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ABSTRACT

Efficiently processing large-scale graphs for question-answering
tasks presents a significant challenge, given the complexity and
volume of data involved in such graphs. This paper presents a new
framework that combines attention-based graph summarization
with innovative graph sampling methods designed specifically
for large-scale graph processing and question-answering appli-
cations. Our approach excels in its ability to process large-scale
graphs efficiently, leveraging effective sampling and attention
mechanisms to enhance feature extraction. A key aspect of our
approach is graph summarization techniques, which concentrate
on essential information, boosting the accuracy and computa-
tional efficiency of question answering. Our framework proves its
efficacy in real-world scenarios through practical demonstrations,
notably within academic databases. This showcases a substan-
tial advancement in information retrieval and graph-based data
navigation, marking a significant leap forward in the field.

1 INTRODUCTION

Advanced data analytics increasingly focuses on graph-structured
data over traditional tabular formats due to the unique complex-
ities and advantages of graphs. Found in diverse domains like
social networks and citation networks, graphs provide a more
nuanced and interconnected representation than tabular formats.
The current challenge is extracting meaningful insights from
these structures to gain a richer understanding of complex rela-
tionships [1].

A key element in this challenge lies in graph summarization,
which simplifies intricate graph data into more understandable
formats, thereby improving the clarity and interpretability of the
data [11]. The key goals of graph summarization in the context
of user experience encompass minimizing graph data volumes,
accelerating graph query evaluation, and improving graph vi-
sualization. These objectives contribute to facilitating smoother
interactions with the underlying data for tasks such as analytics
and decision-making.

Traditionally, graph summarization has relied on conventional
machine learning methods or a graph-structured query, such as
degree, adjacency, or eigenvector centrality. These approaches
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have been utilized in tasks such as node clustering, graph sam-
pling, and subgraph extraction [13]. Node clustering groups sim-
ilar nodes together based on certain criteria, simplifying the rep-
resentation of intricate structures [5]. Graph sampling involves
selecting a subset of nodes or edges that preserves the essential
characteristics of the entire graph [2, 6]. Subgraph extraction, on
the other hand, identifies and isolates relevant portions of the
graph that capture specific patterns or relationships [3]. While
these conventional methods have demonstrated effectiveness to
a certain extent, they face challenges such as computational in-
tensity and a significant demand for memory storage. As a result,
there is a growing imperative to explore alternative approaches
that can efficiently handle the complexities and scale of modern
data requirements. In response, deep learning, and more specifi-
cally Graph Neural Networks (GNNs), have emerged as promising
alternatives. GNNs are designed to capture intricate relationships
and dependencies within graph-structured data, making them
well-suited for tasks like graph summarization [13]. Unlike tradi-
tional methods that rely on handcrafted features or query-based
approaches, GNNs learn representations directly from the graph
structure. One notable category of GNNs is Variational Graph
Autoencoders (VGAEs) [9], which fall under the broader umbrella
of generative models. VGAEs extend traditional autoencoders
to graph-structured data, combining the power of deep learning
with generative modeling. VGAEs aim to learn a latent represen-
tation of the graph, effectively summarizing its essential features,
offering efficiency for large and complex graphs [4]. This inte-
gration holds potential in question-answering systems, where
understanding relationships within graph structures is crucial.
Current approaches in graph-based question-answering often use
traditional methods [7, 12] or graph representation models [8, 10].
However, they face several notable gaps, such as scalability and
limited semantic understanding.

Our research is centred on efficiently processing large-scale
graphs, particularly on summarizing and presenting this data to
enhance question answering and information retrieval. Using
content-based queries, we design and implement an interactive
visualization dashboard, namely GraphSUM, to extract subgraphs
from citation graphs. Key features include integrating attention
mechanisms with VGAE, supporting question-answering tasks,
ensuring scalability for large graphs, and validating on real-world
datasets. GraphSUM demonstrates its capabilities by adeptly ex-
tracting relevant subgraphs through content-based queries, pro-
viding an interactive and insightful explanation of the output.
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Figure 1: The GraphSUM architecture comprises four main components: (1) Graph Sampling, for efficient processing
of large-scale graphs; (2) Graph Summarization, aimed at extracting key information from complex graphs for better
analysis; (3) Question Answering, using summarized graph data to respond to user queries accurately; and (4) Interactive

Visualization, for user-friendly graph exploration.

2 SYSTEM OVERVIEW

We present a novel system to enhance question answering and
information retrieval, designed to enable interactive exploration
and visualization techniques that help users quickly comprehend
and navigate through complex, large-scale graph-structured data.
Our system, GraphSUM, integrates advanced graph sampling and
summarization techniques with user-centric design principles to
facilitate efficient and intuitive access to information. Figure 1
illustrates the architecture of the system.

2.1 Graph Sampling

Graph sampling is a crucial initial phase in processing large-
scale graph data. This process involves selecting a representative
subset of nodes and edges from a larger graph, creating a smaller
graph that retains the essential characteristics of the original. The
primary goal of graph sampling is to reduce the size of the input
data, making it more manageable for subsequent processing steps
while preserving the structural and feature-related integrity of
the original graph [17]. This step is fundamental in our approach,
as it precedes and prepares data for the graph summarization
phase, ensuring that the system can handle large-scale graphs
efficiently and effectively.

Random Walk Sampling Random Walk sampling is a technique
that selects a subset of a graph by simulating a walk across
its nodes. A random walk can be described as a sequence of
nodes v1, vy, ...,up Where each v;41 is a neighbour of v; chosen
randomly. The process starts from a randomly chosen node 1,
and involves moving to a neighbouring node v;4; at random,
repeating this step for a predetermined number of steps. This
method effectively captures the local neighbourhood structures
within the graph, as it tends to include closely interconnected
nodes, thus maintaining the original graph’s essential topological
characteristics and community structures.

Random Walk-based GraphSaint Sampling In our approach,
employing Random Walk sampling through GraphSAINT [16]
offers several advantages. Firstly, it allows for efficiently handling
large-scale graphs by reducing the data size to be processed with-
out losing significant structural information. This is particularly
important in applications like citation networks, where the rela-
tionships between nodes (papers, authors, etc.) are complex and
densely interconnected. Random Walk sampling ensures that the
essential connections and contextual information are retained,
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providing a rich and representative dataset for the subsequent
summarization and analysis stages.

GraphSAINT enhances this process by incorporating advanced
techniques to minimize the variance 62 and bias often introduced
during sampling. It employs a normalization factor «, for each
node, calculated as the inverse of the node’s sampling probability,
given by ap = ﬁ where 7(v) is the sampling probability of
node v. This normalization ensures that the sampled subgraphs
are as informative as the full graph. Furthermore, it adjusts the
loss function during training to account for the sampling process.
The adjusted loss function £’ is a weighted version of the orig-
inal loss £, formulated as £’ = Zvevsampled ay - L(v), where
Vsampled Tepresents the set of nodes in the sampled subgraph.
This adjustment is crucial for maintaining the data quality fed
into the graph summarization and question-answering modules
of GraphSUM.

2.2 Graph Summarization

The graph summarization module condenses complex graph
input data into more manageable and informative representa-
tions [13]. Utilizing an attention-based VGAE framework, this
module is crucial for capturing the intricate patterns present in
graph data, especially in an unsupervised learning context. Its
ability to distil complex information into accessible forms makes
it a fundamental system component, significantly enhancing its
capabilities in question-answering and information retrieval.

2.2.1 Attention Mechanism. The module integrates Graph At-
tention Networks (GAT) into the VGAE framework, introducing
a potent attention mechanism that dynamically prioritizes nodes
and edges based on their significance within the graph. The key
difference from traditional methods, which treat all nodes and
edges equally, lies in the attention weight «;; assigned to an edge
connecting nodes i and j. This weight is a manifestation of the at-
tention mechanism’s evaluation, denoted as a;j = Attention(i, j).
The attention function, in this context, calculates the relevance
of the edge within the local graph neighbourhood. By assigning
varying degrees of importance to different edges, GAT enables
a tailored summarization process, ensuring that the resulting
summary captures the salient features of the graph. The atten-
tion mechanism, driven by GAT, is invaluable for graph sum-
marization tasks by providing a nuanced understanding of node
relationships. In essence, GAT empowers the model to selectively
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Figure 2: A snapshot of the interactive visualization tool. GraphSUM efliciently processes large-scale graphs, with a
particular emphasis on summarizing and presenting this data to enhance question answering and information retrieval.

focus on the most significant structural elements of the graph, fa-
cilitating a more refined and informative summarization process.

2.2.2  Encoding Graphs into Latent Space. The VGAE com-
ponent of the module functions by encoding the graph into a
latent space, represented as Z. This encoding is achieved through
a process that involves learning a compact, lower-dimensional
graph representation. This is expressed as a function f : G — Z,
where G represents the original graph data. The goal is to cap-
ture the graph’s essential features in Z, while reducing the data’s
complexity.

The attention mechanism enhances this encoding process. It
operates by assigning weights to different parts of the graph,
effectively guiding the VGAE to focus on encoding the most
significant features. If we denote the attention weight for a node
i as a;j, the encoding function can be modified to f(G,a) — Z,
where o represents the set of attention weights for all nodes. This
ensures that the encoded latent space Z is a function not only
of the graph structure but also of the relevance of each node as
determined by the attention mechanism. In this approach, the
VGAE use a variational inference model to map each node i to a
point in the latent space, represented by a mean y; and variance
0'1.2. The latent representation for each node i in Z is then sampled
from a Gaussian distribution N (y;, O'iz), with the parameters ;
and O'iz being functions of the node’s features and its attention
weight «;. This results in a latent space that not only captures the
essential features of the graph but also emphasizes the features
deemed most relevant by the attention mechanism.

2.2.3 Unsupervised Learning for Complex Pattern Capture.
One of the significant advantages of using a generative model
is its ability to operate unsupervised. This means the model can
learn to identify and summarize graph data patterns without
needing labelled training data. It operates by encoding the graph
into a latent space Z, optimizing a variational lower bound on
the likelihood of the graph data. This is mathematically repre-
sented by the Evidence Lower Bound (ELBO), which combines
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the reconstruction likelihood (encouraging the decoded graph
to resemble the original) with a regularization term using the
Kullback-Leibler divergence. This approach allows the VGAE to
capture complex patterns without the need for labelled training
data. By learning dense representations in Z, the VGAE uncovers
intricate relationships within the graph, enhancing its utility in
tasks like graph summarization and question answering, where
accurate and contextually relevant responses are crucial. This
unsupervised approach offers a thorough comprehension of the
underlying patterns within the graph, which enhances the sys-
tem’s efficacy in managing intricate graph data.

2.3 Question Answering

Question-answering systems are designed to interpret and re-
spond to queries posed by users, typically in natural language.
These systems aim to retrieve accurate and relevant information
from a given dataset and present it in an easily understandable
format. In large-scale graph-structured data, such as citation net-
works, question answering becomes a tool for navigating and
extracting specific insights from complex interconnections [10].

In our approach, the question-answering module allows users
to input their queries in a natural language format, making the
system accessible and user-friendly. This module interacts di-
rectly with the graph summarization output - the simplified and
condensed representations of the original, complex graph data.
When a query is received, the system leverages these summarized
graphs to efficiently locate and retrieve information that is most
relevant to the user’s question. The process involves several key
steps: understanding the query, mapping it to the summarised
graph’s appropriate parts, and extracting pertinent subgraphs.
Using a pre-trained BERT model, we embed queries and compare
them with graph summarization results through cosine similarity.
Concurrently, we extract keywords, compare them with paper
node keywords, and rank nodes. This translation from complex
graph data to a small subset of graphs with a list of answers



is a significant aspect of the module, enhancing the system’s
interactivity and usability.

2.4 Interactive Visualization

The question-answering module’s performance and reliability are
evaluated with real-world datasets, specifically from citation net-
works. Through an interactive dashboard, GraphSUM facilitates
a comprehensive user experience by providing functionalities
that include the loading of academic datasets, execution of a pre-
trained graph summarization model, and the input of queries
with the ability to specify the desired number of displayed papers.
Users can further delve into the system’s intricacies through the
navigation of display tabs, allowing for in-depth exploration of
both input data and the resultant output graph. Incorporating
GPT engines enriches the user experience by generating narra-
tives that elucidate the summarised graph’s characteristics. More-
over, the interactive graph feature empowers users to conduct
detailed examinations, enabling zoom, drag, and node-specific
interactions for a nuanced exploration of academic papers within
the dataset. Figure 2 shows a screenshot of the visualisation tool.

3 SYSTEM DEMONSTRATION

The demonstration scenario focuses on assisting academics in
navigating the vast landscape of academic knowledge through
GraphSUM. Tailored for question-answering tasks, GraphSUM
integrates attention-based graph summarization and advanced
sampling methods to deliver a transformative experience in in-
formation retrieval within academic databases. The demonstra-
tion scenario consists of three parts: (i) Graph Data Collection
and Processing: The journey begins with academics utilizing a
real-world citation graph [14], researchers, educators, and stu-
dents are introduced to the interactive dashboard. The interface
simplifies the process of loading academic datasets, eliminat-
ing complexities associated with data acquisition. GraphSUM
then employs sophisticated graph sampling methods tailored
to academic networks, ensuring efficient data preprocessing for
subsequent analysis. (2) Query-driven Graph Summarization and
Narratives: Academics, eager to explore specific topics within
their domain, initiate queries through GraphSUM. For instance,
a researcher interested in "Image and Computing Vision" inputs
a query, prompting the system to dynamically extract relevant
nodes (papers) from the expansive citation graph. Employing
attention-based graph summarization, GraphSUM distills essen-
tial information, constructing a coherent subgraph that visually
encapsulates the user’s specified topic. Simultaneously, leverag-
ing advanced GPT engines, GraphSUM generates textual nar-
ratives that accompany the visual representation. This dual ap-
proach empowers academics to quickly comprehend key players,
seminal works, and emerging trends within their chosen field
through both visual and textual insights. (3) Interactive Visualiza-
tion: Academics interact with the intuitive dashboard, utilizing
pre-trained graph summarization model and entering queries.
The interactive graph feature facilitates in-depth exploration,
allowing users to zoom, drag, and interact with specific nodes
for a detailed examination of academic papers within the dataset.

4 RELATED WORK AND CONCLUSION

Current approaches in graph-based question-answering often use
traditional methods, lacking adaptability for complex knowledge
graphs [10]. Some integrate attention mechanisms but may com-
promise computational efficiency or miss out on efficient graph
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summarization techniques [15]. The added value of GraphSUM,
compared to previous systems, lies in its user-centric paradigm,
efficient large-scale exploration, and comprehensive knowledge
extraction. By integrating advanced techniques from GraphSaint,
VGAE, and attention mechanism, GraphSUM provides a unique
synthesis that prioritizes adaptability and insightful exploration
for the academic community. As an ongoing work, we are work-
ing on novel graph summarization techniques to enhance the
quality and relevance of extracted knowledge. As an ongoing
work, we are focusing on extending GraphSUM to different do-
mains beyond academia, improving graph summarization tech-
niques for scalability and interpretability, integrating multimodal
information for richer responses, and enhancing the interpretabil-
ity and explainability of the system’s outputs.
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