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ABSTRACT
Digital twins serve as virtual representations of physical envi-
ronments that are increasingly valuable across various sectors,
including maritime operations. The complexity of monitoring
vessel traffic through the Automatic Identification System (AIS),
demands more sophisticated, data-driven approaches due to the
extreme vessel volume and intricate vessel movement patterns.
In this paper, we present a highly scalable system for maritime
route and event forecasting that leverages streaming real-time
AIS data for vessel route prediction, traffic state estimation, and
event detection based on the actor model. The proposed solution
integrates data driven models on the actor level for route forecast-
ing that utilize vessel specific features and are adapted according
to the system requirements and the limitations of AIS streaming
service networks. Leveraging the forecasting functionalities, the
platform is able not only to detect but also forecast events of inter-
est for the entire global fleet accurately and consistently without
any memory or system issue and continuously generate predic-
tions for 170K vessels during performance experiments, which
demonstrates the high scalability and versatility of the proposed
architecture for global maritime digital twin applications.

1 INTRODUCTION
Digital twins serve as a virtual representation or a model of
a physical environment mirroring its real-time state [16]. Cur-
rently, such representations find utility in multiple applications,
including transportation, manufacturing, health and energy. The
transfer of real-world physical information to virtual models en-
ables users to easily simulate, facilitate data collection, analyse,
perform informed decision making and improve performance of
complex real world physical systems. In this context, digital twins
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have the potential to revolutionize maritime operations providing
a realistic environment for enhanced marine traffic monitoring,
vessel behavior prediction, scenario simulation, route planning
and ultimately foster informed decision making, as well as safe
and efficient maritime operations.

Monitoring and predicting the behavior of hundreds of thou-
sands of vessels of the global fleet is a challenging undertaking.
The Automatic Identification System (AIS), in operation for over
15 years, facilitates the collection of vessel positions worldwide
[21]. At the same time, present vessel trafficmanagement systems
(VTMSs) and vessels traffic monitoring information systems (VT-
MIS) [19] heavily depend on basic and simplistic linear models,
considering standard vessel kinematic features to predict posi-
tions and the overall vessel traffic in specific sea areas. However,
these methods suffer from low accuracy, making current systems
unreliable, particularly in safety-critical situations [5, 23, 33].
Given the intricate patterns of vessel movement, sophisticated
techniques are essential to model and forecast vessel behavior.
Recent years have seen the proposal of various architectures re-
lying on data-driven methods [13]. Furthermore, the substantial
volume of AIS messages transmitted globally on a daily basis un-
derscores the necessity for a specialized tool capable of effectively
managing big data.

Kpler uses a network of more than 7000 AIS receivers strategi-
cally placed around the world to collect information from 400K+
vessels equipped with AIS transponders. Processing streams of
more that 109 AIS messages on a daily basis, vessel tracking data
is made available publicly through the MarineTraffic website and
mobile apps, allowing users to track and monitor maritime traffic
globally in real-time [10]. More than 4 million users visit monthly.
Given the widespread coverage and the geographical dispersion
of MarineTraffic services (Figure 1) as well as the extreme volume
of AIS messages that requires robust algorithms and infrastruc-
ture to manage, store, and retrieve data efficiently, scalability,
efficiency, and big data processing capabilities are fundamental
for successfully delivering real-time vessel tracking on a global
scale.
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Figure 1: Global real-time vessel tracking on the Marine-
Traffic (Kpler) application [10].

This work proposes a pilot for maritime route and event fore-
casting that leverages real-time AIS data feeds and fosters data
driven models for vessel route prediction, traffic state estimation
and early maritime event detection aiming to further enhance
the accuracy of maritime representations.

In this context, the main contributions of this work include:
(1) A distributed and highly-scalable system architecture for

global vessel traffic monitoring and maritime event fore-
casting based on the actor model [7] that addresses key
shortcomings in scalability, scope, speed and accuracy
of present vessel traffic management solutions through
the fusion of heterogeneous extreme-scale data associ-
ated with diverse layers of information that are specific to
individual vessels.

(2) Data-driven vessel route and event forecasting models and
functions integrated at the actor level that leverage ves-
sel specific information for real-time global vessel traffic
monitoring, route forecasting and precise maritime event
predictions.

The paper is organised as follows: First, Section 2 presents an
overview of existing solutions for maritime situational awareness
and vessel traffic management. In Section 3 the system architec-
ture is described. Subsequently, the major components related to
the forecasting (Section 4) models and the event detection and
forecasting features (Section 5) of the application are presented.
These sections focus on describing the methodology followed
in developing and integrating the respective components to the
digital twin platform. Section 6 presents the evaluation of the
integrated models and functions as well as the results on the
system scalability performance. Finally, Section 7 presents the
main conclusions and future outlook of this work.

2 RELATEDWORK
Applications for maritime situational awareness are constantly
developed and researched by multiple parties around the world.
Most commercially and non-commercially available solutions
focus on specific aspects in the fields of maritime operations
and maritime monitoring. These include primarily use cases for
maritime security, safety [15, 24, 27, 29], operations [1, 5, 12, 16,
18, 25] and autonomous vessels [18, 22]. In this context, such
solutions are mostly deployed on a local or regional level de-
pending on the limitations and requirements of the specific use
case. These include the monitoring of maritime activities and
vessel traffic in prespecified sea areas (e.g. coastal areas, ports)
for vessel traffic management and operations. Other use cases,

focus primarily on maritime security and compliance such as
smuggling, trafficking activities and illegal fishing in specific
sea areas, through the fusion of multiple sensor views, while
leveraging anomaly detection algorithms for agile decision mak-
ing. Typical competences of these platforms include data fusion
capabilities, fusing views of global data such as the AIS with
local views from sensors that, depending on the use case, include
video cameras, radar, remote sensing or vessel integrated sensors
[1, 5, 12] focusing on monitoring and anomaly detection. Finally,
the enhanced situational awareness views are delivered to the
end users through virtual or augmented reality modules.

Therefore, maritime situational awareness platforms are se-
verely restricted in their scalability capabilities as they are tai-
lored to provide enhanced views in specific sea areas limited
by their use case requirements and affiliated sensor ranges. Ad-
ditionally, their components, focused on monitoring and event
detection, have limited event and vessel behavior forecasting
capabilities. Thus, they do not foster proactive decision making,
as they concentrate on delivering present situational information
rather than exploiting historical and real-time streaming data
flows to automate event detection procedures as well as early
event forecasting and action planning. Situation and behavior
forecasting is supported only through the combined views from
different data sources and analytics that are presented to the end
users in real time, while situational interpretation, forecasting
and decision making is limited by the end user experience and
competence. Thus, the fusion of historical information and in-
sights together with real time event detection and monitoring
coupled with data-driven forecasting components has the po-
tential to further expand the capabilities of maritime situational
awareness platforms. This can be achieved through automated
early event detection and forecasting functions that foster proac-
tive action planning, improve interpretability and reduce task
complexity for human operators.

3 SYSTEM ARCHITECTURE
Figure 2 presents the high level system architecture of the pilot
platform. Based on the state of the art findings and the research
needs assessment, the proposed system aims to diversify its ap-
plication scope in maritime operations and vessel traffic man-
agement by addressing the two main shortcomings of maritime
situational awareness systems, namely their scalability and fore-
casting capabilities. This is achieved through the adoption of a
scalable and distributed system architecture for the fusion of het-
erogeneous extreme-scale data associated with diverse types of
information specific to vessels, sea areas and routes. Additionally,
data driven models, trained over historical mobility vessel data
are integrated into the platform and and coupled with the real-
time streaming feed of AIS data, the real-time event detection
functions and the visualization of historical aggregated vessel
mobility metrics creating a a multi-layer information system for
efficient action planning and enhanced decision making.

For addressing the scalability, real-time processing and fore-
casting requirements, the proposed multi-layered system is based
on the actor model [7]. In particular, the actor model implemen-
tation of the Akka framework [8] is selected for its dynamic
scaling capabilities that allows the development of concurrent
and distributed systems with a focus on asynchronous message-
passing communication. This can be advantageous for building
complex system logics and orchestrating distributed concurrent

763



Figure 2: The proposed system architecture based on the actor model.

workflows. Additionally, the lightweight, isolated actors facili-
tate the development of a scalable and responsive system with
built-in mechanisms for messaging between actors and for han-
dling state and failures. Its real-time processing capability allows
the processing data-streams coming from multiple Kafka con-
nections [11]. In this context, the data ingestion services of the
processing engine consume streaming real-time positional AIS
data transmitted from the global fleet which is captured by satel-
lite services, the Kpler MarineTraffic AIS terrestrial network and
third-party providers of AIS real-time data operating globally.
Additionally, at the initialization phase, any static information
required to be fused with the streaming information is provided,
either by direct requests to databases or in the form of static files
located in the file-system. As soon as the information is retrieved,
it is cached in memory, available for fast retrieval from all actors
in each node.

The data stream is partitioned in multiple ways to take ad-
vantage of the actor model. The core partitioning functionality
generates multiple actors 𝑁 , with each one corresponding to a
specific vessel as it is defined by its unique Maritime Mobile Ser-
vice Identity (MMSI). For improving the forecasting capabilities
of maritime situational awareness platforms, novel short-term
and long-term route forecasting models, as well as event detec-
tion and forecasting methods are developed and integrated with
the proposed architecture. Forecasting models are loaded and
applied at an actor level to process AIS data and generate vessel
specific predictions. The models are mapped on an 1-to-1 basis
for each respective vessel actor. Specifically, the short-term ves-
sel route forecasting model is mounted only once in memory,
serving simultaneously the requirements of each of vessel actor
defined by the processing engine and generating in this way
dedicated predictions per actor (real vessel) using vessel specific
information provided by MarineTraffic according to digital twin
concept. In this way, at any point in time, the system provides
the most updated predictions for the entire global fleet.

Two additional actor classes are defined on the spatial level
utilizing the H3 spatial index [26], a class for proximity event
detection with variable size𝑀 and a class for collision forecasting
with variable size 𝐾 . These actors consume the combined output

of all vessel actors 𝑁 and determine the state of their respective
event class. Specifically, AIS positional data are sent to the cell
actors for proximity event detection, while short-term position
forecasts, are forwarded to collision actors. In both cases, the
information organised in messages, is sent to the corresponding
actor with respect to the type of the operation and the H3 index of
each message. Based on the final state status, they communicate
their state back to the respective affected subset of vessel actors. In
this context, it is possible that some cell or collision actors receive
more messages than others. This can be the case in sea areas with
high vessel traffic. However, based on initial experimental results,
it is found that these cases do not slow down the system. The
respective methodologies and model architectures for forecasting
are described in more detail in subsequent sections.

Finally, the actor states are stored by the writer actor in a Redis
[14] database in order to be visualized by the User Interface (UI)
through a dedicated API responsible to interface the frontend
with the backend systems. Depending on system and application
requirements, multiple writer actors may exist and be supported
by Akka concurrently. In such cases, each other type of actor
may be assigned to send its output to a specific writer actor and
maintain the connection to the Redis database. In the context
of this work, a single writer actor has been defined to write all
actor outputs to the Redis database. The Redis and the API belong
to the Middleware component. The end user is able to interact
with the system by exploring the visualized route an event states
through the UI.

4 FORECASTING
The system aims to expand functionalities and applications for
the end users through the integration of data-driven models for
vessel behavior prediction and planning. The accurate predic-
tion of vessel positions is significant for applications in maritime
operations and safety. Since, vessel routing is one of the most
significant operational tasks for vessel crews and vessel control
center operators. In this context, the proposed platform integrates
two distinct Vessel Route Forecasting (VRF) models, one for long-
term route forecasting and planning and one for short-term route
forecasting. Both models consider vessel specific attributes (type,
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Figure 3: The S-VRF model architecture integrated with the ingestion services on the actor level. It consists of one input
layer, one BiLSTM layer, one fully connected layer, and an output layer for 6 transitions (Δ𝑙𝑜𝑛,Δ𝑙𝑎𝑡 ) in 5-minute intervals
and up to a 30-minute time horizon.

dimensions, draught, etc.) as well as past motion behavior fea-
tures for facilitating predictions.

4.1 Long-term Vessel Route Forecasting
For the long-term route forecasting (L-VRF) needs, the system
integrates an extended version of EnvClus [34], namely the En-
vClus* model [28, 35], through API calls that forecasts the vessel
path towards a destination port, given a specific port of origin
(Figure 4a).

The method trains a dedicated model for each distinct pair
of origin-destination ports by exploiting the collective intelli-
gence generated by hundred of thousands of vessel routing deci-
sions that are extracted from historical AIS data by MarineTraffic
(Kpler). The positional AIS data is clustered in order to extract
common pathways of vessel movements. In turn, these pathways
are translated into a weighted transitions graph, representing
the patterns of movement found in the historical data. Using the
resulting graph we are able to generate a prediction of the path
the vessel is going to follow towards its destination port. Seg-
ments from historical AIS data are being used to generate these
predictions, allowing for the extraction of typical realistic paths
that avoid dangerous routes or crossing over land. Vessel-specific
information is utilized to generate the best-suited forecasts for
each query, by enhancing the graph with classification models in
significant graph nodes (route junctions). Features may include
the vessel type, length, draught, deadweight tonnage (DWT) or
trip related information (time of day, month).

EnvClus* scales at a global level for any origin-destination port
pair and is able to generalize and scale on trip data for unseen
origin-destination pairs and vessel types [28, 34, 35]. Finally,
aggregated mobility statistics regarding the vessel traffic at the
selected area are also generated and visualized for the user. These
statistics, called Patterns of Life [32], are extracted from historical
data from relevant trips and provide a more complete overview
of the historical traffic in the area (Figure 4b). The fusion of
the present vessel position, with the route forecasts and the
aggregated vessel mobility insights, allows the user to assess the
efficiency of the current vessel route, evaluate possible rerouting
strategies and alternative routes towards the destination port and
detect possible deviations from common vessel traffic patterns.

4.2 Short-term Vessel Route Forecasting
In [4] a Short-term Vessel Route Forecasting (S-VRF) Long Short
TermMemory (LSTM) model is proposed that was trained on real

world AIS datasets covering specific sea regions. It showcased
significant performance improvements in comparison to state-of-
the-art methods for vessel location forecasting [4], and baseline
techniques for vessel trajectory forecasting [3]. Themodel consid-
ers special characteristics of the AIS databases such as the irregu-
larity of AIS transmissions. Themodel is able to generate vessel lo-
cation predictions given variable input sequences 𝑘 of past vessel
latitudinal displacements [(𝑝𝑙𝑎𝑡0 , 𝑝𝑙𝑜𝑛0 , 𝑡0), ..., (𝑝𝑙𝑎𝑡𝑘 , 𝑝𝑙𝑜𝑛𝑘 , 𝑡𝑘 )]
and for a variable number of future transitions 𝑟 up to a preset
prediction horizon Δ𝑡 at (fixed) timestamps with a sampling rate
equal to Δ𝑡/𝑟 . Thus, the original problem formulation is generic,
with flexible input and output requirements as defined by the end
user and depending on the quality and availability of data sources.
Initial integration of the LSTM model presented in [4] in the sys-
tem architecture resulted in poor performance. This is attributed
to the special requirements of the real-time Akka based system,
which include memory restrictions, scalability, transferability,
stable on-stream system performance as well as the fact that the
model has to generate predictions using on stream AIS position
transmissions, the retraining, modification and investigation of a
new model architecture was necessary.

Specifically, a new S-VRF model architecture has to be defined
that fullfills the requirements of the system architecture. More
specifically, the tensor input size is reduced to 20 past vessel
spatiotemporal displacements in comparison to the initial tensor
with a maximum size for 1000 displacements and variable filling.
In this way the restrictions regarding system memory allocation
are met, while the complexity for the training task by the model
is simplified as the model is trained with a fixed tensor size
input. The prediction output is fixed to six spatial transitions
with 5-minute intervals and up to a 30-minute time horizon.
Finally, a 30 second downsampling rate is set as a minimum
limit for AIS aggregated sequential transmission intervals and is
validated after additional experimentations. As AIS transmission
frequencies show extreme irregularities due to various factors
that include but are not limited to, environmental factors, vessel
motion state (speed, turning), equipment quality and reliability
and AIS network coverage, the preprocessing component of the
model is modified to be able to consider aggregated AIS message
transmissions up to a 30-second downsampling rate.

The newmodel architecture is presented in Figure 3. The archi-
tecture is also modified, compared to [4], with updated layer sizes
and the use of a bidirectional LSTM layer (BiLSTM), instead of the
standard LSTM layer. BiLSTM adds one more LSTM layer, which
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Figure 4: Visualization of the key features and forecasting components on the user interface of the Maritime Situational
Awareness Platform. a) L-VRF, b) Aggregated vessel mobility statistics inspection in long-term routing, c) S-VRF, d) Vessel
Traffic Flow Forecasting, e) Proximity Event Detection, f) Vessel Collision Forecasting using the S-VRF.

reverses the direction of information flow. BiLSTMs address the
probability that the state of an element in the sequence does not
only depend on past element states but on future element states.
Concatenation is used for combining the bidirectional LSTM-
layer outputs. Finally, the BiLSTM is coupled with L1 in-layer
regularization for reducing overfitting.

An example of the visualization of the prediction for end-user
through the user interface is presented in Figure 4b.

5 MARITIME SITUATIONAL AWARENESS
The system provides users with typical functions for maritime
event detection. These include composite events regarding vessel
movement and AIS transmission status that can be detected and
logged for inspection. Such events include the close proximity
between vessels (see Figure 4e) and the switch-off of the AIS
transmitter on a vessel [9]. The system additionally leverages
the S-VRF model integrated on the actor level for maritime event
forecasting. Here, two operations have been integrated into the
platform, one for vessel traffic flow forecasting and one for vessel
collision forecasting.

5.1 Vessel Traffic Flow Forecasting
The objective of Vessel Traffic Flow Forecasting (VTFF) is to pre-
dict the evolution of traffic (number of requests) in a specific
region at a future time step/window, drawing insights from his-
torical traffic flow data [31]. Typically, vessel traffic flow data
adopt the form of spatiotemporal raster data [6, 30]. Raster data
are grid-based data referring to observations of a continuous
spatiotemporal field represented at fixed locations or regions
in space and time. More specifically, in this work, we focus on
maritime traffic data taking the form of raster data categorized
as grid-based. Grid-based approaches organize raw traffic data
within a set of grids, simplifying the problem scale [30].

In the literature, the most promising methods used in predict-
ing vessel traffic flow mainly employing grid-based representa-
tion analysis [20], approach the VTFF problem from two different
perspectives [17]: a) indirectly - as a route forecasting application
by estimating future traffic based on vessel locations produced by
VRF algorithms, and b) directly - as a flow sequence forecasting
problem by predicting future traffic through sequence analysis
of historical traffic flow. In [17] a comparative analysis between
the indirect and direct VTFF strategies was presented, conclud-
ing that the indirect paradigm generally demonstrates superior
prediction accuracy, often exceeding 1.5 times the accuracy of
the direct VTFF alternative. The indirect VTFF not only predicts
more accurately than the direct strategy but is also less compu-
tationally demanding, especially when the underlying VRF has
already been implemented within the same system.

The VTFF approach based on the S-VRF model (cf. Section
4.2) has been integrated into the actor model based system. The
process involves feeding the framework with streaming AIS mes-
sages, employing the S-VRF model to produce future trajectories
composed of 6 transitions at a sampling rate of 5 minutes up
to 30 minutes. The predicted locations by the S-VRF model are
allocated into a spatiotemporal grid formulated by the H3 grid
[26]. The resulting vessel counts represent the volume of vessels,
i.e., the vessel traffic flow, in each grid cell and time window.

An illustration of the forecasted traffic flow through the user in-
terface is depicted in Figure 4d. Specifically, vessels are displayed
within grid cells, with only the active cells (those containing
vessels) being visible. Furthermore, cells indicating low traffic are
depicted in dark green, cells with medium traffic are represented
in light green, and cells with high traffic are displayed in red.

5.2 Vessel Collision Forecasting
The vessel collision forecasting algorithm is integrated in the
system on the actor level and utilizes the selected S-VRF model
for detecting probable imminent collisions between two vessels.
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Figure 5: Example of information sharing for collision
prediction among actors, for two vessel trajectories. In
this example the trajectories contain 3 predicted points
(instead of 6 that are produced by the S-VRF model for
simplification).

First, streaming AIS messages are ingested. Subsequently, each
AISmessage from a vessel is redirected to an actor and generates a
route forecasting prediction with the S-VRF model. The output of
each trajectory prediction per vessel/actor and for every received
AIS message consists of 7 positions (1 present position and 6
position predictions). The output positions are assigned to the
respective cell of the H3 grid [26] 𝑛 and each 𝑛 + 1 nearest cell.
Each cell corresponds to an actor that is responsible for all the
messages of the cell. To assess if two vessels are into a collision
course, the algorithm first checks the temporal intersection using
the 30 minute maximum prediction window and according to a
system defined time interval threshold that accounts for close
proximity vessel passes. Then, the spatial intersection of the
forecasted trajectories is assessed. If both conditions are true,
then a potential collision is detected and logged for the end-
user. Figure 5 presents an example of the information sharing
between the actors for resolving the collision prediction problem.
An example of the visualization of the prediction for end-users
through the UI is presented in Figure 4f. The user is able, using the
list of events, to be notified regarding forecasted collisions. The
events automatically appear in an event list, which can be used
for quick navigation to the location of the forecasted collision. In
addition, the user can check the estimated time of the collision,
as well as the MMSIs of the involved vessels.

6 EVALUATION
6.1 S-VRF Evaluation
The S-VRF model was trained and tested using archived AIS
stream data from MarineTraffic (Kpler). The dataset includes AIS
transmissions from 24 hours on the 02.11.2021 covering the entire

Table 1: S-VRF performance results on the AIS Marine-
Traffic Stream Dataset. Comparison of the Average Dis-
placement Error (ADE) in meters. over all six prediction
horizons (t=5min,...t=30min).

ADE
per prediction

horizon

Linear
Kinematic
Model

S-VRF %
Difference

t = 5min 97.7 91.7 -6.1
t = 10min 256.6 232.0 -9.6
t = 15min 457.0 408.7 -10.6
t = 20min 688.2 609.5 -11.4
t = 25min 943.5 828.9 -12.1
t = 30min 1216.3 1060.2 -12.8

Mean ADE 609.9 538.5 -11.7

European continent, the North Atlantic Ocean, the Barrents Sea,
the Kaspian Sea, the Red Sea and the Persian Gulf.

The exact area of coverage defined in the WGS84 projection
system is ((24.0000°,-41.99983°), (24.0000°,68.9986°), (78.9862°,-
41.99983°), (78.9862°,68.9986°)). The total dataset corresponds
to 1,4617,382 AIS messages (16.93GB) that were transmitted by
14,895 distinct vessels (MMSIs) over the 24-hour period. As the
AIS dataset originated from the streaming service of MarineTraf-
fic with AIS messages coming from both the MarineTraffic (Kpler)
AIS terrestrial network and third-party AIS satellite services, the
sampling rate was dynamic and irregular for all vessels. Con-
sidering the 30 second set minimum downsampling rate, after
aggregating the AIS messages for each vessel during prepro-
cessing, the final average sampling rate is 78.6 seconds with a
standard deviation of 418.3 seconds for the entire dataset.

In order to transform the AIS vessel positions into the fix-
sized input and output tensors, the distinct vessel trajectories are
segmented into distinct partitions and shuffled building a final
total dataset of 232,852 trajectories. The resulting ground-truth
trajectory segments include the 20 spatiotemporal transitions
used as the input tensor and the spatial displacement in the target
30-minute temporal prediction window which is transformed
into the output tensor by interpolating and transforming the
respective transitions into six 5-minute segments. 50% of the
dataset was used for training, while the remaining 50% for vali-
dation (25%) and for testing (25%). Finally, the test results were
compared to a simple linear kinematic model which utilizes the
last reported AIS position, reported AIS speed (knots) and course
(°) to predict future vessel positions in the same time horizons.

Table 1 presents the performance results for based on the
average displacement error metric for each prediction horizon.
The new model manages to outperform the linear kinematic
model for all predictions horizons. Results are also comparable
to the original generic architecture [4], given the significantly
wider area of coverage as well as the limitations and challenges
of the integration with streaming AIS data.

6.2 Vessel Collision Forecasting Evaluation
For the needs of the evaluation of the vessel collision forecasting
algorithm, a synthetic dataset of vessel proximity events was
utilized. The dataset consists of 4,658 samples/AIS messages orig-
inating from 213 unique vessels in the Aegean Sea generating 237
vessel proximity events [2]. Two additional sub-datasets were
created, one by taking only the vessels that will come into close
proximity in less than 2 minutes (Sub dataset A) and one with
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vessels that will come into close proximity in less than 5 minutes
(Sub dataset B). Sub dataset A has 61 events and Sub dataset B
consists of 152 events. Eight different sets of experiments were
tested using the simple linear kinematic model and the S-VRF
model for the three different vessel event specifications (Original
Dataset, Sub dataset A (Proximity), Sub dataset B (Proximity)).
For each experiment the accuracy, precision, and recall based on
the measured True Positives (TP), False Positives (FP) and False
Negatives (FN) was assessed.

Evaluation results are presented in Table 2. The collision pre-
diction using the data driven S-VRF model offers higher accuracy
than using the outcome of the linear kinematic model. In all ex-
periments, collision prediction with the S-VRF model achieves
more than 90% in terms of accuracy, precision, and recall, com-
pared to the ground truth data. Collision prediction using the
S-VRF model generates more false positives, while the linear
kinematic more false negatives leading to small differences in the
F1-score metrics. Eventually, as the investigated method for col-
lision forecasting is a safety-critical application for the detection
and mitigation of vessel collisions with significant consequences
in case of non-detections, recall is the decisive performance met-
ric as it indicates that the system is effectively capturing and
identifying all events that actually require attention or interven-
tion. Under this assumption, the S-VRF model excels over the
linear kinematic model in both critical performance metrics, the
accuracy and the recall.

6.3 System Scalability Evaluation
The system scalability is evaluated using the global real-time
AIS data stream of MarineTraffic AIS Service by Kpler. In the ex-
perimental evaluation the system is deployed in a single virtual
machine (VM) with 12 cores and 128 GB RAM, the S-VRF is se-
lected as a typical use case for generating predictions. During the
evaluation, the system was operational for 72 hours without any
memory or system issue and managed to continuously generate
predictions for 170K real vessels. This number corresponds to
all vessels that were tracked during this 72-hour period globally
by the MarineTraffic AIS Network Service. Thus, the proposed
system is highly scalable. As depicted in Figure 6 the system is
able to perform complex calculations on live data at a global scale
reporting very low processing times. It averages less than a few
milliseconds calculated using moving window of 100 actors (ves-
sels). The system during the initialisation phase (up to 5K actors
(vessels)) peaks on processing time due to excessive needs of
computational resources and massive introduction of new actors.
After this phase the rate of unseen vessels decreases significantly
and thus the system passes onto a stable state, where given an
increasing the number of actors it is able to continue ingesting
AIS messages in real time.

7 CONCLUSIONS AND FUTUREWORK
In this work we showcase how the adoption of extreme-scale
solutions can address shortcomings in scalability & scope, speed
and accuracy of vessel traffic management applications. In this
context, we presented a highly scalable platform for maritime
situational awareness serving as a digital twin that focuses on
both the detection and the forecasting of vessel behavior and
maritime events for efficient and safe maritime operations. The
proposed solution that is based on the actor model is able to
perform short- and long-term route forecasting utilizing vessel
specific features, using AI models that are integrated on the actor

Figure 6: The average processing time with respect to the
total number of actors active on the system, along with a
moving window average of 100 actors.

level. Leveraging the forecasting functionalities, the platform is
able to detect and forecast events of interest for the entire global
fleet accurately, consistently and efficiently.

In future work, we aim to leverage Kafka topics to produce
streams of dedicated system, model and actor-based outputs and
to develop API endpoints for facilitating external user interac-
tion. We also intend to incorporate the detection and forecasting
of even more complex maritime activities, leverage new data
sources to improve model prediction performance (e.g. weather
data, vessel sensors) and fuse heterogeneous extreme-scale data
associated with diverse related types of information. This also in-
cludes the enrichment and fusion of the H3 spatially indexed AIS
mobility data with weather related features and forecasts that will
further improve the situational interpretability and comprehen-
siveness of maritime operations for the end user. Additionally,
we aim to further integrate additional pattern extraction and
forecasting models specifically targeted to common maritime
operations and industry needs. New assets may include the moni-
toring and prediction of berth and port congestion, the automated
rerouting for vessel collision avoidance and the consideration
of weather related features in vessel routing. In this context, we
aim to preserve and expand the highly scalable and adaptable
architecture of the platform and ultimately create a detailed rep-
resentation for vessel mobility that serves as a digital twin of
global maritime situational awareness.
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