
MIP: Advanced Data Processing and Analytics
for Science and Medicine

Kostas Filippopolitis★, Yannis Foufoulas★, Minos Garofalakis★, Apostolos Glenis★,
Yannis Ioannidis★, Thanasis-Michail Karampatsis★, Maria-Olympia Katsouli★, Evdokia Mailli★,
Asimakis Papageorgiou-Mariglis★, Giorgos Papanikos★, George Pikramenos★, Jason Sakellariou★,

Alkis Simitsis★, Pauline Ducouret⋄, Philippe Ryvlin⋄, Manuel-Guy Spuhler⋄ ∗
∗Athena Research Center, Athens, Greece

⋄Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland

ABSTRACT
We present the Medical Informatics Platform (MIP), an online col-
laborative platform for the scientific and medical community. It
federates de-centralized patient data located in hospitals, helping
clinicians, clinical scientists, and researchers identify patterns
unique to diseases and provide clear diagnoses and personalized
treatments. The platform enables users to access harmonized
medical data from pre-processed neurophysiological and med-
ical records, and research cohort datasets without the need to
transfer original clinical data. This functionality facilitates explo-
ration and analysis of medical data while preserving the privacy
and security of sensitive patient information. The MIP blends
data science and machine learning with data technology, and
especially data integration, secure computation, decentralized
distributed query execution, and low level, efficient execution
of science pipelines exploiting features of modern data engines
such as vectorization, parallelization, and JIT compilation. The
MIP is the result of a multi-disciplinary, multi-year effort among
computer scientists, clinical scientists and medical professionals.
To date, it has been deployed and used in 40+ hospitals across
Europe and another 12 installations are in process.

1 INTRODUCTION
The Human Brain Project (HBP) is one of the European Future
and Emerging Technologies (FET) Flagships (to date: 123 partners,
600M Euros funding). It is a long-term and large-scale research
initiative that pioneers digital brain research. It aims to gain an
in-depth understanding of the complex structure and function
of the human brain with a unique interdisciplinary approach at
the interface of neuroscience and data technology. HBP scien-
tists employ highly advanced methods from computing, neuroin-
formatics, and artificial intelligence to carry out cutting-edge
brain research. The acquired knowledge is translated into novel
applications in medicine and technological advances. The data
technology component of HBP that supports HBP scientists in
their day-to-day analysis is fueled by the Medical Informatics
Platform (MIP).

In this paper, we present the design, architecture, and function-
ality of the MIP. The MIP is a privacy preserving, federated data
analytics software that connects patient anonymized data from
hospitals and research cohort datasets without moving them from
their original storage. It provides a set of pre-integrated statistical

∗Equal contribution of the authors, each within their role. The authors are listed
alphabetically per institution.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

methods as well as predictive machine learning algorithms for
patient anonymized data exploration, data modelling, integration
and execution of experiments (data analysis methods). It helps
investigate and compare harmonized medical data extracted from
pre-processed neurophysiological and medical records. It also
offers the least invasive approach to connect centers and datasets;
it promotes access to augmented knowledge potential through
collaborative research. The key design principles of MIP include:

• Data is collected by the hospitals. It is stored on their
servers and never leaves the hospital.

• Each hospital keeps its data within its secured server, and
the MIP is installed on this server.

• Each analysis is ran by algorithms installed on the server,
inside the hospital.

• Only aggregated, encrypted data leaves the hospital.
• The databases are not explorable by users.

Our solution and value proposition includes a new system ar-
chitecture for decentralized and secure computations, leveraging
the efficiency of modern data engines to boost analytics with
features such as vectorization, zero-cost copy, data serialization,
parallelization, and JIT compilation. The MIP was built from the
ground up in synergy with state-of-the-art security and cryp-
tographic technologies to operate on encrypted data without a
mediator, ensuring that the data never leaves its location.

Deployment. TheMIP is gradually engaging an increasing num-
ber of medical centers in Europe, involving thousands of cases
with neurological and psychiatric disorders. Current MIP users
include CHUV, Fatebenefratelli Brescia, CHRU Lille, Niguarda Os-
pedale, Mario Negri Institute Bergamo, Karolinska Institute, and
Stockholm. The MIP is privacy preserving and GDPR compliant,
and currently, its technology readiness level (TRL [12]) is 8.

Example use case: “Federated analyses in Alzheimer’s disease”.
In this scenario, the MIP combines data from memory clinics in
Brescia (1960 patients), Lausanne (1032 patients), and Lille (1103
patients), as well as the reference dataset ADNI (1066 patients).
The data remains in the respective hospitals but the analysis is
performed on the overall caseload. The objectives of the case
study are: (a) determine how the brain volumes contribute to
diagnosis, (b) increase of diagnosis specificity by introducing 2
key AD biomarkers, Amyloid beta 1-42 and p-Tau, and (c) influ-
ence of 2 non-AD etiologies: depression (PSY), vascular damage
to cerebral white matter (VA). The method analyzes MRIs from
patients utilizing individual T1w images, non-linear registration,
neuromorphometric atlas, Shoot-SPM12 Matlab toolbox. The sci-
entific analysis unravel observations related to (a) brain volume
repartition across diagnosis, (b) clusters on 𝐴𝛽42, pTau and left
entorhinal volume, and (c) influence of 2 non-AD etiologies (see
also [11]). This scientific analysis leverages two algorithms pro-
vided by MIP: k-means and linear regression.

Demonstration Paper

 

 

Series ISSN: 2367-2005 802 10.48786/edbt.2024.74

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.74


Figure 1: MIP architecture

1 def fit(self, X, y):
2 local_transfers = self.local_run(
3 func=fit_local,
4 keyword_args="x": X, "y": y,
5 share_to_global=[True],
6 )
7 self.global_state, global_transfer = self.global_run(
8 func=fit_global,
9 keyword_args=dict(local_transfers=local_transfers),
10 share_to_locals=[False, False],
11 )
12 global_transfer_data = get_transfer_data(global_transfer)
13 self.coefficients = global_transfer_data["coefficients"]

Figure 2: Linear regression fit in MIP (abridged)

2 DEMONSTRABLE FEATURES
A scientist initiates an experiment through interaction with
the User Interface (UI). The experiment is sent to the Master
node, which determines how the algorithms involved will be
executed in a federated fashion. Then, local computation steps
start on the Worker nodes, where the clinical data is located.
Aggregated results are pushed back to the Master node following
a SMPC protocol. The process is iterative and when is done, the
analysis results are presented to the scientist via the UI. Figure 1
shows a high-level architecture of MIP. Next, we detail the data
and compute flows in MIP.

Federated Algorithm. We write a federated algorithm in three
blocks: (a) Local computation steps executed on the worker nodes
and have access to the primary data. (b) The algorithm flow that
orchestrates the algorithm execution, e.g., what computation step
to run on the workers, how to aggregate and when to return a
result. (c) The algorithm specifications involving implementation
details. The algorithm developer dictates the workers to run a
local computation from raw data or another computation result,
and specifies how the data should be aggregated. The result of
a local computation is kept as a pointer to the actual data. The
algorithmmay terminate or continue the computation. Currently,
the MIP supports Python for algorithm development. Figure 2
shows an abridged example snippet for the linear regression fit.
Note that federation, beside privacy (our primary goal), could
also handle scalability issues frequently encountered in algorithm
iterations and intermediate steps, which could be significant even
with small data input.

Master Node. The Master node governs the communication
with and among the workers and keeps track of the dataset
availability on each worker for efficient algorithm shipping. It
also orchestrates the algorithm flow and handles the aggregates
returned from the local computations. Finally, it is also possible
to perform computations locally as well.

Worker Node. The Worker node hosts sensitive hospital data.
It receives an execution request and performs local computations

on the data. The request comes as a procedural code defined by
the algorithm developer and MIP wraps it as a SQL UDF with the
UDFGenerator (described next). Executing the algorithm inside
a data engine is a strategic choice to leverage all the benefits of
performant, in-database analytics, such as zero-cost copy, vec-
torization, and data serialization. Our implementation choice for
the data engine is the open-source, analytics database MonetDB.
Note that the source data in each hospital may be stored in a
different form (e.g., csv files) or system and MIP provides the
required ETL processes to upload it to MonetDB.

UDFGenerator. UDFGenerator follows a UDF-to-SQL approach
(see [7, 8]) and JIT translates the procedural Python code to se-
mantically equal declarative SQL code. To deal with the dynamic
Python types, the Python functions are wrapped with a decora-
tor that specifies their input/output types. SQL loopback queries,
which enable executing SQL in a Python UDF, handle the mul-
tiple inputs and outputs of a Python function. These tasks are
performed automatically by the UDFGenerator and no action
is required by the algorithm developer. Our roadmap includes
integrating this process with recent research advancements to
in-engine, performant and stateful Python UDF execution using
tracing JIT compilation and UDF fusion [1, 9].

Data Aggregation. MIP supports two methods to aggregate the
results of the local computations and make them available on
the Master node. A first, non-secure transfer, employs remote
and merge tables (a MonetDB’s feature) to ship local results back
to the Master node and perform the aggregation there. (Note
that the remote and merge tables are not materialized.) This
technique is useful for applications handling non-sensitive data.
However, the crown jewel of MIP’s algorithm execution is the
secure, privacy compliant computation that uses SMPC to collect
the aggregated result.

Secure Multi Party Computation. SMPC is a cryptographic prim-
itive where a set of computing nodes perform a computation of
some function 𝑓 over their private set of inputs revealing noth-
ing but the output of the function 𝑓 . SMPC facilitates precise
calculations, guaranteeing that the outcome of any given func-
tion 𝑓 remains consistent, irrespective of whether it is computed
via SMPC or an alternative means. SMPC strengthens security
and integrity in federated processing especially when combined
with differential privacy, as it allows computations on encrypted
data without the need for a trusted third-party to collect said
data. However, SMPC may include potential computational and
communication overheads, particularly for computation types
involving extensive multiplications, branching, and comparisons.
But it is well-suited and relatively efficient for federated learning,
where it is used for the aggregation of gradients or validation
metrics across multiple data nodes.

In MIP, the data is converted to secret shares in the Workers
to ensure that there is no information leak to a malicious user
or breached node. Then, the Master node signals the SMPC clus-
ter, the SMPC nodes import the secret shares from the Workers
and run the SMPC protocol. When the SMPC computation fin-
ishes, the result is sent to the Master node and the algorithm flow
continues. In more detail, when a computation is triggered, it
is assigned a global unique identifier, which is used to retrieve
results asynchronously and to specify which data should be used
for each computation. Worker nodes perform local computations
and store these intermediate computation results locally indexed
by the corresponding job identifier and are later securely im-
ported through secret sharing to the SMPC nodes so as to be
aggregated. The SMPC engine is designed to support aggregation

803



Figure 3: MIP dashboard: domain, datasets, search, parameters, statistics, multi-facets exploration

of vectors which can be used for the implementation of vari-
ous distributed algorithms (e.g., gradient descent) and statistical
computations (e.g. mean).

Our platform supports two security modes: the full thresh-
old (FT) and Shamir’s secret sharing schemes. FT is very secure
with abort against an active-malicious majority threat model
meaning that even if a single SMPC node follows the proto-
col faithfully the data stays secure. But, computations are slow
with FT. Shamir’s secret sharing scheme (with 𝑡<𝑛/2, 𝑡>=𝑛/3) is
much faster, but is secure only against honest-but-curious threat
models. The data owners can choose either scheme based on a
security-efficiency trade-off.

SMPC and Worker nodes are decoupled (different entities).
Hence, data import from Worker to SMPC nodes needs to main-
tain security against the chosen threat model. As such, we are
interested in a procedure that will secret share each entry in a
dataset between the SMPC nodes. For Shamir secure importa-
tion, it is sufficient to secret-share the data on the Workers and
send over secure channels the shares to each SMPC node. For
FT secret sharing, we need to maintain security in the secure-
against-active-malicious threat model and for that, we follow the
mechanism in [2].

Training. The federated learning training phase works as fol-
lows. The Master sends to Workers (data holders) the current
model parameters. EachWorker computes the parameter updates
of the model on his local dataset. Next, we have two options: use
differential privacy (DP) or secure aggregation (SA). For the lo-
cal differential privacy (DP) guarantee, the Worker injects noise
using Gaussian and sends the result to the Master node for aggre-
gation with otherWorkers’ updates. With SA, instead of injecting
noise, the Worker securely imports (secret sharing) local updates

to the SMPC cluster. Then, using an SMPC protocol we aggregate
the data and inject noise. In both cases, the result is sent to the
Master, which updates the model parameters and starts a new
cycle. In practice, we have also seen excellent results for model
training with other methods too (e.g., [10]).

Implementation. For the algorithm flow we employ NumPy
(1.24), SciPy (1.10), Pandas (1.5), scikit-learn (1.2). The inter-node
communication is governed by Celery (5.2) on top of RabbitMQ
containers. We use a REST API served by Quart (0.18). The MIP
engine is deployed with MicroK8s (1.25). The Workers run Mon-
etDB (11.45.13) and RabbitMQ (3.9.14). The SMPC engine has been
developed on top of SCALE-MAMBA [2]. Our software runs the
SPDZ protocol [3], which speeds up computation by running
a lot of the required SMPC computations in an offline phase.
SMPC computations are implemented in MAMBA and support
aggregation operations such as sum, multiplication, min/max
operation and disjoint union. The engine also supports injecting
Laplacian and Gaussian noise during the SMPC to the result of
the computation.

Current status. The MIP1 currently integrates 15+ algorithms
for data analysis, applicable in subsets to various pathologies
(dementia, epilepsy, mental health, traumatic brain injury), such
as: k-Means Clustering, ANOVA one/two way, CART, Calibration
Belt, ID3, Kaplan-Meier Estimator, Linear Regression, Logistic
Regression, Naive Bayes Training, Naive Bayes with Cross Val-
idation, Pearson Correlation, Principal Components Analysis,
T-Test Independent, T-Test One-Sample, T-Test Paired. It sup-
ports several data types, such as clinical information, regional
brain volumes, intracerebral EEG.

1More details about MIP can be found at: https://github.com/HBPMedical/mip-docs

804



Figure 4: MIP analysis: descriptive analysis, experiment design and execution, algorithms, results

3 OUR PRESENTATION
Our presentation script starts with the scenario introduced in
Section 1. We will first showcase the analysis from a scientist’s
perspective through our UI, and then we will demonstrate a
step-by-step execution of the two MIP algorithms related to this
scenario, k-means and linear regression, inside the MIP engine.

Interactive data analysis. We will present two popular func-
tions: data exploration and descriptive analysis.

Data exploration. The MIP dashboard (Figure 3) displays the
data of the chosen domain (e.g., dementia, epilepsy), the variable
and covariate panels, along with descriptions and statistical infor-
mation. The user sees an overview of the domain, with various
data subsets (left side). The user may graphically drill down to
various level of detail. In this example, a closer look of the Brain
Anatomy section reveals that the data is categorized based on
different parts of the brain, and after descending one more level
within the limbic system, we see the available data on the differ-
ent nuclei and subnuclei. There, the user may select a variable
and generate views with descriptions and graphs (right side).

Descriptive analysis. The script continues with creating an
experiment (Figure 4). The user is presented with a list of al-
gorithms, whose availability depends on the selected variables.
After the user configures the algorithm to their needs, they can
run the experiment and study the results in tabular forms and
appropriate graphs (see bottom-right). In this example, we use
the variables amyloid-beta 1-42, the level of phosphorylated tau
protein, and the volume of the left entorhinal area as input for
a k-means algorithm, and configure it specifying the number of
centroids to compute, the number of acceptable error value and
the maximum number of iterations.

MIP engine process. Next, our script continues with demon-
strating the system internals with canned queries and functions.
This includes showing the various operations on Master and
Worker nodes, the initialization, federation, and execution of the
algorithms, the machinery of data and algorithm shipping, the
secret sharing and SMPC-ing of the results, and the return of the
aggregate results to the Master node and eventually to the UI. We

will showcase specific internal MIP components including the
UDF implementation and its seamless integration into MonetDB.
Finally, the interested audience may create and execute their own
Python UDFs on synthetic medical data.

User interaction. For off-script presentation, we will show three
more use cases of applying MIP federation in brain injury [6],
dementia [4], and mental health [5]. We will also have various
scientific experiments prepared (e.g., data, algorithms, UDFs) and
the audience will be able to run experiments on-demand. The
interested participant may create a new experiment by exploring
various scientific datasets and design ad hoc algorithm flows.

Acknowledgments. This research was supported by the EU
Horizon 2020 EBRAINS (No. 945539, Human Brain Project SGA3)
and EU Horizon EBRAINS 2.0 (No. 101147319).

REFERENCES
[1] Konstantinos Chasialis, Theoni Palaiologou, Yannis Foufoulas, Alkis Simit-

sis, and Yannis Ioannidis. 2024. QFusor: A UDF Optimizer Plugin for SQL
Databases. In ICDE.

[2] Ivan Damgård et al. 2015. Confidential Benchmarking based on Multiparty
Computation. IACR Cryptol. ePrint Arch. (2015), 1006.

[3] I. Damgard et al. 2011. Multiparty Computation from Somewhat Homomorphic
Encryption. Cryptology ePrint Archive, Paper 2011/535. https://eprint.iacr.
org/2011/535 https://eprint.iacr.org/2011/535.

[4] EBRAINS. 2023. MIP Federation in Dementia. Available at: https://ebrains.eu/
service/medical-informatics-platform/mip-federation-in-dementia.

[5] EBRAINS. 2023. MIP Federation in Mental Health. Available at: https://ebrains.
eu/service/medical-informatics-platform/mip-federation-in-mental-health.

[6] EBRAINS. 2023. MIP Federation in Traumatic Brain Injury. Avail-
able at: https://ebrains.eu/service/medical-informatics-platform/
mip-federation-in-traumatic-brain-injury.

[7] Yannis Foufoulas and Alkis Simitsis. 2023. Efficient Execution of User-Defined
Functions in SQL Queries. PVLDB 16, 12 (2023), 3874–3877.

[8] Yannis Foufoulas and Alkis Simitsis. 2023. User-Defined Functions in Modern
Data Engines. In ICDE.

[9] Yannis E. Foufoulas, Alkis Simitsis, Eleftherios Stamatogiannakis, and Yannis E.
Ioannidis. 2022. YeSQL: "You extend SQL" with Rich and Highly Performant
User-Defined Functions in Relational Databases. PVLDB 15, 10 (2022).

[10] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.
2016. Federated Optimization: Distributed Machine Learning for On-Device
Intelligence. CoRR abs/1610.02527 (2016).

[11] Arseny A. Sokolov et al. 2020. Greater than the sum: Federated analyses
in Alzheimer’s disease using the Human Brain Project Medical Informatics
Platform (MIP). Alzheimer’s & Dementia 16, S4 (2020), e045717.

[12] Wikipedia. 2023. Technology readiness level. Available at: https://en.wikipedia.
org/wiki/Technology_readiness_level.

805


