[7] Pavel Koupil, Daniel Crha, and Irena Holubová. 2023. MM-quecat: A Tool for
Unified Querying of Multi-Model Data. In Proc. of EDBT ’23. OpenProceed-
ings.org, 831–834.

[8] Pavel Koupil and Irena Holubová. 2022. A Unified Representation and Trans-
formation of Multi-Model Data using Category Theory. J. Big Data 9, 1 (2022),
61.

[9] Pavel Koupil, Sebastián Hricko, and Irena Holubová. 2022. MM-infer: A Tool
for Inference of Multi-Model Schemas. In Proc. of EDBT ’22. OpenProceed-
ings.org, 2:566–2:569.

[10] Pavel Koupil, Martin Svoboda, and Irena Holubová. 2021. MM-cat: A Tool for
Modeling and Transformation of Multi-Model Data using Category Theory.
In Proc. of MODELS ’21. IEEE, 635–639.

[11] Jiaheng Lu and Irena Holubová. 2019. Multi-model Databases: A New Journey
to Handle the Variety of Data. ACM Comput. Surv. (2019), 38.

[12] Mark Lukas Möller, Meike Klettke, Andrea Hillenbrand, and Uta Störl. 2019.
Query Rewriting for Continuously Evolving NoSQL Databases. In Proc. ER
2019 (LNCS), Vol. 11788. 213–221.

[13] David I Spivak and RyanWisnesky. 2015. Relational Foundations for Functorial
Data Migration. In Proc. of DBPL ’15. ACM, 21–28.

[14] Uta Störl andMeike Klettke. 2022. Darwin: AData Platform for NoSQL Schema
Evolution Management and Data Migration. In Proc. of the EDBT/ICDT ’22
Workshops.

821

