
MEOS: An Open Source Library for Mobility Data Management
Esteban Zimányi

Université libre de Bruxelles
Brussels, Belgium

esteban.zimanyi@ulb.be

Mariana Duarte
Université libre de Bruxelles

Brussels, Belgium
mariana.machado.garcez.duarte@

ulb.be

Víctor Diví
Universitat Politècnica de Catalunya

Barcelona, Spain
victor.divi@upc.edu

ABSTRACT
The increasing prevalence of mobility data in diverse applications
such as traffic management requires specialized tools for manip-
ulating it. This paper introduces MEOS (Mobility Engine Open
Source), a versatile C library designed explicitly for managing
and processing mobility data. MEOS is a highly adaptable solu-
tion, providing a single code base that can be readily adapted to
multiple programming languages, including Python and SQL, nu-
merous computing environments, from edge to cloud computing,
from batch to stream processing. We further extend our discus-
sion to PyMEOS, a specialized Python library developed as a
binding to MEOS, offering additional functionality that enhances
the analytic capacity with data visualization and data frame in-
tegration. This demonstration comprises a series of queries us-
ing two different languages, namely, MEOS (C) and PyMEOS
(Python).

1 INTRODUCTION
Advances in tracking technologies have led to the growing trend
of utilizing mobility data in a myriad of applications, includ-
ing traffic management. This requires specialized tools to han-
dle the huge volumes of mobility data generated. This paper
demonstrates the use of MEOS (Mobility Engine Open Source)1
for trajectory manipulation. MEOS is an open-source C library
engineered for mobility data management. It provides a single
source code that can be readily adapted to different environ-
ments including, but not limited to, Python and SQL, multiple
computing environments, from edge to cloud computing, from
batch to stream processing. A single code simplifies maintenance
processes, making code modification, updating and debugging
straightforward. It can also reduce errors and offer faster im-
plementation of new features. MEOS provides an alternative to
existing moving objects libraries [2, 4, 6] while maintaining a
data format with a lossless high compression rate that may reach
up to 450% [7], depending on the data source. We present an
example of MEOS’ adaptability with an integration in Python
called PyMEOS.2 PyMEOS contains all functionalities present in
MEOS but also enhances the analytic capacity with extra features
such as data visualization and data frame integration.

2 CONTRIBUTIONS
We present MEOS, a new library for managing and analyzing
moving objects. MEOS library leverages decoupling computing
from storage. The decoupled architecture allows the balancing
of storage and computing requirements based on workload de-
mands. This strategy ensures that the library can be configured
1https://libmeos.org
2https://github.com/MobilityDB/PyMEOS

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

to deploy the most suitable storage for the data requirements and
the optimal computing resources for processing tasks, thereby
enhancing overall system performance. Lastly, the separation of
computing and storage enhancesMEOS’s adaptability. As a result,
it can easily utilize different storage and computing resources
based on the task requirements.

3 MEOS
The MEOS library provides functions in multiple programming
languages and environments (Fig. 1). The library can be built on
M1, ARM, and Intel hardware on Ubuntu, MacOS, and Windows
operating systems. Furthermore, it can be adapted to various
programming languages such as C, JavaScript, Java, and Python.

Figure 1: MEOS compatibility layers. Available languages,
compatible systems, operating systems, and hardware

3.1 MEOS Components
MEOS’ main components are presented as follows:

• Input/Output Functions: MEOS supports input and out-
put operations for various formats, including GeoJSON,
Well-Known Text (WKT) and Well-Known Binary (WKB).
It also implements expandable data structures, enabling
data streaming and batch processing.

• Data Structure/Operations: The system augments data
operationswith additional support for temporal properties,
lifted predicates, and aggregations. It implements the types
tbool, tfloat, tint, and tsequence. These data types
represent the temporal values of each base type unfold
over time. For example, a tbool encapsulates a boolean
that changes over time.

• Predicates: MEOS implements temporal-aware predicates
such as intersects, touches and equals.

Demonstration Paper

 

 

Series ISSN: 2367-2005 810 10.48786/edbt.2024.76

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.76


• Geometry Model: To track the temporal evolution of a
moving object, MEOS employs temporal types such as
tgeompoint and tgeogpoint. Furthermore, it implements
tboxes, i.e., temporal bounding boxes.

• Compression Functions: MEOS implements a lossless
compression algorithm when creating a trajectory. In ad-
dition, it offers single-pass Douglas-Peucker (DP) line sim-
plification [3] and recursive DP.

• Analysis Functions: MEOS has the ability to extract
trajectory properties such as speed, length, angle and
trajectory similarity measures.

3.2 PyMEOS Components
PyMEOS has a three-layer architecture, with every layer hiding
implementation details that improve the usability of the library.
The layers, from inner-most to outer-most, are:

(1) C Foreign Function Interface (CFFI): This layer is au-
tomatically generated by the CFFI library and is a shared
library (.so file in Linux) that is imported in Python and
can call MEOS’ functions directly.

(2) CFFI bindings: This layer wraps all the functions pre-
sented in the CFFI layer and manages most of the required
transformations of values to interact with the inner layer.
For example, it transforms from Python’s string to C’s
char *.

(3) Outer bindings: This layer combines MEOS’ functions
into a set of classes in an object-oriented interface that the
end user is meant to use.

These layers are divided into two different Python packages:3
pymeos_cffi, which contains the two inner layers, and pymeos,
containing the outer-most one. Although both can be used to
interact with MEOS, the latter provides a more user-friendly API.

In addition to all MEOS’ functionality, PyMEOS provides extra
functionality:

• Database Connections: PyMEOS offers direct database
connectors enabling read/write operations for PyMEOS’
objects from and to a MobilityDB database. Connectors
are available for psycopg and asyncpg.4

• Python Integration and Visualization: PyMEOS can be
installed via pip and is compatiblewith Jupiter Notebook.5
A variety of functions are available within PyMEOS to
facilitate visualization of temporal types. This is accom-
plished through the use of matplotlib.6

4 DEMONSTRATION SCENARIO
This demonstration focuses on the use of the MEOS library for
trajectory manipulation. The scenario is presented with an im-
plementation in both MEOS and PyMEOS. This demo presents a
scenario consisting of operations managing mobility data. The
scenario is an urban setting with Grab-Posisi, a GPS trajectory
dataset from Singapore city [5]. The dataset covers over 1 million
kilometers from April 2019 and contains over 88 million points
in CSV files.7 The proposed operations include:

• Input GPS data and generate trajectories (Fig. 2, Query 1).
• Create a spatiotemporal bounding box (stbox) around
two top-visited places, namely ‘Singapore Airport’ and

3https://pypi.org/project/pymeos-cffi/, https://pypi.org/project/pymeos/
4https://pypi.org/project/asyncpg/,https://www.psycopg.org/psycopg3/docs/
5https://pip.pypa.io/en/stable/cli/pip_install/, https://jupyter.org
6https://matplotlib.org/
7https://engineering.grab.com/grab-posisi

Figure 2: Trajectories generated by MEOS

‘Gardens by the Bay,’ (Query 2) and filter trajectories from
‘08-04-2019’ to ‘22-04-2019’ (Fig. 3, Query 3).

• Segment the trajectories into single-leg journeys (Query 4).
Each single-leg journey represents a direct travel segment
from one location to another without return. For instance,
a trip from ‘Singapore Airport’ to ‘Gardens by the Bay’
constitutes a single-leg journey.

• Extract metrics for each trip, including total distance trav-
eled (Query 5), speed (Query 6), average bearing and travel
time.

• Identify instances where vehicles came within 10 meter
from each other, using vehicle identification and GPS co-
ordinates to determine proximity (Fig. 4, Query 7).

Figure 3: Trajectories and bounding boxes encompassing
‘Singapore Airport’ and ‘Gardens by the Bay’

Figure 4: Trajectories where two vehicles (orange and blue)
were within 10 meter from each other

811



4.1 Implementation in MEOS
We start by reading GPS data files containing coordinates and
object identifiers (carId). We collect these coordinates and link
points based on their carId. Using these joint coordinates, we
create a trajectory. We utilize a TSequence, a data structure that
encapsulates a sequence of temporal values to structure these
trajectories. As the data from the file is processed, points are
systematically appended to their respective TSequences.

We filter the GPS trajectories that intersect the areas: ‘Singa-
pore Airport’ and ‘Gardens by the Bay.’ We create an stbox, a
spatiotemporal bounding box by joining these two areas’ max-
imum and minimum coordinates and setting a period of time:
‘08-04-2019’ to ‘22-04-2019’, namely Area of Interest (Fig. 3).

We then segment these collected trajectories into single-leg
journeys, such as a direct trip from ‘Singapore Airport’ to ‘Gar-
dens by the Bay.’ First, we identify trips intersecting both areas
(Code 1). Considering only the resulting trips, we segment them
based on the timestamp indicating when the car was first de-
tected at the origin and last detected at the destination with
AtGeometry.

We apply analytical functions to determine key metrics of each
car’s journey. To store the results of these metrics, we utilize a
tfloat data type. A tfloat is a data structure that represents a
float value over time. The total distance traveled is achieved by
accumulating the distance between each GPS point in the trip.
Additionally, we compute the average speed for each trip. The
average bearing of travel is also determined based on the angular
data associated with the vehicle’s path. Furthermore, we gener-
ated a list of instances where cars were within 10 meters from
each other by comparing the position of each car and timestamp.
In Fig. 4, we show an example with two cars.

1 for (size_t i = 0; i < numberCarsinAreaofInterest; i++){
2 if (eintersects_tpoint_geo(
3 cars[i].trip, places[0].geom)
4 && (eintersects_tpoint_geo(
5 cars[i].trip, places[1].geom))){
6 cars[no_cars].carID = cars[i].carID;
7 cars[number_cars++].trip = cars[i].trip; }}

Code 1: Identifying car trips inside the areas of interest

4.2 Implementation in PyMEOS
The procedures outlined above can be equivalently implemented
using PyMEOS. In addition, PyMEOS provides visualization func-
tionalities using matplotlib.

First, we visualize the trajectories using a heatmap, which
allows us to identify the more transited parts. To do so, we first
compute the bounding box containing all the trajectories and
tile it into boxes of 500m × 500m. Then, we compute, for each
tile, how many trajectories intersect it and plot it using Plotly
(Fig. 5).8

Initially, we employ a general bounding box encompassing
both the ‘Singapore Airport’ and ‘Gardens by the Bay’ to exclude
any cars that do not operate within these areas. Afterward, we
introduce bounding boxes for each location to identify the cars
whose trajectories intersect these areas. We can see the result
of this process in Fig. 6. Specifically, Fig. 6a depicts trips that do
not cross into the area of interest. On the other hand, figure 6b
shows trips that traverse the area of interest. In Fig. 6c, the focus
8https://plotly.com/python/

Figure 5: Heatmap of cars’ trips generated in
Python/PyMEOS

(a) Trips not intersecting the
area of interest

(b) Trips that cross the area of interest

(c) Trips intersecting only one
of the areas of interest

(d) Trips intersecting the area of interest

(e) Trips intersecting only one
of the areas of interest (Zoomed)

(f) Trips intersecting the area of interest
(Zoomed)

Figure 6: Comparative analysis of trips to the areas of in-
terest

is on trips that intersect only one of the two designated areas,
while Fig. 6d presents trips that pass through both specified areas.
Fig. 6e and Fig. 6f show a zoomed-in version of the previous two
Figures, showing in detail the trajectories that cross the areas.

Next, we see the method used to split the trajectories into
single-leg trajectories (Fig. 7, Code 2). For every car, it first com-
putes whether the car is in ‘Singapore Airport’ or in ‘Gardens
by the Bay’ at every moment, storing this information as tbool,
a temporal boolean (Lines 1–5). Then, we compute the periods
in which the car is outside, removing the first and last segments
(Lines 6–9) and uses them to clip the original trajectories into

812



Figure 7: Geometries of single-leg trips

(a) Speed (b) Bearing

Figure 8: Speed and bearing of single-leg trips

parts that go from one area to the other (Lines 10–11). In addition,
we compute the metrics for each single-leg trajectory, including
speed (Fig. 8a) and bearing (Fig. 8b).

1 st['Is Inside'] = st['Trajectory'].map(lambda t:
2 trip.is_spatially_contained_in(bay)
3 .temporal_or(trip.is_spatially_contained_in(airport)))
4 st['Time Inside'] = st['Is Inside'].map(lambda t:
5 t.when_true())
6 st['Period'] = st['Time Inside'].map(lambda t:
7 t.to_period())
8 st['Time Outside'] = st.apply(lambda row:
9 row['Is Inside'].at(t['Period']).when_false(), axis=1)
10 st['Single Trips'] = st.apply(lambda row:
11 row['Trajectory'].at(['Time Outside']), axis=1)

Code 2: Trajectory split using bounding boxes

5 PERFORMANCE
In this Section, wemeasure the performance ofMEOS and PyMEOS.
Table 1 relates the number of records, size, and compression rate
of the geometry column. When the trajectory is created, a loss-
less compression is applied. That is, MEOS drops points that can
be extrapolated by the points before and after. The number of
records is reduced by 99% and in size by 7%. The reduction in
size rate can be affected by the amount of significant events, i.e.,
points that present a change of speed and bearing. Next, we ap-
ply a recursive spatiotemporal Douglas-Peucker (RDP) algorithm
with thresholds of 10, 50 and 100 meters.

Figure 9 relates the run time for queries specified in Section
4 in MEOS and PyMEOS, on a logarithmic scale. Due to the
implemented language, MEOS has a higher performance than
PyMEOS. Nevertheless, PyMEOS exhibits strong performance in
Python, mainly due to its C backend.

Records Size Percentage
Input 9096633 252MB -

Trajectories 28000 234 MB 7,14%
RDPS10 28000 67MB 73,41%
RDPS50 28000 28MB 88,89%
RDPS100 28000 20 MB 92,06%

Table 1: Number of records, column size, percentage of
reduction for input, after trajectory creation, and appli-
cation of recursive Douglas-Peucker (RDP) with varying
thresholds of 10, 50 and 100 meters

Figure 9: MEOS/PyMEOS performance for queries (Section
4)

6 CONCLUSION
In this demonstration, we introduce MEOS, a new versatile li-
brary for manipulating and analyzing mobility data. The library
offers data management functions and algorithms in batch and
streaming environments, including trajectory creation, interpo-
lation, normalization, and trajectory analysis. Notably, MEOS
achieves separation between data storage and processing while
maintaining the same functionalities as MobilityDB [1].

We plan to extend the programming language bindings avail-
able for MEOS, including Javascript, Java and C#. Furthermore,
we will implement in-memory indexing capabilities in MEOS, a
necessary enhancement for effectively manipulating large vol-
umes in streaming environments. With these additions, MEOS
opens up new possibilities for real-time analysis.

REFERENCES
[1] M. Bakli, M. Sakr, and E. Zimányi. 2020. Distributed Spatiotemporal Trajec-

tory Query Processing in SQL. In Proc. of the 28th International Conference on
Advances in Geographic Information Systems. 87–98.

[2] B. Custers, M. Kerkhof, W. Meulemans, B. Speckmann, and F. Staals. 2021.
Maximum Physically Consistent Trajectories. ACM Trans. Spatial Algorithms
Syst. 7, 4, Article 17 (2021), 33 pages.

[3] D. Douglas and T. Peucker. 1973. Algorithms for the Reduction of the Number of
Points Required to Represent a Digitized Line or its Caricature. Cartographica:
The International Journal for Geographic Information and Geovisualization 10, 2
(1973), 112–122.

[4] A. Graser. 2019. MovingPandas: Efficient Structures for Movement Data in
Python. GIForum 1 (2019), 54–68.

[5] X. Huang, Y. Yin, S. Lim, G. Wang, B. Hu, J. Varadarajan, S. Zheng, A. Bulusu,
and R. Zimmermann. 2019. Grab-Posisi: An Extensive Real-Life GPS Trajectory
Dataset in Southeast Asia. In Proc. of the 3rd ACM SIGSPATIAL PredictGIS’19.
1–10.

[6] L. Pappalardo, F. Simini, G. Barlacchi, and R. Pellungrini. 2022. Scikit-mobility:
A Python Library for the Analysis, Generation, and Risk Assessment of Mobility
Data. Journal of Statistical Software 103, 4 (2022), 1–38.

[7] E. Zimányi, M. Sakr, and A. Lesuisse. 2020. MobilityDB: A Mobility Database
Based on PostgreSQL and PostGIS. ACM Trans. Database Syst. 45, 4 (Dec. 2020).

ACKNOWLEDGMENTS
This work was funded by the EU’s Horizon Europe research and
innovation program under Grant No. 101070279 MobiSpaces.

813


