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Figure 1: Patterns of Life for global vessel traffic of 2022 depicted in 7.3 million hexagonal cells of h3 resolution 6. Left: The
average speed of 2022 for commercial fleet, blue is low speed and red is high. Right: Respectively the average course, green is
North direction, red is south, blue is east and yellow is west.

ABSTRACT
More than 70% [22] of the global trade transportation is conducted
by sea, through maritime sea lanes. Unlike the well defined global
land transportation network that consists of roads and railways,
the maritime equivalent consists of port connections and is vaguely
defined by marine charts’ guidelines, constraints and common sea
routes. By definition, the port of origin and port of destination
are well defined locations. However, the routes that the vessels
follow in between are not strictly defined. Local conditions, such
as the weather or traffic congestion, vessel-specific characteristics
or other external conditions also affect the route choice and plan-
ning. The understanding of the typical behaviour of vessels sailing
across the globe is crucial for the monitoring of the global logistic
chain. A challenging data mining task is that of transforming the
huge amounts of vessel tracking data currently available by the
maritime industry data providers (such as MarineTraffic (Kpler)),
into a descriptive and compact data model, that can be used for
identifying the underlying relationships or patterns. In this work,
we present a data-driven grid-based methodology that leverages big
data distributed techniques, for extracting vessel mobility patterns
on a global scale. The existence of a global inventory for the typical
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vessel behaviour patterns is crucial for the improved visibility of
the global logistic chain and the timely identification of abnormal
behaviour.

1 INTRODUCTION
In the last 4 years, maritime transportation has faced significant
disruptions at a global scale [26]. Therefore, there is an increasing
interest on improving its visibility and understanding by different
stakeholders [5, 23]. Early in 2020, the COVID-19 pandemic mea-
sures that came into effect in some of the most important ports,
significantly decreased their operational capabilities, effectively dis-
rupting the global logistic chain, while segments of the passenger
fleet faced the complete shutdown of their operations [14]. Later
in 2021, a large container vessel blocked the Suez Canal for more
than two weeks forcing vessel traffic towards the Mediterranean
Sea to either re-route around Cape of Hope adding more than 7000
miles to their journeys [24] or to wait until the blockage was re-
solved. In the post COVID-19 era, innovative data solutions and
advanced digital tools are required to meet the increased needs for
efficiency, visibility and predictability of maritime operations [25]
and to contain the repercussions of disruptive events.

The contribution of this work is described as follows: We present
a scalable knowledge extraction methodology that combines tra-
jectory data mining techniques and information fusion to generate
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an inventory of regional mobility patterns that extends worldwide
by extracting the implicit information from the Automatic Iden-
tification System (AIS) data. Through centralized vessel tracking
systems that exploit AIS data it is possible to observe the evolution
of incidents in real time. Key maritime stakeholders such as local
authorities, terminal operation and maritime experts have nowa-
days the tools to timely detect incidents that occur within their
responsibility areas. Nevertheless, they frequently find themselves
inundated by the sheer magnitude of the data and their complexity,
more than 400K vessels are tracked worldwide producing more
than a billion of AIS records each day according to [9]. The ap-
proach described in this paper addresses the challenge to transform
the substantial volumes of AIS tracking data into a descriptive and
compact data model, that can be used in a computationally efficient
way to identify underlying relationships or patterns.

Towards this goal, we present a data-driven grid based method-
ology that leverages big data distributed processing of a global AIS
dataset to extract the local patterns and behaviours of vessels with
respect the origin and destination port pair and the market seg-
ment each vessel belongs to. Our methodology consists of several
steps that transform AIS messages to cell summaries of mobility
features. We utilize the H31 spatial index, that belongs to the family
of Geodesic Global discrete System (GGDS) [19] to organize AIS
messages, which are part of different voyages of a specific port-
to-port connection into local groups. As soon as the groups are
identified, we calculate aggregates that can be used to define the
distribution of mobility feature values in each cell. Additionally, we
measure the popularity of transitions to nearby cells collectively
since the order of messages per vessel is preserved. We dynamically
collect all statistics for different combinations of port connections
per vessel type based on vessel presence in each cell, and thus we
organize this information into an easily accessible global inventory.
Stakeholders can retrieve the historical statistical summary for each
cell area, as well as the most frequent direct cell transition per mar-
ket and port connections by querying for a specific location. This
work is organised as follows. In Section 2, we present the related
literature. In Section 3, we describe in detail the dataset, the spa-
tial index and the execution framework, as well as the processing
steps of our methodology. In Section 4, we present the compression
achieved and demonstrate the added value of our approach on three
important maritime use cases. Finally, in Section 5, we present the
conclusions and the next steps for this work.

2 RELATEDWORK
The key role of maritime transportation for the global trade, the
availability of global scale sensor data, and the need for novel in-
telligent systems and processes that denote the first steps towards
the fourth industrial revolution [17] has led to the increased inter-
est of the scientific community to discover the latent information,
hidden in mobility data sources such as the AIS. The analysis of
AIS mobility data, falls under the "Trajectory Data Mining" (TDM)
research topic. The term TDM is traditionally used, to describe the
knowledge extraction from labelled and unlabelled data points that
originate from moving objects. Trajectory data mining processes
typically consists of several mining tasks and techniques, for an

1https://www.uber.com/blog/h3/

extended literature review of those we refer the reader to the sur-
vey [31]. As a plethora of different approaches exist that cannot be
covered in this section, we focus on topics closely related to this
study and not to the trajectory data mining in general. Thus, we
present related work targeted to vessel route

The main data mining challenge in this case is, creating a de-
scriptive model which identifies patterns of common trajectories.
Clustering, summarization, association rules, and sequence dis-
covery are usually viewed as appropriate methods in the related
literature.

A common approach relies on unsupervised clustering tech-
niques that organise data points or trajectory segments in groups.
The DBSCAN [4] and OPTICS [1] algorithms are two well known
density based clustering approaches that have been used exten-
sively in the scientific literature. Both methods are used to identify
dense concentrations of points that match certain criteria, filtering
out the corresponding low density areas. In [29], authors organize
AIS trajectories in a trip semantic objects (STSO) and the use density
based clustering on points OPTICS to identify clusters of way-points
and stops. Identified clusters are then organised in graph structure
that represents the route network. Authors in [15], introduced the
Route Extraction and Anomaly Detection (TREAD) methodology,
that identifies without prior knowledge data points of importance
and utilises an incremental-DBSCAN approach to organise them
in representative routes. In [27] the DBSCAN algorithm is selected
to cluster turning points of vessel and an artificial neural network
is used to learn their connections. Authors in [18] exploit OPTICS
capabilities for the definition of a route network and combine it
with a probabilistic approach to define its boundaries. Additionally
another density based method is presented in [10], where authors
combine the kernel density estimation (KDE) with image process-
ing techniques to extract the exterior boundaries high density areas
detected by KDE. In an different direction from density based al-
gorithms, but yet within the unsupervised clustering family of
algorithms, the K-means algorithm in conjunction with map and
reduce techniques are selected in [32]. In this work data points are
partitioned based on specific journey and vessel semantics (i.e, map
phase) and then apply the k-means on each partition, routes are
modeled as the set of convex hulls of the identified clusters. In the
approach introduced in [28], the authors introduce an unsupervised
data mining technique that uses a density-based strategy to analyze
vessels’ trajectories and identify patterns in AIS data. In this work,
DBSCAN is used to cluster AIS data.

Trajectory based clustering is another evolving approach for
vessel proposed in several seminal works. In this approach, either
segments or entire trajectories are organised in groups based on
trajectory similarity criteria. In [11], authors use a multi-level tra-
jectory clustering that is build upon k-means and dynamic time
wrapping (DTW ) similarity measure. In [30], the authors explore
the effectiveness of the symmetrized segment-path short (SSPD)
metric in trajectory clustering for vessel trajectories. A new tra-
jectory clustering algorithm, named SPTCLUST-II was proposed
in [3] for clustering vessel trajectories. The authors in this pa-
per proposed a methodology that includes trajectory segmenta-
tion, clustering and route extraction. The approach described in
[8] includes an unsupervised technique for trajectory extraction,
compression and clustering. The compression task is based on the
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Manifold-blurring Mean-Shift algorithm and the Principal Com-
ponent Analysis. The trajectory clustering task is based on the
Longest Common Sub-sequence trajectory similarity measure and
the agglomerative hierarchical clustering algorithm. In [12], the
authors present a trajectory clustering technique that is based on
a variation of DBSCAN and employs merge distance and multidi-
mensional scaling to measure and represent trajectory similarity
respectively.

Most of the techniques proposed in literature address the data
mining procedure as a processing step for route extraction, esti-
mation time of arrival calculation or anomaly detection. In most
cases, existing literature focus on specific use cases, e.g, a local
area, a specific route or a small selection of features. In preliminary
work [13], we discuss the challenges of AIS dataset, and we com-
pare performance of PostgreSQL2 and MongoDB3 in real work use
cases. In [20], we highlight in a map-reduce knowledge extraction
methodology, the sensitivity of DBSCAN against other clustering
algorithms when applied on highly skewed, in terms of density,
datasets such as global AIS ones.

The motivation behind the paper is that of transforming the huge
amounts of geospatial data, into a descriptive and compact data
model, that can be used for identifying the underlying relationships
or patterns. We focus in the implementation of an efficient, data-
drivenmethodology addressing scalability and generalization issues
that have not been properly addressed before meeting real-world
industrial requirements. In this case we build a model of normalcy
that can then be used to identify any outliers from this e.g. Covid-19
or Suez Canal.

3 METHODOLOGY
In this section we present our method to construct a global maritime
statistics inventory. Our method leverages big data technologies
to process large amounts of vessel’s trajectories data in parallel
by extracting a large set of feature statistics from observations
that are projected on the same cell of a predefined hexagonal grid
(i.e., H3). Our methodology consists of several processing steps
that are executed in sequence. Each step, internally capitalizes on
the parallelization capabilities of Apache Spark, which is an open
source unified engine for large scale analytics4. In summary, our
methodology consists of the data cleaning process, the geofencing
technique for reconstruction of port calls, the data enrichment
step to bind positional reports with additional features, the feature
extraction step that generates grid based summaries of the data. A
visual representation of the methodology steps is shown in Figure
2. A detailed description of the dataset, the tools as well as more
specific information for each step of our methodology follow in the
next subsections.

3.1 Dataset description
3.1.1 AIS protocol. Since 2002 the International Maritime Organi-
sation (IMO) has made compulsory for all vessels with a tonnage
above 299 Gross Tonnage (GRT) to be equipped with an AIS class-A

2https://www.postgresql.org/
3https://www.mongodb.com/
4https://spark.apache.org/

transceiver. The AIS was originally designed as a collision avoid-
ance system. At its core, each AIS transceiver sends and receives
positional reports (i.e., types 1-3 and 18) every few seconds via VHF
signals that include information about each vessel’s identity, loca-
tion, course and speed. Since 2006 the lower-cost class B transceiver
was introduced from the IMO allowing smaller vessels to use the
AIS protocol with lower priority than the commercial fleet that
strictly operates class-A transceivers [7]. The transmission rate of
AIS ranges from 2 seconds, for fast moving vessels or maneuvering
vessels equipped with a class-A transponder, and up to 3 minutes
for anchored or moored vessels.

AIS messages can be captured from any vessel or onshore in-
stallation in VHF range, as long as the vessel is equipped with
an AIS receiver. Regardless the case, the messages are decoded
and the information received is presented in vessel navigational
tools onboard or forwarded for further processing to databases and
other applications. Since early 2010 there have been several global
vessel tracking systems (e.g marinetraffic.com) that exploit avail-
able terrestrial (T-AIS) and satellite (S-AIS) AIS receivers network
to gather, process and present global feeds of AIS messages in a
centralized manner.Open AIS datasets covering smaller areas are
available in [16, 21].

In this work, we use a global historical AIS dataset that consists
of all positional reports that were received and archived by Marine-
Traffic (Kpler) for all vessels, throughout the year 2022. In addition,
a vessel’s static reports inventory was used to match each vessel
present in the positional report dataset with its corresponding AIS
vessel-type. The original dataset before any manipulation is 600GB
large. We focus our analysis on vessels related to the logistic chain,
so we filter out non commercial vessels’ positional reports. After
this preprocessing step the size of the dataset is decreased to 60GB,
and it consists of positional reports of approximately 60 thousands
vessels commercial vessels with a tonnage greater than 5000 GRT
and equipped with class-A tranceiver.

Table 1: Data Used for Methodology

Description Rows Size
Commercial fleet positional reports 2.7 Billion 60GB

Vessel Static information 60 Thousand few MB
Port Information 20 Thousand few MB

3.2 Spatial index selection and execution
framework

3.2.1 Spatial index selection. The spatial index and the respective
grid system is at the core of our methodology and as soon as the
following requirements are met, then it could be easily implemented
with a different grid systems. The first requirement ensures the
completeness of the solution as all vessels, regardless their location
on earth, can be included in the calculations. Thus, the spatial index
must be global (i.e., any location on earth can be represented within
the grid) and that each cell must cover approximately the same area
at a given resolution. The second requirement leads to interpretable

772



Figure 2: Pictorial representation of our methodology for a small AIS data-set in the area of English Channel.

Figure 3: Execution flow diagram for the calculation of patterns of life.

and comparable results for cells in proximity. Even though an equal-
area grid would be more appropriate for comparisons between
distant cells, this is not a hard requirement. The AIS reception
is affected by numerous factors. Thus, the calculated statistical
representation of each cell corresponds to the observed feature
distributions, so, as soon as cells in proximity have a fixed size
we consider that any minor change of the cell size does not affect
the accuracy of our methodology. If needed, explicit conversion
using each cells area can be performed. In addition, we require the
indexing mechanism to be performant and interoperable. These last
two characteristics are of great importance for building extremely-
scalable and efficient systems.

In this work we select the H3 spatial index to address all the
requirements for our analysis and future use of its results. The H3
system is a GGDS system [19]. It relies on a hexagonal hierarchical
grid and it provides a performant application interface implemented
in a plethora of modern programming languages. The choice of
hexagonal grids is advantageous for neighborhood analysis at scale.
The neighborhood for H3 corresponds to six adjacent neighbours
at a fixed distance for each cell simplifying calculations against

triangular and square grids as such spatial indexing systems have
more neighbours and multiple distances per cell than hexagonal
grid based indexing systems.

3.2.2 Execution Framework. We rely on the Apache Spark Frame-
work (v3.1.2) to analyse the global AIS dataset we described in
section 3.1. The execution framework setup consists of 128 v-cores
capabilities, 256GB of RAM, a 1.7TB NVME disk that was used for
cache purposes, 10TB of additional storage running Ubuntu OS5.

3.3 Data Processing
In this section we present the key steps of data manipulation. For
a pictorial representation of the process we refer the reader to
Figure 2. A more detailed representation of the steps is shown in
the execution flow diagram in Figure 3.

3.3.1 Data Cleaning and Preprocessing. The execution process
starts with a preprocessing step that ensures the data quality and
filters out irrelevant data entries. Then, we transform the dataset
into vessel type aware entries. As soon as the position dataset is
5https://ubuntu.com/
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Table 2: Grouping set (GS)

Group Identifier (GI) Description
(H3-index) Captures all traffic statistics crossing each cell.
(H3-index, vessel-type) Statistical summary is broken down per cell and vessel type.
(H3-index, origin, destination, vessel-type) Statistical summary is broken down per cell, origin, destination and vessel type.

loaded, it is initially partitioned based on the vessel identifier and
then inspected to identify any values that are not within the ex-
pected by the protocol range. Values of longitude, latitude, speed,
course, heading or status that do not comply with its expected value
range are filtered out. To ensure that there are not out of order
messages, we sort messages with respect to the reported timestamp
for each vessel’s partition. In addition, we calculate for consecutive
messages of the same vessel their pairwise difference in time and
their haversine distance. Based on those metrics we calculate each
vessels speed, and filter out cases of non-feasible transitions (i.e
transitions that require the vessel speed to exceed 50knots). In ad-
dition, we annotate all relevant rows with vessel static information,
e.g the type, so that we can filter out messages from vessels that are
not part of the commercial fleet or vessels that are outside of the
target area (see Figure 2.a) and thus reduce the dataset size signifi-
cantly. Figure 2 presents the implementation of the data cleaning
and preprocessing steps.

3.3.2 Trip Semantics Extraction. Trip semantics are of great impor-
tance for the patterns of life methodology. We consider all messages
of a specific vessel that have been captured in-between of consecu-
tive two port stops to be part of the same trip.We rely on an external
database to acquire port locations. Then, we perform a spatial tech-
nique, called geo-fencing in order to identify AIS records that are
located within any port area. The first and the last records outside
port-geometries are considered as the origin and destination times-
tamp respectively. We annotate all records with their trip identifier.
Each trip, apart from the trip identifier, consists of the origin and
destination port identifiers as well us the respected timestamps.
Any message that cannot be annotated with trip information is
excluded (see Figure 2.b) from further analysis.

For records that have trips semantics, as depicted in Figure 2.c,
we can easily enrich the dataset with additional trip related features,
such as the elapsed time from departure and the actual time of arrival
by subtracting each message’s reported timestamp respectively.

3.3.3 Projection to spatial index. Up until this point, the utilized
partitioning mechanism has been the vessel identifier. To aggregate
data, based on their local characteristics, we rely on the H3 spatial
index. We assign on each record the corresponding H3 index based
on the record location. The methodology can be repeated for res-
olution of any size due to the hierarchical structure of H3, given
that we have enough data for the summaries be built from. For the
results presented in this work we have selected, the resolutions
of level 6 and 7, which create hexagons covering five and thirty
six squared kilometres respectively. As the hexagon size increases,
so does the index compression. The resolution level is selected so
that cells are large enough to capture enough AIS messages and

preserve statistical significance of the summaries and at the same
time they preserve the sense of locality.

3.3.4 Feature Extraction and Processing. In this section we describe
in detail the data structure and aggregation method. We also show-
case that this specific data structure matches the capabilities of the
selected execution framework. We first define the set of features
that we group data upon. We refer to this feature set, as the group-
ing set (GS). All different combinations of values within the GS
concatenated form the group identifier (GI). Some examples of se-
lected identifiers are presented in Table 2. All records that belong to
the same group are aggregated and assigned the same GI. We refer
to the set of features that statistical summaries will be calculated
on, as feature set (FS). The organisation of the features into groups
and the calculation of summary statistics fits the MapReduce pro-
gramming model, originally presented in [2], which is integral to
the selected execution framework. The GS set corresponds to the
mapping phase while the aggregated statistics correspond to the
reduce phase.

In our case, the selected FS consists of three classes. The first class
refers to the features that are directly extracted from AIS records.
This class includes the number of records, the vessel identifiers, the
reported course, speed and heading. The second class originates
from trip semantics, described earlier in Section 3.3.2, it includes
the trip identifier, the elapsed time from origin (ETO), the actual
time to arrival (ATA), the port of origin and the port of destination.
The last class refers to the transitions which is a summation of
individual transitions from a cell to another with respect to the
original order of AIS messages within each trip.

Table 3: Feature set (FS) and statistics

.
Description Cnt Dist Mean Std Perc. Bins Top-N
Records X
Ships X
Course X* X
Heading X* X
Speed X X X
Trips X
ETO X X X
ATA X X X
Origin X
Destination X
Transitions X

In Table 3 we present a detailed mapping of the features and the
statistics that serve the needs of some common maritime use cases,
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visited later in the results section. Cnt, Dist, Mean and Std stand for
count, distinct count, mean and standard deviation statistics. We
denote as Percentiles the 10th, 50th and 90th approximate percentiles
of the corresponding feature distribution. With Bins we denote
the counters of messages that are organized in fixed value ranges,
namely the bins. In this work we use the bins to split heading and
course into 30 degrees counters. In addition, the Top-N statistic
captures and counts the N most frequent values.

4 RESULTS
4.0.1 Compression and global coverage. Table 1 showcases that the
original 2022 commercial fleet dataset consist of approximately 2.7
billion records. With respect to the selected resolution level, after
applying our methodology, it can be represented by 7.3 million
and 42.47 million cells for the 6th and 7th resolution levels of H3
respectively. In terms of records, a full table scan would be needed
for the online calculation of the complete feature set in Table. 3 for a
specific location. The existence of the global inventory corresponds
for the 6th and 7th resolution levels to 99.7% an 98.4% less hits
respectively. Another important finding is that the commercial
vessels of the dataset covered 51.69% of the total h3 cells available
for the 6th h3 resolution level and approximately 10% less if the
child resolution h3 level is selected (i.e. the 7th). This behaviour
indicates that as the cell size of our analysis decreases, gaps might
appear in the inventory.

Table 4: Coverage and Compression results for 2022 commer-
cial fleet AIS dataset.

H3 resolution #Cells Compression H3 Utilization
6 7.3 million 99.73% 51.69%
7 42.47million 98.44% 42.96%

4.1 Use cases
We showcase the usability and added value of the presented method
through three different applications. First, we present how selected
features of the resulting inventory can be used for local and global
knowledge extraction. Then, we focus on howATA and ETOpresent
a baseline statistic for estimation of arrival time (ETA) for known
sea routes. Additionally, we explicitly create an approach for route
forecasting given that the origin and destination ports are known.

4.1.1 Knowledge extraction. Earlier in introduction section we pre-
sented the importance of understanding hidden patterns within AIS
data. In this section we focus on global and local representations of
the results of our methodology. We demonstrate how a selection of
features from inventory is used for pictorial representation of the
AIS patterns in global (Figure 1) and local (Figure 4) scope. In Figure
4, we use color mapping to visualise the average speed, average
course and trip frequency. Anticipating the results for the Baltic
sea area for all commercial traffic, we note that a proper filtering
process reveals domain specific patterns representing the routes
from the trip frequency (top), the loitering areas from the speed
(middle) and the traffic separation schema from the course (bottom).
Those patterns dynamically change over time and they are crucial

for the understanding of the logistic chain efficiency. Apart from
the pictorial representation, the statistical summaries are available
for each cell and combination of the GI enabling more advanced
calculations.

Figure 4: Visualisations of patterns of life for an area in the
Baltic sea for 2022.

4.1.2 Estimated Time of Arrival. A long term challenge in the mar-
itime analytics is the estimation of the time of arrival (ETA). This
is a challenging problem in maritime world with multiple com-
mercial and financial factors affecting the estimation performance.
The utilization of historical AIS information is common practice in
the domain, however, to the best of the authors knowledge, there
is no previously published work of a global scale inventory that
relies on the ATA of historical trips to estimate the expected time
to destination. In Figure 5 we present in global scale, the average
time to destination for each cell in H3 resolution of level 6. We note
that explicit statistics for ATA and ETO are also available for all
value combinations of GI on each cell for online querying, each
result set can be considered as a basic ETA estimate and they can
be provided as input to more advanced ETA estimators.

4.1.3 Destination Prediction and Route Forecasting. Destination
prediction and route forecasting are common challenges that both
depend one on the other. We show that the global inventory build
with this method is relevant to both challenges, touching only the
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Figure 5: Patterns of Life, color depicts the average actual time to destination for all vessels per cell (H3 resolution 6).

Figure 6: Patterns of Life cells where the most frequent destination for 2022 was Singapore in dark orange, Shanghai in purple
and Rotterdam ports in green.

surface of them in this work. In Figure 6 we present a filtered
version of the inventory depicting cells where to the most frequent
destination is either the port of Singapore, the port of Shanghai or
the port of Rotterdam. We note that the cell distribution is sparse,
however the routes vessels follow towards those ports for 2022 are
evident.

The routes boundaries and the underlying data on each cell
can be compared against live AIS data for vessels travelling to
those destinations. Given a stream of AIS positional reports of a
vessel that her crew has not disclosed its destination, a streaming
application may query online the inventory for each AIS message
and retrieve the top-N destinations for vessels of the same type
that sailed nearby in the past. In addition, it can keep track of this
list, as the stream of AIS messages proceeds, to decide on the most
probable destination.

Similarly for the route forecasting, given a vessel performing a
specific origin-destination trip and her latest AIS positional report,
we define an key, that consists of origin, destination and vessel-
type. We query the global inventory to retrieve the full set of cells
for which the key exists. The result set of cells corresponds to the
full set of possible transition locations for the selected key, and
it can be organized in a graph online, likewise Figure 2.f. For the
graph representation, the vertices correspond to cells identifiers
(i.e H3 indices) and their connections are defined with respect to
the transitions feature in Table 3. Given the graph, typical graph
theory solutions that address the shortest path problem ,such as
the A-star [6], can be used to forecast the route.
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5 CONCLUSION AND FUTUREWORK
In this work, we present a multi-step methodology that relies on
the H3 spatial index and on the Apache Spark big data analytics
engine to create a global scale inventory of statistical summaries
from AIS data. We have applied out methodology on a 2022 global
dataset consisting of 2.7 billion AIS messages originating from
approximately 60 thousand commercial vessels. In this context, we
presented pictorial representations of selected features, such as the
average speed, course and heading, both in global and local scale,
that can be used for extracting additional knowledge. In addition,
we measured more than 98% of index compression, with the use
of the spatial indexing, that allows end users to efficiently query
the inventory. Apart from knowledge extraction capabilities of the
generated inventory, we explored the possible utilization on time
of arrival estimation, destination prediction and route forecasting
challenges.

In future work, we intend to extend the proposed methodology
to include features of non-AIS data. In this context, we plan to
combine AIS with weather and commodity data in order to provide
trade specific related summaries. Additionally, we aim to further
explore hierarchical capabilities of the selected spatial index (H3) to
provide non-uniform inventories but rather automatically adjusting
to the density of maritime traffic, i.e., using larger cells in open sea
areas which are known to have low vessel traffic density, preserving
at the same time high resolution in dense areas, such as the ones
near the ports.
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