
Breaking Down Accuracy with Subspace Optimization
Donatella Firmani
Sapienza University

Rome, Italy
donatella.firmani@uniroma1.it

Giorgio Grani
Sapienza University

Rome, Italy
g.grani@uniroma1.it

Flavia Tagliafierro
Sapienza University

Rome, Italy
flavia.tagliafierro@uniroma1.it

ABSTRACT
This paper introduces a Python toolkit to break down accuracy
of classification models, by identifying high-accuracy portions
of the test dataset and thus facilitating a deeper understanding
of where the model performs best and where it falls short.

Given a dataset, a classification model and an accuracy thresh-
old, our system returns a range query that selects the largest
sub-space of the test dataset on which the classifier achieves
higher accuracy. The toolkit allows users to interactively explore
such sub-space, by adjusting the returned ranges with graphical
elements and observing the change in the model’s accuracy and
data distributions. Ranges can be manually initialized to highlight
the strengths and weaknesses of the model in different scenarios.

The core of our method consists of a mixed-integer optimiza-
tion algorithm. Demonstration on real-world datasets and a se-
lection of models show that our toolkit can serve as an effective
way to understand performance across different data segments.

1 INTRODUCTION
Classification models have become ubiquitous in a wide range of
applications, from healthcare to finance. These models, powered
by sophisticated algorithms, can play a pivotal role in decision-
making processes. The standard de-facto metric for assessing
model performances is global accuracy, that is, the fraction of
correctly classified data points on a test set. However accuracy
can vary wildly depending on the characteristics of a certain
dataset, and there are twomain reasons for which global accuracy
alone can be misleading:

• High global accuracy ≠ good model. High-accuracy models
can exhibit bias, performing well for over-represented
groups or types of data, but not for others that are equally
important.

• Modest global accuracy ≠ bad model. Different applications
can tolerate errors in sub-spaces of the data that are not
critical.

Intuitively, breaking down global accuracy would build con-
fidence in using the model for real-world decisions. Knowing
where the model excels and where it does not would allows users
to make informed decisions about its applicability and limits,
guiding data collection, feature engineering, and model tuning.

Unfortunately, to the best of our knowledge, there are no stan-
dard approaches to perform accuracy break down. In this paper,
we initiate this study by demonstrating our current solution,
which is based on a simple - yet effective - break-down policy.

Our break-down policy is illustrated in Figure 1. In the figure,
each point represents a different instance of a two-dimensional
test set and the global accuracy is 25−6

25 = 0.76. Given a threshold
such as 0.9 to quantify high accuracy, our tool can compute a

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

<----- x range ----->

<-

y
ra

ng
e

->

+
+

++

-
-

- -

Figure 1: High-accuracy subspace in two dimensions. The
space is separated in two regions according to the green
line. Data points to the left are classified as red (+) and data
points to the right are classified as blue (-). The ground-
truth class of each instance is represented by the color of
each point.

partition of the evaluation’s scope in two parts: a high-accuracy
sub-space, in grey, and a low-accuracy sub-space, in white. Accu-
racy of the two areas is respectively 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑔𝑟𝑒𝑦) = 14

15 ≈ 0.93,
above the threshold, and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑤ℎ𝑖𝑡𝑒) = 5

10 = 0.5.
In order to compute the sub-space partitioning, we design a

mixed integer optimization problem and use a state-of-the-art
optimizer [4] to find the hyper-rectangular sub-space that has
maximum size and accuracy above threshold. The size of a sub-
space is simply defined as the number of enclosed data points.

The computed result is returned to the user as a range query,
which provides a compact and human readable way to identify
high-accuracy data points and low-accuracy data points as re-
spectively those inside and outside the ranges.
Contribution. We call our tool SCOPE, standing for Subspace
Classification OPtimization and Explanation. We slightly abuse
the term “explanation” because computing high-accuracy ranges
can be broadly thought as an attempt to interpret a model’s
classification patterns. Users of the demo will be able to use our
tool either standalone or together with the SHAP [5] explanation
tool to show the feature importance in the high-accuracy area.

SCOPE is available on GitHub1. The high-level architecture of
the system consists of four modules:

(1) Dataset module. A module to load/select datasets and fea-
tures. We provide a collection of pre-loaded datasets. Users
can bring their own datasets by uploading files in a dedi-
cated folder.

(2) Classification module. A module to select/train a classifica-
tion model, make predictions and compute accuracy. We
include by default three classification models, dubbed Ran-
dom Forests, Logistic Regression, and feedforward Neural
Network. Users can bring their own models by implement-
ing a Python class.

1https://github.com/Flaviatagliafierro/Scope

Demonstration Paper

Series ISSN: 2367-2005 790 10.48786/edbt.2024.71

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.71

(3) Optimization module. A module that takes as input the
dataset, the features and the classification model as de-
scribed in the previous modules. Then, it solves a mixed in-
teger optimization problem to finds the largest sub-space
with a certain minimum level of accuracy desired. The
module adopts GUROBI [4] as an optimizer and returns
a range query that partitions the test data space into an
high-accuracy and a low-accuracy sub-space.

(4) Display module. A graphical interface to interact with the
automatically computed ranges, adjust themmanually and
observe changes in the accuracy and feature importance.

The existing literature is rich with applications where high-
accuracy classification models deviate from the desired behaviour
in unexpected ways. One popular example is a classifier for im-
ages of huskies and wolves [7], unable to recognize pictures of
huskies without snow in the background. Another example is a
95% accuracy Entity Matching model unable to recognize two
different songs with the same duration [3]. Range queries are a
popular tool in data analysis. We mention the recent work [8]
where ranges are automatically computed to identify fair sub-
spaces, according to different fairness constraints [6].

Overview. In Section 2 we formalize the sub-space optimization
problem at the heart of our approach. In Section 3 we illustrate
different demo scenario using publicly available datasets. Finally
Section 4 provides conclusive remarks.

2 SUBSPACE OPTIMIZATION PROBLEM
We define a Subspace Optimization Problem (SOP) formulated as a
mixed-integer mathematical program as the problem of finding the
subspace containing the larger number of points and respecting
a minimum level of accuracy, decided by the user.

SOP takes as input the threshold accuracy 𝛽 and returns lower
and upper bounds for each feature (𝑙𝑘 and𝑢𝑘 for the 𝑘-th feature)
representing a range query for identifying a high-accuracy sub-
space. Intuitively, the fact that there is a subspace with higher
performances means two things: on the one hand, we can be
more confident of the results if they lay in the subspace, and
on the other hand, we may show the model is unbalanced for
certain regions. In the rest of this section we describe the main
components of the problem: sets, decision variables, parameters,
constraints and objective function.

Sets. The main sets are:

• 𝐼 = {1, . . . , 𝑃} represents the set of indices of the points in
the dataset.

• (𝑥𝑖 , 𝑦𝑖)𝑖∈𝐼 represents the dataset, where𝑦𝑖 ∈ R is the label,
𝑥𝑖 ∈ R𝐾 is the vector of features.

The number of features in the dataset is given by the integer
𝐾 > 0, and 𝑥𝑘

𝑖
is the 𝑘-th feature of 𝑥𝑖 .

Decision variables. The decision variables are:

• 𝑣𝑖 , 𝑖 ∈ 𝐼 , are binary indicator variables indicating the
instances to be included in the final ranged problem. We
use the notation 𝑣 for the vector of all the variables 𝑣𝑖 . The
solution will have 𝑣𝑖 = 1 if the 𝑖-th point belongs to the
optimal subspace, and 𝑣𝑖 = 0 otherwise.

• 𝑝𝑘
𝑖
, 𝑖 ∈ 𝐼 and 𝑘 = 1, . . . , 𝐾 , are binary indicator variables

indicating if the 𝑖-th instance belongs inside the 𝑘-th range.
The solution will have 𝑝𝑘

𝑖
= 1 if the 𝑖-th point belongs to

the 𝑘-th optimal range, and 𝑝𝑘
𝑖
= 0 otherwise.

• 𝑠𝑘
𝑖
, 𝑖 ∈ 𝐼 and 𝑘 = 1, . . . , 𝐾 , are auxiliary binary indicator

variables indicating to which disjuction the 𝑖-th instance
belongs when it is not inside the 𝑘-th range.

• 𝑢𝑘 ∈ R for 𝑘 = 1, . . . , 𝐾 , are continuous variables repre-
senting the upper bounds of the ranges. We indicate with
𝑢 the vector of all the variables 𝑢𝑘 .

• ℓ𝑘 ∈ R, ℓ𝑘 ≤ 𝑢𝑘 for 𝑘 = 1, . . . , 𝐾 , are continuous variables
representing the lower bounds of the ranges. We indicate
with ℓ the vector of all the variables ℓ𝑘 .

Parameters and additional sets. In the following, we describe
the main parameters and additional sets:

• 𝛽 ∈ (0, 1] is the threshold value for the accuracy. It is
decided interactively by the user. Increasing 𝛽 will lead
to progressively higher accuracy of the optimal subspace
found.

• 𝑟𝑘 for 𝑘 = 1, . . . , 𝐾 are the size of the ranges in the entire
dataset.

• 𝑐𝑖 , for 𝑖 ∈ 𝐼 , indicates if the label returned by the classifica-
tion model is correct or not. In other words, 𝑐𝑖 = 1 is the
model 𝜙 correctly classifies the 𝑖-th vector 𝑥𝑖 , i.e. 𝑐𝑖 = 1 if
𝜓 (𝑥𝑖) = 𝑦𝑖 , and 𝑐𝑖 = 0 otherwise.

• 𝑀𝑘 = 1 + max𝑖∈𝐼 {|𝑥𝑖 |}, for 𝑘 = 1, . . . , 𝐾 are the big-M
values used to activate the disjunctive constraints for the
lower and upper bounds following the methodology in [1].

• 𝐾𝑎
ℓ
⊆ {1, . . . , 𝐾} is the set for which there exists an upper

bound 𝑎𝑘
ℓ
on ℓ𝑘 specified by the user

• 𝐾𝑏
ℓ
⊆ {1, . . . , 𝐾} is the set for which there exists a lower

bound 𝑏𝑘
ℓ
on 𝑢𝑘 specified by the user.

• �̂�𝑎
ℓ
⊆ {1, . . . , 𝐾} is the set for which there exists a fixed

value 𝑎𝑘
ℓ
for ℓ𝑘 decided by the user.

• �̂�𝑏
ℓ
⊆ {1, . . . , 𝐾} is the set for which there exists a fixed

value 𝑏𝑘
ℓ
for 𝑢𝑘 decided by the user.

• 𝜖 > 0 is a small value.

Constraints and objective function. Figure 2 formally defines
SOP(𝛽) as the problem of finding the ranges of the largest subset
of instances having an accuracy ≥ 𝛽 .

The high-level description of the main constraints follows.
• (2) indicates that the accuracy of the subspace should not
be lower than 𝛽 .

• (3) − (4) − (5) − (6) are disjunctive constraints indicating
that the 𝑘-th component of the 𝑖-th point, 𝑥𝑘

𝑖
, belongs to

the interval 𝑙𝑘 ≤ 𝑥𝑘
𝑖
≤ 𝑢𝑘 or it is outside, i.e. 𝑥𝑘

𝑖
< 𝑙𝑘 or

𝑥𝑘
𝑖
> 𝑢𝑘 .

• (7) are constraints indicating that if the 𝑖-th point is se-
lected then it must belong to all the 𝐾 ranges, i.e. 𝑣𝑖 =

1 ⇐⇒ 𝑝𝑘
𝑖
= 1 for 𝑘 = 1, . . . , 𝐾 .

• (8) are constraints indicating that if a point belongs to all
the 𝐾 ranges then it has to be selected, i.e. if 𝑝𝑘

𝑖
= 1 for

𝑘 = 1, . . . , 𝐾 then 𝑣𝑖 = 1.
• (9) − (10) are bound constraints limiting the choice of the
ranges below the levels specified externally.

• (11) − (12) are fixing constrains, blocking the ranges to
the levels specified externally.

The objective function (1) is obtained according to the results
in [2], as a transformation by scalarization of the lexicographic
optimization problem 𝑙𝑒𝑥 max𝑣,ℓ,𝑢

(∑
𝑖∈𝐼 𝑣𝑖 ,− 1

𝐾+𝜖
∑𝐾
𝑘=1

𝑢𝑘−𝑙𝑘
𝑟𝑘

)
by noticing that the first objective is a 𝛾−function.

791

SOP(𝛽) = max𝑣,ℓ,𝑢
∑
𝑖∈𝐼 𝑣𝑖 − 1

𝐾+𝜖
∑𝐾
𝑘=1

𝑢𝑘−𝑙𝑘
𝑟𝑘

(1)

s.t.
∑
𝑖∈𝐼 𝑐𝑖𝑣𝑖 − 𝛽

∑
𝑖∈𝐼 𝑣𝑖 ≥ 0 (2)

−𝑀𝑘 (1 − 𝑝𝑘
𝑖
) + ℓ𝑘 − 𝑥𝑘

𝑖
𝑝𝑘
𝑖
≤ 0, ∀ 𝑖 ∈ 𝐼 , 𝑘 = 1, . . . , 𝐾 (3)

𝑥𝑘
𝑖
𝑝𝑘
𝑖
− 𝑢𝑘 −𝑀𝑘 (1 − 𝑝𝑘

𝑖
) ≤ 0, ∀ 𝑖 ∈ 𝐼 , 𝑘 = 1, . . . , 𝐾 (4)

𝑀𝑘 (𝑝𝑘
𝑖
+ 1 − 𝑠𝑘

𝑖
) − 𝜖 (1 − 𝑝𝑘

𝑖
) + ℓ𝑘 ≥ 𝑥𝑘

𝑖
,∀ 𝑖 ∈ 𝐼 , 𝑘 = 1, . . . , 𝐾 (5)

−𝑀𝑘 (𝑝𝑘
𝑖
+ 𝑠𝑘

𝑖
) + 𝜖 (1 − 𝑝𝑘

𝑖
) + ℓ𝑘 ≤ 𝑥𝑘

𝑖
, ∀ 𝑖 ∈ 𝐼 , 𝑘 = 1, . . . , 𝐾 (6)

𝐾𝑣𝑖 −
∑𝐾
𝑘=1 𝑝

𝑘
𝑖
≤ 0, ∀ 𝑖 ∈ 𝐼 (7)

𝑣𝑖 −
∑𝐾
𝑘=1 𝑝

𝑘
𝑖
≥ 1 − 𝐾, ∀ 𝑖 ∈ 𝐼 (8)

ℓ𝑘 ≥ 𝑎𝑘
ℓ
, 𝑘 ∈ 𝐾𝑎

ℓ
(9)

𝑢𝑘 ≤ 𝑏𝑘𝑢 , 𝑘 ∈ 𝐾𝑏
ℓ

(10)
ℓ𝑘 = 𝑎𝑘

ℓ
, 𝑘 ∈ �̂�𝑎

ℓ
(11)

𝑢𝑘 = 𝑏𝑘𝑢 , 𝑘 ∈ �̂�𝑏
ℓ

(12)

Figure 2: Definition of the Subspace Optimization Problem for finding the largest subset of instances with accuracy ≥ 𝛽

Implementation details. We solve SOP with the Gurobi Op-
timizer Python library with academic free licence [4]. The opti-
mizer eventually returns the optimal solution.2 We also include
a parametric time budget, which by default is set to 3 minutes,
after which the current best solution is returned.

3 DEMONSTRATION SCENARIOS
In Figure 3, we illustrate the user interface with a simple dataset
from Kaggle, dubbed Titanic 3. The dataset contains 889 records
representing Titanic passengers and their survival status. Fea-
tures include the traveling class (“PClass”), the cost of their
ticket (“Fare”), demographics data such as “Sex” and “Age”, the
size of the group, divided into siblings/spouses (“SibSp”) and par-
ents/children (“ParCh”). For people traveling alone and we have
that “SibSp”+“ParCh”=0.
Initial set-up. In step 1○ the user can choose a dataset and
specify a target variable for the classification task, e.g., “Survived”.
Upon a new selection, features are shown below and the user is
able to select them and inspect the corresponding distribution of
the datapoints in the test set, split by the “Survived” class.

Users can bring their own datasets by uploading two files in a
dedicated folder: a CSV file with all the instances and a metadata
file with the type of each feature among natural-ordering,
ordinal-feature and no-ordering. Examples of features of the
first type are numerical features, although there can be textual
features that make sense to sort lexicographically. Features of the
second type include categorical features that support a domain-
based ordering relation, such as “Degree”. Features of the third
type include features that have no natural or domain ordering
such as “Country”. The latter type, i.e., no-ordering, cannot be
added to the optimization problem but can still be used here, by
the classifier and the explanation tool if the user wants to.

Users can optionally upload a third file to specify how to split
the dataset into training and test. If such a file is not provided,
SCOPE does a random 70% − 30% split.
Classification results. In step 2○ the user can choose a classifi-
cation model. We provide three options for the demonstration:
Random Forest, Logistic Regression, and Feedforward Neural Net-
work. Upon a new selection, that is, “Random Forest” in Figure 3,
the tool trains a new classification model and then generates
2https://pypi.org/project/gurobipy/
3https://www.kaggle.com/competitions/titanic

a classification results report. The user may customize the re-
port choosing to show a combination of accuracy (“Accuracy
only”), confusion matrix (“Full report”), and distribution of the
feature importance values. By default, the latter is computed
with the popular SHAP [5] explanation toolkit (“Shap feature
importance”). Users cannot bring new models during the live
demo. However, they can bring their own models when using
SCOPE off-line, by implementing a class in a dedicated Python
module. Pre-trained models are also supported.
Manipulating ranges. In 3○, the user can interact with range
sliders to decide to set up bounds that will be included in the
optimization module. Below the ranges, a textbox displays the
size of the selected sub-space as a percentage. In Figure 3, we show
the initial configuration of the sliders, with the textbox showing
the value 100, indicating the entire test set will be included.

Ranges can be manually adjusted (step 4○) by simply moving
the sliders. Upon adjustments, the value of the selected percent-
age of the test set changes, and the results in 1○ and 2○ are
updated by restricting the scope to the selected range. For in-
stance, by restricting the “Age” range to 18-35, plot in 1○ would
show the “PClass” distribution by considering only data points
of the test set that have an age between 18 and 35 years. Anal-
ogously, the accuracy in 2○ would become the accuracy of the
selected sub-space.

The button “Reset Filters” in part 5○ resets all the ranges.
Sub-space optimization. In step 5○, the user can set the ac-
curacy threshold and run the optimization module to solve the
SOP problem defined in Section 2, initialized with the bounds in
3○. As soon as optimal ranges are ready, the slider buttons are
updated (step 6○) and therefore the visualizations in 1○ and 2○
(step 7○, analogously to step 4○). With the setup in Figure 3, that
is no initial range restriction and target accuracy equals to 90%,
the solution found has size 23% of the test set and corresponds to
“Pclass”=[2, 3], “Age”=[17, 30] and “Fare”=[7, 13]. The accuracy
achieved on this subspace is 0.90625, just above the threshold.
Such subspace can be intuitively described as young passengers
with cheap tickets, travelling in second and third class.

During the live demo, users will be able to inspect the full
report in 2○ (omitted from the figure for space constraints) and
discover that most of those passengers did survive4 and that even
4This might be surprising for those remembering the Titanic movie by James
Cameron.

792

1 2

3 54

6

7

Figure 3: Main demonstration functionalities.

a simple classifier was able to learn this pattern with exceptional
accuracy.

Other scenarios. During the live demo, users can change dataset,
classification model, lower and upper ranges, try different accu-
racy thresholds are run the optimizer with different settings. They
will be able to highlight strengths and weaknesses of selected
classifiers and learn more about the selected dataset. Finally, all
the visualizations concern by default the high-accuracy sub-space
found by the optimizer. However, the user can select the “Low-
accuracy sub-space” option in part 5○ and inspect the part outside
the ranges.

4 CONCLUSIONS
This paper presented SCOPE, a Python toolkit to enhance the
evaluation of classification models by providing a more granular
analysis of model performance. Our approach diverges from the
traditional reliance on global accuracy and represents a signifi-
cant improvement over manual inspection of accuracy variation,
thanks to a mixed integer optimization algorithm for automatic
identification of high-accuracy sub-spaces within the test set.

During the live demo, users will be able to explore these sub-
spaces by running the optimization algorithm and inspecting
results. Furthermore, they will be able to bring their own datasets
and uncover common characteristics among data points that are
correctly or incorrectly classified, thereby narrowing the scope
for in-depth examination of classification patterns.

Intuitive graphical elements such as slider buttons make the
toolkit accessible to a diverse range of users, regardless of their
technical expertise, enabling them to gain a deeper understanding
of how changes in data can impact model accuracy and to learn
to identify possible biases that affect performance variations.

Future works. Future works will focus on expanding the toolkit
with other performance metrics like precision and recall and

adding constraints to solution sizes, further increasing its appli-
cability. Other envisioned expansions include compact represen-
tations alternatives to hyper-rectangles, such as cluster of data
points which are correctly / incorrectly labeled. Finally we plan
to explore efficient methods to compute approximate solutions
over large datasets.

ACKNOWLEDGEMENTS
The authors have been partially supported by the following re-
search grants: SEED PNR Project “FLOWER” “Frontiers in Link-
ing records: knOWledge graphs, Explainability and tempoRal
data”, Sapienza Research Project B83C22007180001 “Trustworthy
Technologies for Augmenting Knowledge Graphs” and HORI-
ZONResearch and Innovation Action 101135576 INTEND “Intent-
based data operation in the computing continuum”.

REFERENCES
[1] Dimitris Bertsimas and Robert Weismantel. 2005. (2005).
[2] Marianna De Santis, Giorgio Grani, and Laura Palagi. 2020. Branching with

hyperplanes in the criterion space: The frontier partitioner algorithm for biob-
jective integer programming. European Journal of Operational Research 283, 1
(2020), 57–69.

[3] Vincenzo Di Cicco, Donatella Firmani, Nick Koudas, Paolo Merialdo, and Di-
vesh Srivastava. 2019. Interpreting deep learning models for entity resolution:
an experience report using LIME. In Proceedings of the Second International
Workshop on Exploiting Artificial Intelligence Techniques for Data Management
@ SIGMOD.

[4] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

[5] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Advances in Neural Information Processing Systems 30,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.). Curran Associates, Inc., 4765–4774.

[6] Arvind Narayanan. 2018. Translation tutorial: 21 fairness definitions and their
politics. In Proc. conf. fairness accountability transp., new york, usa, Vol. 1170. 3.

[7] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International conference on knowledge discovery and data
mining. 1135–1144.

[8] Suraj Shetiya, Ian P Swift, Abolfazl Asudeh, and Gautam Das. 2022. Fairness-
aware range queries for selecting unbiased data. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 1423–1436.

793

