
Headwork: a Data-centric Crowdsourcing Platform for
Complex Tasks and Participants

David Gross-Amblard
first.last@irisa.fr

Univ Rennes / Irisa Lab
France

Marion Tommasi
Inria Lille-Nord Europe

Université de Lille
France

Iandry Rakotoniaina
UMR 7204, MNHN-CNRS-UPMC,

CESCO, Paris
France

Constance Thierry
first.last@irisa.fr

Univ Rennes / Irisa Lab
France

Rituraj Singh
Univ Rennes / Irisa Lab

France

Leo Jacoboni
Wirk
France

ABSTRACT
In this demo we introduce Headwork, an open-source academic
platform for the crowdsourcing of complex tasks. Besides classi-
cal crowdsourcing features, Headwork eases the development
of crowdsourcing campaigns through a full relational abstraction
of relevant concepts (participants, skills, tasks, current answers,
decision procedures, GUI, etc.). It allows in particular the orches-
tration of complex dynamic tasks using so-called tuple artifacts
(i.e. finite-state automata which transition guards and actions are
SQL-defined, on an evolving database). The demo will illustrates
these key features, both from the participant and developer point
of view.

1 INTRODUCTION
Crowdsourcing is now a well-established technique to solve
tasks that remain difficult for computers, by automatically asking
questions to humans. Successful examples are Zooniverse [14],
Foldit[5] for participative science, and AmazonMechanical Turk1
for rewarded tasks, to name a few. At the core of crowdsourcing
platforms are micro-tasks: simple questions awaiting for a simple
answer. A typical example is to identify the polarity of a tweet
(aggressive, friendly), a task still hard for machines.

While the crowdsourcing of micro-tasks is well studied, recent
works turn their attention tomacro-tasks [9], that require a chain
of interactions with humans, using various steps and interme-
diate decisions. A natural application is the crowdsourcing of
report writing, where several participants with complementary
skills work on different parts of the report, vote for modifications,
check contributions, add pictures, etc. Several systems has been
considered to handle this kind of tasks 2 [1, 11], but they rely on
a low-level, procedural description of interactions. For the task
designer, this requires to take care of technical aspects such as
graphical user interface, task synchronization, participant inter-
actions, spammer detection, gold answers, answer aggregation,
or participant selection methods.

In this demo, we propose to leverage on these previous efforts.
We present Headwork, a ready-to-use, academic crowdsourcing
platform for the deployment of complex tasks. In order to limit
the task designer’s efforts, the Headwork platform proposes

1https://www.mturk.com/
2https://docs.pybossa.com/

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

a full relational abstraction of relevant crowd concepts (parti-
cipants, skills, tasks, GUI,...) and algorithms (task assignments
optimization, crowd decision primitives such as majority voting
or expectation maximization). The orchestration of macro-tasks
is realized through tuple artifacts [6], that are finite state automata
operating on a database, which transitions are guarded by SQL
conditions and which trigger SQL actions.

To promote the adoption of Headwork, the platform is fully
open-source3 (AGPL), and a demo server is available4. On the de-
veloper’s side, participant interactions can be customized through
HTML/Javascript templates. The platform has already been used
for participative science campaigns, and is compatible with re-
warded crowdsourcing.

In the sequel we position our work with respect to the state
of the art, then introduce the model Headwork relies on. After
presenting the overall platform architecture, we will describe our
demo scenarios and conclude with perspectives.

2 RELATEDWORK
With the expansion of participatory work, many crowdsourcing
platforms have been developed by industries, such as AmazonMe-
chanical Turk. However, industrial platforms do not always meet
the needs of the academic world and new academic platforms
have started to emerge. These platforms are mainly used for the
composition or annotation of corpora. We can for example men-
tion Galaxy Zoo5 [7], a platform where the contributor annotates
photos of galaxies according to their shape. There are other ac-
complished academic platforms, but they deal with very specific
themes and only few are open source, among them Siminchikku-
narayku6 developed [13] to collect data for the preservation of
the Peruvian mother tongue, or gMission [4] a crowdsourcing
platform for task completion in a specific geographical space.
The system recommends micro-tasks based on the geolocation
of contributors.

Most of the systems in the literature have not resulted in
platforms, and when they do, the platform focuses on a very
specific topic. On the generic side, the major participative science
platform is Zooniverse [14]. It allows to design workflows of
tasks ranging from text forms to image annotations. Up to our
knowledge, accepted workflows are linear deterministic ones (as
in a survey) and participant skills are not taken into account.
Yet, a procedural control of the workflow is technically possible
through the Caesar extension. It is noteworthy that a wide range

3https://gitlab.inria.fr/druid-public/headwork
4https://headwork.irisa.fr
5https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
6https://www.siminchikkunarayku.pe/

Demonstration Paper

Series ISSN: 2367-2005 778 10.48786/edbt.2024.68

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.68

of worflow (e.g. BPMN) management systems exist7, but they
focus on interactions with a single customer or a single team,
without considering a whole crowd.

The idea to devise a relational abstraction for crowdsourcing
has been proposed in earlier works, ranging from SQL [3, 10] to
Datalog [8]. But their focus is on micro-tasks only, with no spe-
cific participant modeling or extension tools. In the next section
we present our model to deal with macro-tasks in a data-oriented
style.

3 MODEL
The Headwork platform is data-oriented. Our goal is to focus
on transforming data from the crowd rather than dealing with
low-level programming issues. We illustrate below our relational
abstraction, the templatemechanism, and explain the deployment
of micro and macro-tasks.

3.1 Relational Abstraction
Several built-in tables are available. Basically:

• The user table gathers information about crowd partici-
pants;

• The skill table contains skill definitions (as keywords
and levels of expertise), used for tasks and user profiles;

• The template table provides classical user interactions
(expressed in HTML and Javascript);

• The task table contains the questions for the crowd;
• The profile table allows to specify which skill is relevant
for a task;

• The answer table saves participant contributions and in-
termediate computations.

Micro-tasks are then built on these notions.

3.2 Micro-Tasks
Headwork comes with different language flavour. A domain-
specific language that we call Crowdy is available, allowing to
express simply a wide variety of micro-tasks. For example the
following code (Listing 1) will propose the question ’Please count
the number of snow leopards in the following image’ to any
participant, favoring those having the wildlife skill. An inte-
ger answer is required, and the corresponding error message is
provided (HTML and SQL details are omitted for clarity).

Listing 1: Leopard counting micro-task (Crowdy)
prepare task 1 as integer input
pick at random IMG from ImageTab le (u r l)
use

' P l e a s e count . . . f o l l ow i n g image IMG '
as body
sk i l l ' w i l d l i f e ' i s re levant for the task
launch task

The Crowdy language is translated into SQL expressions on
our model (Listing 2).

7https://www.gartner.com/reviews/market/business-process-management-platforms

Listing 2: Leopard counting micro-task (sugar-free code)
@IMG:= s e l e c t u r l from ImageTab le

order by (rand (hash (u r l)) l imi t 1 ;
@BODY:= ' P l e a s e count the . . . image @IMG ' ;
@CHECKER:= in t ;
@CHECKERMSG:= ' P l e a s e en t e r an i n t e g e r ' ;
in se r t into task (id , formbody , checker , checkermsg)
values

(1 ,@BODY,@CHECKER,@CHERCKERMSG) ;
in se r t into p r o f i l e (1 , ' w i l d l i f e ') ;

If needed, task designers have full control of the SQL coun-
terpart. SQL expressions can also be used in specific Crowdy
statements. For example the following lines will pick a question
according to its current priority in the database.

use
(s e l e c t t e x t from q u e s t i o n L i s t
order by p r i o r i t y desc l imi t 1)

as body

3.3 Template Mechanism
Headwork comes with an extensible template mechanism, that
allows the task designer to re-use typical crowd interactions, but
also to propose new ones to the community. Basic templates
are classical HTML form inputs such as text, text area, lists and
radio buttons. More sophisticated templates are selectors for
geographical maps (point of interest, area of interest), image
selectors. Audio/video playing (for speech-to-text translation)
and audio recording (for text-to-speech) are also available.

The general architecture of a template is an HTML snippet
whose interaction is driven by a Javascript code. The code can
contain text tags that are populated by a Crowdy statement (as
we did above with the IMG tag). The only constraint is to provide
the output as a specific field in JSON format, so that Headwork
is able to process it into the answer table (note that for security
reasons, a new template has to be inspected by the platform man-
ager before inclusion, as in any application store). The answer
table can contain plain JSON data, that can be extracted in SQL
with XPath-like expressions (thanks to MySQL extensions). For
complex JSON, a relational mapping can be given to extract data
properly. This allows to handle complex/hierarchical annotation
tasks that are common e.g. in NLP.

launchstart count decide
none 10 answers

<10 answers

Figure 1: A tuple-artifact for snow leopard counting

3.4 Macro-Tasks
Macro-tasks are workflows of simple tasks, which order and
content can evolve according to participant answers and crowd
decisions. In Headwork, a macro-task is driven by a tuple artifact
(Figure 1): a finite state automaton which transition conditions
(guards) and actions are expressed in Crowdy (hence SQL at a
low level). The motivation for using tuple artifacts is two-fold:

779

Gather
peoplestart

Anyone: spot
leopards and

rocks on image

Ethologist:
identify
animal

behaviour

Geologist:
identify
rock type

decide
100 people

<100 people

3leopards
spotted

3
roc
ks

spo
tte
d

con
sen
sus

am
on
g 2

exp
ert
s

consensus

among 2 experts

Figure 2: Spotting and classifying leopards and rocks with
various expertise levels

first they offer a data-oriented perspective of both crowd contri-
butions and the data aggregation life-cycle, without relying on
an external procedural language. Second, this formalism enables
static analysis and formal verification, even in the presence of
data.

Generally speaking, a transition in a tuple artifact has the
following structure:

state 𝑠
guard: 𝛾

−−−−−−−−−→
actions: 𝛼

state 𝑠′,

meaning that, if we are in state 𝑠 with database 𝐷𝐵, and the
guard query 𝛾 (𝐷𝐵) is true, then we go to state 𝑠′, with the new
database 𝛼 (𝐷𝐵).

The following simple example organizes the counting of snow
leopards (Listing 3). We start (launch state) by launching the pre-
vious, Listing 1 micro-task (actions) and then jump to the count
state (no guard). When 10 answers have been given (guard to
reach the decide state), we conclude by choosing a count of snow
leopards. We use weighted majority voting, where participants
with the relevant skills (here wildlife) have more influence on
the final decision. The result part is a view defining the result
of the crowd campaign.

Since guards and actions can be defined completely with
queries on the Headwork relational schema, and since any num-
ber of states can be envisioned, a wide set of task compositions
can be expressed: sequences of questions, conditional branching,
loops. Computations and aggregations benefit from the full power
of SQL, extended with crowd-style operators such as majority
voting. Specific cohort of participants can be defined thanks to
queries on the skill and profile tables.

The tuple artifact in Figure 2 depicts a more sophisticated
macro-task for which a crowd of 100 respondents is gathered. Par-
ticipants are then asked to spot leopards or rocks in a collection
of images. When at least 3 spots given by different participants
match, a relevant element is considered to be identified. Then,
depending on the element type (leopard, rock), a corresponding
expert is questioned. A consensus of two experts is required to
make a decision.

Listing 3: Macro-task description
launch → count

guard : none
act ions :

−− cod e from L i s t i n g 1

count → decide
guard : task 1 has 10 answers
act ions :

prepare task 2 as computation
take sk i l l −weighted−majority (answers 1)

decide : f ina l

r e su l t : answers 2

Figure 3: The Headwork architecture

4 THE HEADWORK PLATFORM
The platform, written in PHP (around 7,000 lines) is organized as
follows (Figure 3). The main challenges we faced was to devise
a fully relational abstraction for user interaction (by contrast
with typical MVC approaches) and to capture the relevant crowd
primitives. More precisely, Task providers submit a job as a JSON
file encoding the tuple artifact, in the SQL or Crowdy language,
based on the various available templates (HTML forms, Maps,
Sound I/O, custom Javascript, ...). The workflow engine then
processes the automaton and render tasks to participants through
the Web interface (Javascript, Bootstrap). Participants can create
an account, give their profile (skills), see the list of available tasks
ranked according to their skills, and start contributing. As we
focus on participative crowdsourcing, tasks can be freely chosen
by participants. A task designer can implement a finer participant
selection based on skills or gold questions to avoid spammers.
If required, Headwork is compatible with a rewarded pool of
participants through the Wirk8 service, to speed-up macro-tasks
that could not wait for benevolent participants.

5 DEMO SCENARIO
The demo will start with a basic crowdsourcing interaction for
image annotation. Participants are invited to list some skills and
annotate a wildlife image, and see how decision are made using
majority voting. Then we will demonstrate the flexibility of the
interface with controlled text input, HTML forms, maps and
8https://wirk.io/en

780

audio. We will illustrate how the chaining of questions, and the
content of questions can be based on the participant previous
answers or by crowd decisions, which already goes beyond the
capabilities of popular form engines such as Google Form or
LimeSurvey. We will show how complex computations can be
made using all the power of SQL extensions such as geographical
primitives on maps. A preview of the platform is available9, with
its source code10 and a companion video11.

6 CONCLUSION AND FUTUREWORK
In this demo, we presented Headwork, an open-source crowd-
sourcing platform. Headwork allows the monitoring of complex
dynamic macro-tasks through tuple artifacts. To do so, the essen-
tial concepts of crowdsourcing (participants, skills, tasks...) are
abstracted in a relational way. Our hope is to make Headwork
an academic laboratory for studies in macro-task crowdsourcing,
while hosting real participative and citizen science projects. In
the short future we plan to implement richer, hierarchical skill
models [12] and to allow for automatic workflow verification [2].

ACKNOWLEDGEMENTS
We would like to thank the interns from Rennes University that
contributed to this project. This work was also funded by the
French National Research Agency grant Headwork12 (ANR-16-
CE23-0015).

REFERENCES
[1] SalmanAhmad, Alexis Battle, ZahanMalkani, and Sepander Kamvar. 2011. The

Jabberwocky Programming Environment for Structured Social Computing. In
Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology (UIST ’11). ACM, New York, NY, USA, 53–64. https://doi.org/10.
1145/2047196.2047203

[2] Pierre Bourhis, Loïc Hélouët, Zoltán Miklós, and Rituraj Singh. 2020. Data
Centric Workflows for Crowdsourcing. In Application and Theory of Petri Nets
and Concurrency - 41st International Conference, PETRI NETS 2020, Paris, France,
June 24-25, 2020, Proceedings (Lecture Notes in Computer Science), Ryszard
Janicki, Natalia Sidorova, and Thomas Chatain (Eds.), Vol. 12152. Springer,
24–45. https://doi.org/10.1007/978-3-030-51831-8_2

[3] Chengliang Chai, Ju Fan, Guoliang Li, Jiannan Wang, and Yudian Zheng. 2019.
Crowdsourcing database systems: Overview and challenges. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 2052–2055.

[4] Zhao Chen, Rui Fu, Ziyuan Zhao, Zheng Liu, Leihao Xia, Lei Chen, Peng Cheng,
Caleb Chen Cao, Yongxin Tong, and Chen Jason Zhang. 2014. gMission: A
general spatial crowdsourcing platform. Proceedings of the VLDB Endowment
7, 13 (2014), 1629–1632.

[5] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee,
Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, and Foldit
players. 2010. Predicting protein structures with a multiplayer online game.
Nature 466, 7307 (2010), 756–760.

[6] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. 2009. Au-
tomatic Verification of Data-Centric Business Processes. In Proceedings of
the 12th International Conference on Database Theory (ICDT ’09). Associ-
ation for Computing Machinery, New York, NY, USA, 252–267. https:
//doi.org/10.1145/1514894.1514924

[7] Lucy Fortson, Karen Masters, Robert Nichol, EM Edmondson, C Lintott, J
Raddick, and J Wallin. 2012. Galaxy zoo. Advances in machine learning and
data mining for astronomy 2012 (2012), 213–236.

[8] Kosetsu Ikeda, Atsuyuki Morishima, Habibur Rahman, Senjuti Basu Roy, Sar-
avanan Thirumuruganathan, Sihem Amer-Yahia, and Gautam Das. 2016. Col-
laborative crowdsourcing with crowd4u. Proceedings of the VLDB Endowment
9, 13 (2016), 1497–1500.

[9] Vassillis-Javed Khan, Konstantinos Papangelis, Ioanna Lykourentzou, and
Panos Markopoulos. 2019. Macrotask Crowdsourcing. Cham: Springer Inter-
national Publishing (2019).

[10] Guoliang Li, JiannanWang, Yudian Zheng, Ju Fan, andMichael J Franklin. 2018.
Crowdsourced data management. Hybrid Human-Machine Data Management
(2018).

[11] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. 2010. TurKit:
Human Computation Algorithms on Mechanical Turk. In Proceedings of the

9https://headwork.irisa.fr
10https://gitlab.inria.fr/druid-public/headwork
11https://headwork.irisa.fr/headwork-demo.mp4
12https://headwork.irisa.fr/headwork-web/

23Nd Annual ACM Symposium on User Interface Software and Technology
(UIST ’10). ACM, New York, NY, USA, 57–66. https://doi.org/10.1145/1866029.
1866040

[12] Panagiotis Mavridis, David Gross-Amblard, and Zoltán Miklós. 2016. Us-
ing hierarchical skills for optimized task assignment in knowledge-intensive
crowdsourcing. In Proceedings of the 25th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,
843–853.

[13] Nelsi Melgarejo and Luis Camacho. 2018. Implementation of a web platform for
the preservation of american native languages. In 2018 IEEE XXV International
Conference on Electronics, Electrical Engineering and Computing (INTERCON).
IEEE, 1–4.

[14] Robert Simpson, Kevin R Page, and David De Roure. 2014. Zooniverse: ob-
serving the world’s largest citizen science platform. In Proceedings of the 23rd
international conference on world wide web. 1049–1054.

781

