
 

ABSTRACT
To tackle economic and societal problems originating from the
centralization of Knowledge Graphs on the Web, there has been an
increasing interest towards decentralizing Knowledge Graphs
across a large number of small authoritative sources. In order to
effectively build user-facing applications, there is a need for effi‐
cient query engines that abstract the complexities around access‐
ing such massively Decentralized Knowledge Graphs (DKGs). As
such, we have designed and implemented novel Link Traversal
ery Processing algorithms into the Comunica query engine
framework that are capable of efficiently evaluating SPARQL
queries across DKGs provided by the Solid decentralization initia‐
tive. In this article, we demonstrate this query engine through a
Web-based interface over which SPARQL queries can be executed
over simulated and real-world Solid environments. Our demon‐
stration shows the benefits of a traversal-based approach towards
querying DKGs, and uncovers opportunities for further optimiza‐
tions in future work in terms of both query execution and discov‐
ery algorithms.
Video: hps:/ / www.youtube.com/watch?v=4WHWgWWZ_aQ

1   INTRODUCTION
Most research on the optimization and execution of SPARQL
queries [1] over Knowledge Graphs [2] focuses on centralized use
cases, in which queries are to be executed over a single dataset, in
which queries can be optimized using traditional optimize-then-
execute techniques [3, 4].
Due to issues in recent years involving personal data exploitation
on the Web, there has been increasing interest in the decentraliza‐
tion of such personal data. is has materialized into various de‐
centralization initiatives, such as Solid  [5], Bluesky  [6], and
Mastodon  [7]. What is common among these initiatives, is that
they distribute personal and permissioned data across a large num‐
ber of authoritative Web sources, which leads to the emergence of
Decentralized Knowledge Graphs (DKGs). For this work, we limit
our scope to RDF-based initiatives such as Solid, as the use of IRIs
in RDF enable convenient integration of data across multiple
sources. Solid enables users to host and control personal data pods,
which are data sources into which hierarchies of RDF documents
can be stored.
In order to find data across such massive distributions of data
across the Web, there is a need for efficient query processing tech‐
niques. While techniques have been introduced that enable the ex‐
ecution of SPARQL federated queries  [8, 9, 10], they are optimized
for handling a small number (~10) of large sources  [11], whereas
DKGs such as Solid are characterized by a large number (>1000) of
small sources. Additionally, federated SPARQL query processing
assumes sources to be known prior to query execution, which is
not feasible in DKGs due to the lack of a central index. Hence,
these techniques are ill-suited for the envisaged scale of distribu‐
tion in DKGs.
To cope with these problems, alternative techniques have been in‐
troduced recently. ESPRESSO  [12] was introduced as an approach
that builds distributed indexes for Solid pods which can be accu‐
mulated in a single location. is accumulated index can then be
queried using keyword search to find relevant pods to a query,

aer which these relevant pods can be queried using federated
SPARQL processing techniques. is approach depends on placing
trust over personal data in this single accumulated indexer. POD-
QUERY  [13] is another approach that involves placing a SPARQL
query engine agent in front of a Solid pod, which enables full
SPARQL queries to be executed over single Solid pods. is ap‐
proach does not consider query execution across multiple pods. In
recent work [14], we proposed making use of Link Traversal ery
Processing (LTQP) for querying across one or more Solid pods.
LTQP is derived from the idea of SQL-based query execution over
the Web [15, 16] and the concept of focused crawling [17, 18]. LTQP
starts query execution given a set of seed sources, from which
links are recursively followed between RDF documents to discover
additional data to consider during query execution, In this previ‐
ous work, we introduced various LTQP techniques that under‐
stand the structural properties of Solid pods, and use this to opti‐
mize LTQP in terms of the number of links that need to be fol‐
lowed. Such a traversal-based approach does not rely on prior in‐
dexes over Solid pods, and can query over live data that is spread
over multiple pods. Results have shown  [14] that non-complex
queries can be completed in the order of seconds, with first results
showing up in less than a second. For more complex queries in
terms of the number of triple paerns, results show that more fun‐
damental optimization work is needed into adaptively optimizing
the query plan upon newly discovered information and reducing
the number of links to be followed.
e focus of this article is on demonstrating the implementation of
a query engine that can execute SPARQL queries across Solid pods
using the LTQP techniques introduced in [14]. is query engine is
open-source, and is implemented in a modular way so it can serve
future research in this domain. We demonstrate this query engine
through a Web-based user interface, in which preconfigured or
manually created SPARQL queries can be executed across both
simulated or real-world Solid pods. In the next section, we explain
our approach, aer which we discuss our implementation in
Section 3. In Section 4, we describe our Web-based demonstration
interface, aer which we conclude in Section 5.

2   APPROACH
Our previously introduced approach  [14] enables query execution
across one or more Solid pods without the need to build any prior
indexes. For this, we build on top of the Link Traversal ery
Processing (LTQP) paradigm, whereby the query engine maintains
an internal link queue which is initialized through a set of seed
URLs. is set of seed URLs determine the starting point for tra‐
versal, and may either be user-provided, or can be derived from
the URLs mentioned in the given SPARQL query. e query engine
will start the process by continuously iterating over this link
queue, dereferencing each link, and adding all discovered RDF
triples into an internal triple source that can continuously grow.
Furthermore, for each dereferenced link with resulting RDF triples,
the engine finds links to other sources, which are appended to the
link queue. Different strategies exist for determining these
links  [19, 14]. During the processing of this link queue, the actual
query processing happens in parallel over the continuously grow‐
ing internal triple. is processing starts by building a logical
query plan using the zero-knowledge query planning
technique  [20], which is necessary due to the fact that LTQP has
no access to prior statistical information about the data to be
queried over. Aer that, the plan is executed following an iterator-
based pipeline approach  [21], which considers the execution plan
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as a pipeline  [22] of iterator-based physical operators. is
pipelined approach allows results to be returned to the end-user,
even though the link traversal and query processing may still be
running for a longer time. A visualization of the architecture of
our approach can be seen in Fig. 1.

Instead of considering all possible links that are discovered in the
RDF triples, we apply various Solid-specific  [14] and Solid-
agnostic [19] link extraction strategies. For example, all Solid pods
make use of the Linked Data Platform (LDP) specification  [23] to
provide an overview of all RDF documents inside a pod, which
may be nested in a hierarchy of containers. An example of such a
container can be seen in Listing 1, which contains links to another
document and two containers. In order to indicate the existence of
such Solid pods, agents within the Solid ecosystem (typically per‐
sons of organizations) may link to their pods via their identifying
WebID [24]. rough this WebID, agents can be uniquely identified
via a URL. Aer dereferencing this URL, an RDF document can be
returned that can contain a link to the user’s Solid pod and other
basic information such as name and contact details. An example of
such a WebID document is shown in Listing 2. Furthermore, Solid
pods can expose a Type Index  [25], which contains a list of RDF
classes for which instances exist in this pod, together with links to
RDF documents containing such instances. An example of such a
Type Index can be seen in Listing  3, which contains entries for
posts and comments.

3   IMPLEMENTATION
Our approach has been implemented using the
JavaScript/TypeScript-based Comunica SPARQL framework  [26].

Following the modular architecture of Comunica, we have imple‐
mented our approach as several small modules, which allows mod‐
ules to be enabled or disabled using a plug-and-play configuration
system for the flexible combination of techniques during experi‐
mentation. is implementation has full support for SPARQL 1.1
queries, which consists of pipelined implementations of all monot‐
onic SPARQL operators. As such, our system is able to execute
SPARQL queries over Solid pods using a traversal-based approach.
Since certain documents within Solid pods may exist behind docu‐
ment-level access control, our implementation supports authenti‐
cation. is allows users to log into the query engine using their
Solid WebID, aer which the query engine will execute query on
their behalf across all data the user can access.
Our implementation is available under the MIT license at hps:/ /
github.com/comunica/comunica-feature-link-traversal, and via the
npm package manager as @comunica/query-sparql-link-
traversal-solid. Our implementation can be used directly within
any TypeScript or JavaScript application. Furthermore, we provide
a script using which queries can be executed from the command
line, as shown in Fig. 2.

4   DEMONSTRATION
In this section, we introduce the environment of our demonstra‐
tion through a Web-based user interface, aer which we discuss
our main demonstration scenario.

4.1   User Interface
We demonstrate our traversal-based SPARQL query engine for
Solid pods through a Web-based user interface. Since our engine
was implemented in TypeScript, it can be transpiled down to
JavaScript, and executed client-side within any Web browser.
Concretely, we make use of the Comunica jery widget
(hps://github.com/comunica/jery-Widget.js) to generated a
static HTML page that contains our traversal-based query engine,
as shown in the figure below. is page is hosted on hps:/ / comu‐
nica.github.io/comunica-feature-link-traversal-web-
clients/builds/solid-default/, and will remain available permanently
aer the conference.

Fig. 1: Link queue, dereferencer, and link extractors feeding
triples into a triple source, producing triples to tuple-pro‐
ducing operators in a pipelined query execution.

PREFIX ldp: <http://www.w3.org/ns/ldp#>
<> a ldp:Container, ldp:BasicContainer, ldp:Resource;
   ldp:contains <file.ttl>, <posts/>, <profile/>.
<file.ttl> a ldp:Resource.
<posts/> a ldp:Container, ldp:BasicContainer, ldp:Resource.
<profile/> a ldp:Container, ldp:BasicContainer, ldp:Resource.

Listing 1: An LDP container in a Solid data vault containing
one file and two directories in the RDF Turtle serialization.

PREFIX pim: <http://www.w3.org/ns/pim/space#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX solid: <http://www.w3.org/ns/solid/terms#> 
<#me> foaf:name "Zulma";
      pim:storage </>;
      solid:oidcIssuer <https://solidcommunity.net/>;
      solid:publicTypeIndex </publicTypeIndex.ttl>.

Listing 2: A simplified WebID profile in Turtle.

PREFIX ldp: <http://www.w3.org/ns/ldp#>
<> a solid:TypeIndex ;
   a solid:ListedDocument.
<#ab09fd> a solid:TypeRegistration;
  solid:forClass <http://example.org/Post>;
  solid:instance </public/posts.ttl>.
<#bq1r5e> a solid:TypeRegistration;
  solid:forClass <http://example.org/Comment>;
  solid:instanceContainer </public/comments/>.

Listing 3: Example of a type index with entries for posts and
comments in RDF Turtle.

Fig. 2: Executing a SPARQL query from the command line.
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Our Web-based user interface allows users to write custom
SPARQL queries and select seed URLs by selecting datasources
from the dropdown-list or typing in custom URLs. If no data‐
sources are selected, the engine will fallback to a query-based seed
URL selection approach, where URLs mentioned in the SPARQL
query will be considered as seed URLs. Next to writing custom
SPARQL queries, the user may also select one of the predefined
queries from the dropdown-list. Furthermore, the user can also au‐
thenticate with a Solid account by using the “Log in” buon.
Aer inserting or selecting a SPARQL query, the user can click on
the “Execute query” buon, aer which the query engine will exe‐
cute the query. is execution will take place in a separate Web
worker process, as not to halt interactions with the user interface.
Each result that is iteratively produced by the query engine will be
shown immediately in the scrollable list of query results at the bot‐
tom of the page.

4.2   Scenario
Our publicly available Web-based user interface allows users to ex‐
ecute SPARQL queries across any existing Solid pods. Since not
everyone may own a Solid pod, our primary demonstration sce‐
nario involves an environment in which we have setup a large
number of simulated Solid pods.
Concretely, we host 1.531 Solid pods that were generated using the
default seings of the SolidBench  [14] dataset generator, which
consists of 3.556.159 triples spread over 158.233 RDF files across
these pods. e SolidBench dataset is derived from the LDBC
Social Network Benchmark (SNB)  [27], which provides a social
network use case, in which people can be friends of each other,
create posts, and like and comment on each others posts.
Furthermore, we have pre-configured some of the SPARQL queries
that SolidBench provides, which can then be executed over this
simulated environment.
Our demonstration scenario will start by showing the SPARQL
query “Discover 1.5” from SolidBench, which will produce all posts
that are created by a specific person. For this, we will enable the
Network inspection tool tab within the Chrome browser, which al‐

lows the audience to see the Resource Waterfall of all HTTP re‐
quests that were required to execute the query. is shows how
some HTTP requests depend on other requests due to links be‐
tween them, while other requests may be done in parallel. Fig.  4
shows a screenshot of this scenario.

Since “Discover 1.5” will primarily target a single Solid pod, we
will also show “Discover 8.5”, which targets multiple Solid pods
and will return all posts by authors of posts that a given person
likes. In contrast to the previous query, “Discover 8.5” will traverse
across multiple Solid pods, as shown in Fig. 5 Since this happens in
a traversal-based manner, all of this happens automatically in the
background without requiring any user interaction.

Besides these 2 queries in the main demonstration scenario, we
provide a total of 37 default queries that can be selected in the
dropdown-list of queries.

5   CONCLUSIONS
In this article, we discussed the implementation of an open-source
SPARQL query engine that is able to query over DKGs within
Solid, a permissioned decentralization environment. Our system is
based on LTQP techniques that were specifically designed for ex‐
ploiting the structural properties of the Solid environment.
To demonstrate this system, we provide a Web-based user inter‐
face that can be accessed and used by anyone with a modern Web
browser. We provide several default SPARQL queries that users
can execute across simulated Solid pods, or users may write their
own SPARQL queries for execution against real-world Solid pods.
Besides this Web-based user interface, our system can be used
within any TypeScript or JavaScript application, or via the com‐
mand-line.
rough this demonstration, we show the effectiveness of tra‐
versal-based SPARQL query execution across DKGs. Many queries
start producing results in less than a second, which is below the
threshold for obstructive delay in human perception [28] in inter‐

Fig.  3: Web-based user interface of our traversal-based
SPARQL query engine.

Fig. 4: e Resource Waterfall logs when executing Discover
1.5 from SolidBench.

Fig. 5: e Resource Waterfall logs when executing Discover
8.5 from SolidBench.
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active applications. Our system and its demonstration provide
groundwork for future research in traversal-based query process‐
ing over DKGs. In future work, we will investigate further opti‐
mizations, which may involve adaptive query planning
techniques  [29] –which have only seen limited adoption within
LTQP  [30] and SPARQL query processing  [31, 32, 33]– or enhance‐
ments to the link queue [34].
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