
Exploring unsupervised anomaly detection for vehicle
predictive maintenance with partial information

Apostolos Giannoulidis
Aristotle University of Thessaloniki

Thessaloniki, Greece
agiannous@csd.auth.gr

Anastasios Gounaris
Aristotle University of Thessaloniki

Thessaloniki, Greece
gounaria@csd.auth.gr

Ioannis Constantinou
Istognosis Ltd.
Nicosia, Cyprus

ioannis@istognosis.com

ABSTRACT
Predicting the need for maintenance in vehicle fleets enhances
safety and lessens the downtime. While vehicle manufacturers
provide built-in alert systems, these often fail to alert the driver
when something goes wrong. However, harnessing the power
of data analytics and real-time signals can solve this problem.
In this work, we describe a challenging real-world setting with
scarce and partial data of failures. We propose a non-supervised
approach that detects behavioral changes related to failures avoid-
ing using the raw signals directly to cope with driving behavior
and weather volatility. Our solution calculates the differences
in the correlations of collected signals between two periods and
dynamically creates reference profiles of normal operational con-
ditions tolerating noise. The initial experiments are particularly
promising, e.g., we achieve 78% precision detecting nearly half of
the failures outperforming the behavior of a state-of-the-art deep
learning technique. More importantly, we consider our solution
as a specific instantiation of a broader framework, for which we
thoroughly evaluate a broad range of alternatives.

1 INTRODUCTION
Predictive maintenance (PdM) is an essential tool for accomplish-
ing the Industry 4.0 vision. Its application to vehicles aims to
ensure operation and reduce their downtime [7, 17]. Moreover,
success in an optimal schedule of maintenance and service leads
to safe usage and cost reduction. One of the most crucial compo-
nents of a PdM solution in vehicles is the prediction of faults, i.e.,
the need for non-standard non-periodic service and repair.

Most commonly, the prediction and detection of faults in ve-
hicles concerns the original equipment manufacturers (OEM).
Diagnostic Trouble Codes (DTCs)1 form the basis of most solu-
tions from all manufacturers regarding the detection of vehicle
faults in practice. Essentially, these are codes related to a faulty
behavior of the vehicle and are produced by the engine control
unit (ECU), which is programmed by the OEM to produce a code
based on rules upon collected sensor values. There are two types
of DTCs: the pending and the stored ones. The pending codes are
related to a malfunction observed once and do not repeat, while
the stored codes indicate a repeating malfunction.

Motivation. Although the main tool used by mechanics to
detect failures in a vehicle is the examination of DTCs, there
are several cases where DTCs do not manage to capture failures.
In other words, there are failures where no DTC was produced
beforehand. A representation of such cases is depicted in Figure
1 using a sample of the vehicle fleet dataset that we analyze in
1https://github.com/mytrile/obd-trouble-codes/blob/master/obd-trouble-codes.
csv

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

2022-05 2022-06 2022-07 2022-08 2022-09 2022-10 2022-11 2022-12 2023-01 2023-02 2023-03

ve
hi
cle

 1

2022-06 2022-07 2022-08 2022-09 2022-10 2022-11 2022-12 2023-01

ve
hi
cle

 2

2022-08-15 2022-09-01 2022-09-15 2022-10-01 2022-10-15 2022-11-01 2022-11-15

ve
hi
cle

 3
2022-07-222022-08-01 2022-08-222022-09-01 2022-09-222022-10-01 2022-10-222022-11-01 2022-11-222022-12-01

ve
hi
cle

 4
operating repair service pending DTC stored DTC

Figure 1: Produced DTCs codes along with repair and ser-
vice events on 4 vehicles.

this work. In the figure, the events of DTCs, repairs, and services
corresponding to 4 vehicles are represented with different colors.
Aswe can see, DTCs are produced before the fault only in one case
(vehicle 4) while, for vehicle 1, many DTC codes were produced
for a long time after repair without actually needing a repair.
Finally, for vehicles 2 and 3, there are no DTC codes before and
after the faults.

This sample is representative for the whole fleet and the ex-
ample indicates that we cannot rely on DTCs for predicting that
repairs are needed in the near future. Motivated by this observa-
tion, the goal of this work is to devise a practical PdM solution
for vehicles without relying on DTCs. However, our setting is
challenging, as explained below.

Our setting. The case concerns a fleet of vehicles, which
operate daily in both urban and regional areas. The operation
of vehicles is monitored with the help of a fleet management
system (FMS) platform, where users can see their routes and
active hours along with collected data related to the vehicle state,
such as DTCs and six Parameter IDs (PIDs) signals communicated
using On-Board Diagnostic II (OBDII)2. More specifically, the
collected PID signals include (i) engine speed in revolutions per
minute (rpm), (ii) speed in kilometers per hour, (iii) engine coolant
temperature (coolantTemp), (iv) the temperature of the air in the
intake manifold (intakeTemp), (v) pressure in the intake manifold
or Manifold Absolute Pressure (map-Intake), and (vi) airflow rate
(MAFairFlowRate). These signals are a portion of the engine
management system-generated signals and are collected at a
frequency of one measurement per minute when the vehicle
operates.

The vehicles monitored belong to a leasing company that signs
a contract with the operator company. The operator company
signs a contract with the FMS provider, who is responsible for
the PdM solution.

2https://en.wikipedia.org/wiki/OBD-IIPIDs

Industrial & Applications Paper

 

 

Series ISSN: 2367-2005 753 10.48786/edbt.2024.65

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.65


Challenges. Due to the fact that the vehicle operator does
not own the vehicles, several events of interest, such as standard
services and repairs of vehicles are partially collected. The partial
collection concerns the fact that the information regarding those
events is available for a subset of vehicles only, while several
events of interest take place but they are not recorded. The partial
collection of such events makes the problem more challenging,
since knowledge is absent regarding (i) the state of vehicles and
(ii) failures detected during standard/periodic services that is
an obligation of the leasing company and their reports are not
communicated to the operator.

Our PdM solution aims to predict the need for urgent main-
tenance events after an occurred behavior change regarding a
vehicle component. Although these events are significant to avoid,
they are very sparse. Specifically, the monitored fleet that is ex-
amined in this work consists of 40 vehicles, where, for one year
of operation, there are 121 events of interest collected concerning
only 26 out of 40 vehicles. Out of these 121 events, only 9 of the
events are failures. The rareness of failure data essentially rules
out supervised learning solutions. The operational data of the 40
vehicles consist of 1.5 million records, while the failure states of
the vehicles, constructed using a 30 or 15 days period before each
failure, correspond to 3.6% and 1.9% of the dataset, respectively.

Additionally, the use of a particular vehicle in the fleet may
vary compared to other vehicles in the same fleet, or its past usage
(e.g. urban or cross-regional rides), which makes the comparison
of the vehicles’ data tricky, as a high difference in the data may
be attributed to a different usage rather than an upcoming failure.
We further discuss this in Section 2. Overall, our solution needs
to be robust both regarding data changes (due to data drifts that,
in general, render simple distance-based techniques problematic)
and human errors or indifference (i.e., there are a lot of missing
event data because the vehicle owner does not care to provide full
reports to the operator so that the FMS can be aware of them).

Problem Formulation and Contribution. Having a fleet
with a variety of vehicles operating in different conditions, we
seek to answer which vehicles should perform maintenance to
avoid a serious damage, based on their operational state derived
solely from sensor data and (partial) maintenance event record-
ings. The absence of labels and clear characterizations of the
vehicle operation has led us to use a non-supervised solution
upon PID data and be robust to the fact that ground truth data
is not clean. Finally, we need to ensure that we do not lose the
trust of drivers and mechanics, which highlights the need for
increased precision in our results.

To solve the problem above, we devise a framework that does
not rely on active involvement of a domain expert and revolves
around the dynamic building of a reference dataset that cor-
responds to normal behavior, despite the fact that there is no
guarantee that this dataset is free of noise. We investigate a se-
ries of alternative design choices and we derive a final solution
that achieves up to 78% precision and 44% recall, i.e., a behavior
that indicates that the solution is applicable in practice. Interest-
ingly, a self-similarity-based solution yields better results that
other techniques, including a state-of-the-art transformer-based
unsupervised anomaly detector.3

Paper Structure. Section 2 further discusses the dataset and
its associated challenges. The proposed framework and the design
choices are presented in Section 3. In Section 4, we comparatively
evaluate the alternatives and we describe an instantiation of the

3https://github.com/agiannoul/NavarchosPdM

Figure 2: The 9 clusters derived from Agglomerative clus-
tering plotted for different pairs of features along with 1%
outliers, notated with star.

proposed framework. Next, we discuss the related work and we
conclude in Section 6.

2 DATA EXPLORATION
To further understand the nature of our data and the challenges
of our case, we perform clustering on the raw sencor data. In
our case where data comes from multiple vehicles, it would be
interesting to find out if there are any well-separated or mean-
ingful clusters among them indicating (upcoming) failures. First,
an aggregation is performed using an one-day timespan, and
calculating the mean and standard deviation of each of the PID
measurements mentioned above. As a clusteringmethod, we have
employed average linkage agglomerative hierarchical clustering
[22], which allows for examining the resulting clusters at various
levels of granularity. The distance metric is the Euclidean one.
In Figure 2, we present 9 clusters plotted using different pairs
of measurement types. Moreover, in the figure we can observe
the top 1% of outliers, using star notation with black color. We
have chosen this number of clusters because we can provide a
real-world description to each of these clusters.

More specifically, we can relate each cluster with fleet meta-
data, like vehicle-model and ride lengths. By examining i) the
participation of each vehicle in clusters, ii) the relative location
of clusters in the feature pair plot, and iii) the length of the rides
in kilometers performed in a day, we result with the following
explanations for each cluster: (0) regular rides, (1) extremely small
rides, (2) data of a single vehicle, (3) data of a single vehicle, (4)
high speed/rpm involving long rides, (5) data of a single vehicle,
(6) short rides, (7) data of a single vehicle, and (8) long rides. In
summary, from the interpretation of the clusters, we can argue
that the difference in the data monitored by different vehicles
is highly possible to be attributed to a different type of vehicle
(since some vehicles form their own cluster) and usage (since the

754



Figure 3: Framework for behavioral change detection.

different types of rides form different clusters), while there is no
cluster referring to faulty behavior, i.e., behavior just before an
unscheduled repair event.

We now turn our attention to outlier objects, e.g., objects in
the figures that are far away from their center. The hypothesis
that needs to be tested, provided that vehicle measurements close
to failures do not correspond to any cluster, is whether there
exist anomalous data that are related to upcoming failures. So,
except looking at cluster level interpretation, we have to consider
the outliers in our data and check if they are related to failures.
Using the well known Lof [3] algorithm, we collect the top 1%
of outliers in our data. These are observed with a star notation
and black color in Figure 2. To measure how these outliers are
related to failures, we measure their time difference from the next
failure occurrence. More precisely, each dot in the plots derives
from the data of a specific vehicle on a specific date. Thus, for
each outlier we gather the failure of its corresponding vehicle
and examine a) if the timestamp of outlier is at most 30 days
before a failure (and so, we consider that is related to it), b) if
there is no failure occurrence after the outlier timestamp at all,
or finally, c) if the timestamp of the outlier is at least 31 days
before the next occurrence of failure after its timestamp. The
two latter categories are considered as non related to failures.
Surprisingly, no outlier exists in the (a) category, while outliers of
categories (b) and (c) comprise 11% and 89% of the total outliers,
respectively.

The main lesson learnt from the data exploration activity is
that simple distance-based solutions directly applied to the raw
measurements using Euclidean distance do not manage to reveal
behavioral changes in vehicle data that can be interpreted as
warning signs for upcoming failures.

3 DETECTING BEHAVIORAL CHANGE
3.1 Framework Outline
In this work, we propose a framework that is capable to quantify
behavioral changes that correspond to a failure state rather than
different usage of the vehicle. The proposed framework can be
instantiated in several different manners and the purpose of this
work is to investigate the effectiveness of main alternatives. The
framework consists of three parts: 1) transformation of data in
a form that highlights behavioral changes, 2) construction of a
normal reference state of a vehicle, and 3) use of a non-supervised
model to produce an anomaly score, as depicted also in Figure 3.

Regarding the data transformation, the goal is to transform the
data in a space, where behavioral changes are highlighted. Key
alternatives include delta transformation, correlation between

signals, frequency-domain transformation, histograms, and oth-
ers.

The second step is the construction of a reference healthy state
of a vehicle, Ref. Having a relatively normal state of the vehicle,
i.e., a state representation that mostly reflects normal operation
conditions while tolerating some noise existence, we can detect
deviations in real time based on the difference of new data with
the reference state. For example, in case of correlation transfor-
mation, comparing how the collantTemp is changing as the speed
rises in the reference data and how it is changing in the new data
may reveal forthcoming failures. A big difference between the
correlation of two signals in the reference data and in the cur-
rent data denotes a behavior change in the vehicle, which can be
due to a fault or some other outer factor. To define a reference
state, we use a period of vehicle operation after maintenance (or
standard service), assuming that the vehicle operates normally
after such events without seeking more guarantees; building the
reference state based on such events yields a dynamic solution.

Considering the third step, to quantify the deviation between
a reference state and current monitoring data, there are differ-
ent unsupervised and semi-supervised techniques. Three well-
known representative types are similarity-based, reconstruction
(deep-learning) models, and regression (or forecasting) ones.
In our problem, we investigate four different techniques, two
similarity-based, one reconstruction, and one regression-based.

In the framework, we keep the second step constant and we
explore multiple solutions regarding the first and the third step.
As such, the key rationale behind the framework is to capture
the degradation or a failure of a vehicle by comparing its cur-
rent behavior against an assumed healthy reference state that is
updated after each service. Note that this idea has been proven
to be particularly promising in several other anomaly detection
settings, such as [2] and [8]. Below, we elaborate on our main
choices for the first and the third step.

3.2 Data Transformations
Our exploratory analysis investigates four different options re-
garding data transformation, namely (i) correlation transforma-
tion, (ii) mean aggregation, (iii) delta transformation, and (iv)
keeping the raw datameasurements emitted by the sensors placed
on vehicles. For all four options, before we transform the data,
we first filter out records that correspond to the stationary state
of the vehicle and sensor faulty data. Always, the objective is to
reveal changes corresponding to the near-failure operation of
vehicles given the partial information that is available.

Correlation transformation refers to the calculation of the
cross-correlation between the different available features, i.e.,
measurement types. Using a sliding window over raw data, we
calculate the correlation between signal data. If we consider that
the initial data features are 𝑓𝑛 , after cross correlation we result in
a symmetric 𝑓𝑛 × 𝑓𝑛 matrix, which can be considered as a vector
with 𝑓𝑛∗(𝑓𝑛−1)

2 features. The intuition behind this transformation
is that different usages of vehicles may produce similar correla-
tions. For example, we expect that speed and rpm are positively
correlated regardless of whether the vehicle performs urban or
regional rides, while a difference in the correlation of two signals
may refer to a failure state. For the second option, we use a mean
aggregation of raw data. Using the same sliding window as in the
correlation transformation, we simply take the mean over each
feature in the window as representatives of the corresponding

755



period. Although in Section 2 we showed that such transforma-
tion has led to differentiation of the data based on the vehicle
usage and type rather than their operational state, it is essential
to further test it in practice.Finally, delta transformation refers to
the difference between preceding and proceeding measurements.
To transform the data, for each measurement, we subtract its
previous values, which is similar to calculating a derivative of
each measurement. This transformation has been used in vehic-
ular data [9] providing good results, and so we consider it as a
possible choice.

3.3 Closest pair-based anomaly detection
This technique and the following ones refer to the instantiation
of step 3.

Closest Pair Detection leverages a healthy period of operation
Ref to calculate anomaly scores from upcoming data. This tech-
nique monitors each feature of the input separately. When a new
sample arrives, the technique assigns an anomaly score for each
feature, using its distance from its closest neighbor in Ref. This
results in 𝑓𝑛 or 𝑓𝑛∗(𝑓𝑛−1)

2 if correlation is used as data transfor-
mation anomaly scores per sample. Alarms are produced from
violation of the threshold in any of 𝑓𝑛 anomaly scores and are
accompanied by a description with the the feature that triggered
it.

To decide a threshold value, we could use an arbitrary value
or a thresholding technique. We decided to use the self-tuning
thresholding from [8], since it matches our case and can calculate
a different threshold for each different vehicle, using the same
parametrization. This method calculates a threshold based on
anomaly scores in supposed normal data using a factor. Specifi-
cally, the threshold is equal to the mean of anomaly scores plus
the standard deviation of them multiplied by a factor. For the
calculation of the threshold, we use a small portion of healthy
data each time, while using the same factor for all vehicles.

3.4 Grand
Grand is a distance-based solution combined with statistical tests
to predict failures in vehicles [17]. The proposed solution models
based on the wisdom of the crowd. Essentially, to measure the de-
viation score of a vehicle, it measures the dissimilarity of samples
using distance-based techniques, such Lof and k-nearest neigh-
bours (Knn) to quantify the strangeness of a sample in relation
to the data of other vehicles in normal data.

In our case, vehicles differ from each other, and so, we follow
another strategy proposed by the same authors. This strategy
differs only in the calculation of normality data, which is now
formed using an operation period of the same vehicle, as the
sample we examine. Then, the same methods are used to define
the strangeness and deviation score of the sample 4.

In more detail, to detect deviations, Grand calculates the out-
lierness of a sample 𝑥𝑡 in relation to the rest of the samples in the
normal Reference data Ref. This calculations is performed using
three non-conformity measures: (i)Median, which is the distance
of a sample from the median of Ref (i.e., its most central pattern),
(ii) Knn, which is the average distance to the k-nearest neighbors
of a sample within Ref, and (iii) Lof, which is the local outlier
factor [3]. Leveraging the the score derived from non-conformity
measures, the outlierness (𝑧_𝑠𝑐𝑜𝑟𝑒) of the examined sample and
for all samples in the Ref is computed. After that, the p-value 𝑝𝑡
of the examined sample 𝑥𝑡 is computed using [6].
4https://github.com/caisr-hh/group-anomaly-detection

3.5 Reconstruction-based (deep learning)
anomaly detection

Except similarity-based techniques, reconstruction-based anom-
aly detection could be used to predict failures in the PdM context.
These methods usually involve non-supervised Deep Learning
(DL) architectures, trained on data considered normal or healthy,
to reconstruct their input.

Specifically, the model is trained to produce output equal to its
input, meaning that having as input a sample 𝑥 and output 𝑦, the
training objective is 𝑥 and 𝑦 to be equal (𝑥 = 𝑦). The 𝑦 is referred
to as a reconstruction of 𝑥 , while the distance between 𝑥 and 𝑦
(i.e. the loss of the model) is referred to as a reconstruction error.
So, providing the model only with normal data in the training
phase, it learns to reconstruct correctly data that are similar to
normal ones. Then, in the online phase, when the model tries
to reconstruct a new upcoming sample 𝑥𝑖 resulting in output 𝑦𝑖 ,
we measure its reconstruction error (distance between 𝑦𝑖 and 𝑥𝑖 )
and use it as an anomaly score to produce alarms.

In the proposed framework, TranAD (Deep Transformer Net-
works for Anomaly Detection in Multivariate Time Series Data)
model [20] could be used to instantiate the model choice in the
third step. This model consists of a state-of-the-art transformer
DL model and is endowed with valuable properties, such as the
capability to operate with fewer training data than competitors
and to reconstruct data after a small number of epochs. By train-
ing the TranAD model to Ref data (provided by the framework),
the model can be used as an anomaly detector, since it learns to
reconstruct correctly data similar to trained ones and deviates in
unknown data.

3.6 Forecasting/Regression methods
Another way to detect anomalies that act as warnings of near
future failures is using forecasting or regression models. The
intuition here is to train a model using healthy data (Ref ), to
regress future values based on historical data, or to regress a
target feature from a data sample when provided with the rest
of the features in the input. By training only using healthy data,
we expect that, when the model is asked to perform such a task
on close-to-failure data, it will produce higher loss, since it is
not trained to model data dissimilar to healthy ones. So, during
inference, we calculate the anomaly score as the distance be-
tween the prediction and actual value. This methodology can be
followed both using a forecasting model, to forecast all or one of
the input features, and using a regression model to regress one
of the features given the remaining ones as input.

In our case, we use the XGBoost [5] regressor as a model.
Specifically, we use as many XGBoost models as the number of
features in our data, each one trained to predict the value of one
of the features, having as input the remaining feature values.
So, we train 𝑓𝑛 models using the Ref data, each time having a
different feature as the target one. After that, in inference time,
when a new sample arrives, we perform the same procedure on
data as in training, this time at a record level, and pass the the
data to the models. Each model tries to predict the value of its
target feature, where we use the loss of the prediction (i.e. the
distance between the predicted and actual value) as the anomaly
score.

Similarly to closest-pair detection, when an alarm occurs from
one of the regressors, this is accompanied by a description that
refers to the target feature that the model tried to predict. I.e.,

756



these two alternatives are inherently more amenable to explana-
tions.

4 EVALUATION
Our main evaluation comprises a real-world dataset provided by
Istognosis FMS, named as Navarchos (meaning Admiral in Greek).
The experiments were conducted in two different settings. The
first is setting40 that uses all 40 vehicles data. However, in this
dataset there are 14 vehicles with no recorded events. Therefore,
we also experiment with a cleaner dataset that is a subset of the
former one using using the 26 vehicles out of 40, for which there
is at least one event of service or repair during its lifetime (even
if it is at the end). We refer to this second setting as setting26. As
explained in Section 2, both settings are characterized by partial
information, although events in the first setting are significantly
less informative than in the second. Overall, in only 9 of the
26 vehicles, for which significant events are recorded, there are
repair events recorded; remember repair events imply the need
for non-periodic maintenance action to take place and PdM’s
goal is to alleviate this need.

The main metric we employ is 𝐹0.5, which, compared to 𝐹1
does not use the harmonic mean of precision and recall, but equals
to (1 + 𝛽2) 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ·𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 with 𝛽 = 0.5. This results in preci-
sion having more weight than recall, and reflects the real-world
requirements that FMS should not raise alarms unnecessarily.

To calculate the recall and precision, we use a prediction hori-
zon (PH) period, which ends with a repair event. where one or
more alarms that fall within PH are counted as one true positive
instance, while each alarm outside of PH is counted as a false
positive.

To allow for a fair comparison, we use the same threshold-
ing technique for all methods except Grand Inductive (which is
the only one that produces a score between 0 and 1), where a
constant threshold value is used. To measure the performance of
each method, we use multiple factors regarding the thresholding
technique, while, in the case of grand inductive, we use several
constant values thresholds.

Finally, we clarify that the purpose of this evaluation is to
investigate if there is a dominant or at least a preferred choice
with regards to the alternatives presented in Section 3 with a
view to developing an operation PdM solution for the Navarchos
FMS platform. Therefore, at the end of the evaluation section, we
present the complete solution that we advocate adopting in our
use case.

4.1 Result Discussion
The summarized results can be seen in Figures 4 and 5 for set-
ting40 and setting26, respectively. In each of the figures, we can
observe the effectiveness of different techniques for each data
transformation choice. The final results of 𝐹0.5 are depicted with
a darker color for PH=15 days and with a lighter color for PH=30
days on the same bar. In general, results in setting26 are bet-
ter than those in setting40, which is somehow expected, since
the additional vehicles in setting40 can only contribute to false
positives despite the fact that in reality there may exist actually
failures unknown to us due to lack of systematic recording. Also,
results for PH=30 days are either the same as or better than those
for PH=15 days. The highest 𝐹0.5 value observed is 0.68, which
corresponds to 78% precision and 44% recall, i.e., a behavior that
indicates that the solution can be applied in practice.

Figure 4: Results for the different data transformation and
Predictive horizons of setting40 data.

Figure 5: Results for the different data transformation and
Predictive horizons of setting26 data.

(a) Using all techniques.

(b) Using similarity-based techniques.

(c) Using XGBoost and TranAD.

Figure 6: Critical diagrams for data transformation choices.

Based on the presented results, we first discuss the choices
regarding data transformation. At first glance, we can see that the

757



(a) Ranking over all data transformation choices.

(b) Ranking over correlation and raw data trans-
formation choices.

(c) Ranking over all data transformations, except
raw data.

Figure 7: Critical diagrams for anomaly detection tech-
niques

data transformation options have a different impact on the per-
formance of each technique. Interestingly, XGBoost and TranAD
exhibit their best or close to their best results using raw data,
whereas on the other hand, the two similarity-based solutions,
Grand and Closest-pair, could not perform well on raw data. This
observation is supported by the ranking of the different transfor-
mations, produced by the Friedman test followed by Wilcoxon
signed-rank test [21] (using autorank tool [10]) at three levels
of granularity, as shown in Figure 6. These levels correspond to
considering all techniques, only the similarity-based ones, and
only the non-similarity based ones, respectively. Specifically, we
observe that the ranking is consistent in all three cases, with
the correlation (c) being the best, followed by raw (r) data, mean
aggregation (m), and finally, delta (d) transformation.

A significant difference between the first (correlation) and
second (raw) transformation is observed only in similarity-based
techniques. This can be explained that the functionality of the
similarity-based techniques is based on the distance between sam-
ples, while XGBoost and TranAD try to learn the relationship
between the various features. A smaller observation regarding
delta transformation is that, although it yields a lower score in
most cases of setting40, this is not the case in setting26. However,
the key point is that the fact that correlation’s highest perfor-
mance has a noticeable statistical significance for similarity-based
techniques and, as shown already, Closest-pair achieves the high-
est 𝐹0.5; this observation is pivotal for establishing a dominant
solution later.

More specifically, by observing the results at the technique
level, the Closest-pair detection method produces the best results
using the correlation transformation for both settings and pre-
dictive horizons (except when PH=15days in setting40, where
TranAD is slightly better).

By ranking the different techniques using the same procedure
as with data transformation approaches in Figure 7, consider-
ing both settings and all data transformations, we observe that
TranAD, Closest-pair, and XGBoost exhibit statistically significant
better results than the Grand inductive method. Moreover, we
can observe that XGBoost is first in ranking and very close to the
Closest-pair detection solution. This can be observed also from
the results of the techniques in Figures 4 and 5, where XGBoost
shows increased robustness regarding the different choices of

Grand Closest-pair detection TranAD XGBoost
raw 5162 823 62350 5386
delta 4989 761 62868 4922

correlation 27 19 110 139
mean agr. 32 14 128 73

Table 1: Execution time in seconds.

Setting PH F0.5 F1 Precision Recall
setting26 15 days 0.38 0.40 0.36 0.44
setting26 30 days 0.68 0.57 0.78 0.44
setting40 15 days 0.30 0.35 0.29 0.44
setting40 30 days 0.50 0.48 0.52 0.44

Table 2: Analytical results of the best configuration (the
same method parameters are used for all depicted results).

data transformation except delta transformation. So we could
argue that, if someone prefers not to be engaged in fine tuning
of techniques regarding data forms and parameters, the XGBoost
is an attractive solution.

Calculating the ranking of the techniques in two additional
granularities, using only the transformations of correlation and
raw data in Figure 7b, and using all transformations except raw
data in Figure 7c, we can observe that the ranking of the tech-
niques changes. TranAD and XGBoost are favored when raw data
transformation is considered in the experiments, which means
that they are capable to perform (relatively) well on these data.
Again this can be explained from their more complicated func-
tionality, which allows the extraction of knowledge using raw
data (both TranAD network and XGBoost use learnable parame-
ters).

Finally, to check the applicability in real-time scenarios, the
aggregate execution time of the different techniques (using the
different data transformations) are presented in Table 1. All ex-
periments are conducted on a single computer using an Intel
Core i5-6500 CPU clocked at 3.20GHz with 4 cores and RAM 16
GB, and are implemented using Python 3.8. All techniques can
be computed on a daily basis easily, but Closest-pair is an order
of magnitude faster than its competitors. Below, we present its
application in real-time.

4.2 Complete Solution
After exploring the different choices of data transformations in
step 1 and different approaches to modeling the deviation of
vehicles in step 3, we conclude a complete instantiation of the
proposed framework for detecting failures in specific vehicles, as
presented in Algorithm 1. Based on our results, we opt for Closest-
pair over correlated data. The summary of the performance data
of this solution is provided in Table 2.

The operation of timely fault prediction can take place in a
streaming environment. Each time a new data record arrives, we
first check if it refers to an event of interest or PID measurements.
In case of a new event, we further examine if it consists of an event
of interest that triggers the creation of a new normal reference
data, e.g., a standard service is performed, therefore the reference
profile is updated. In case of a need for new reference Ref data,
we discard the old data. If the new sample refers to measurements,
the first action is to perform the data transformation, which, in
our case refers to correlation values. So we pass the data to a
data transformer, which is responsible for keeping buffers of raw

758



Algorithm 1 Detecting failures on vehicles
Require: 𝑡ℎ𝑓 𝑎𝑐𝑡𝑜𝑟 , 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒_𝑙𝑒𝑛𝑔𝑡ℎ
𝑏𝑢𝑓 𝑓 𝑒𝑟 ← []
𝑅𝑒 𝑓 ← []
𝑡𝑟𝑎𝑛 ← 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛()
while 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 do

𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤 ← 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎
if 𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤 is event then

if 𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤 triggers Reset then
𝑅𝑒 𝑓 ← []

else if 𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤 is data then
𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡 (𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤)
if 𝑡𝑟𝑎𝑛.𝑟𝑒𝑎𝑑𝑦 () then ⊲ wait until buffer is full.

𝑥 ← 𝑡𝑟𝑎𝑛.𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤)
if 𝑙𝑒𝑛(𝑅𝑒 𝑓 ) < 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒_𝑙𝑒𝑛𝑔𝑡ℎ then

𝑅𝑒 𝑓 ← 𝑅𝑒 𝑓 + [𝑥]
else if 𝑙𝑒𝑛(𝑅𝑒 𝑓 ) < 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒_𝑙𝑒𝑛𝑔𝑡ℎ then

𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑝𝑎𝑖𝑟_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛.𝑓 𝑖𝑡 (𝑅𝑒 𝑓 , 𝑡ℎ𝑓 𝑎𝑐𝑡𝑜𝑟 )
else

𝑎𝑙𝑎𝑟𝑚 ← 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑝𝑎𝑖𝑟_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥)

Figure 8: Results of one vehicle using closest pair detection
after correlation data transformation.

data, to calculate the wanted transformation. After collecting the
transformed data 𝑥 , we iteratively populate the Ref set until it is
full. When the Ref is ready, we pass it to the anomaly detection
method, i.e., the Closest pair detection.

For a better view regarding the results of the closest pair de-
tection using correlation transformation, we present the actual
results of the technique (anomaly scores for each feature pro-
duced from correlation transformation) for one vehicle in Figure
8. In this example, we observe the different anomaly scores the
technique produced for each feature for all data of a particular
vehicle. Moreover, in pink color, we observe the threshold, while
failures and non-failure events are marked with red and purple
vertical lines, respectively. Finally, at the bottom of the image,
we observe the aggregated results, where violations have led to
alarms.

Setting PH F0.5 F1 Precision Recall
setting26 15 days 0.18 0.23 0.16 0.44
setting26 30 days 0.58 0.36 1.00 0.22
setting40 15 days 0.11 0.14 0.10 0.22
setting40 30 days 0.45 0.32 0.66 0.22

Table 3: Analytical results of Closest-pair on correlation
data without resetting upon service events (here, in each
row the results correspond to different choice of threshold).

In the above example, someone can observe that the threshold
value is neither constant nor the same over the different features.
The reason is that in Step 2 of our framework (construction of
normal reference), each time a service or repair event arrives,
we build the reference data Ref again, and so the techniques are
updated with the new data, along with the threshold calculation.
Using the 𝑃𝐻=30 days, we can characterize whether the alarms
are related to the failure (true positives) or non-related (false
positives), which are depicted in the figure with green and red
rectangles, respectively.

Before closing, we evaluate one of the design choices in the
2nd step of the framework, where we define how the healthy
representation is defined through Ref. Although this choice is
highly dependent on domain knowledge, we also test the choice
of ignoring all service events, and resetting the Ref solely after
repairs of failures. This choice forces the framework to stick
to the initial state of the vehicles as Ref (when vehicle starts
operating for the first time after its monitoring), for all vehicles
without repairs events. The results of such choice are depicted in
Table 3, where, compared to Table 2 either the precision drops
too much to keep the same amount of failures detected, or the
recall drops up to on 0.22 (2 out of 9 failures detected). This
performance degradation occurs despite the fact that we fine tune
each row separately. This final experiment proves the importance
of leveraging all information available despite the fact that is
known to be incomplete.

5 RELATEDWORK
In this section, we make a comparative discussion of state-of-
the-art PDM solutions. In our problem, we deal mainly with
signal data. Although we collect DTC codes (which can be seen as
events), our vehicle fleet is assembled fromnew vehicles, resulting
in a very spare appearance of DTCs. So solutions such as [14] and
[18], which perform an event-based analysis to predict failures,
are difficult to apply. Nevertheless, discretizing the signal input
and creating artificial events is an interesting direction for future
research.

Our framework focuses on a non-supervised methodology,
where the majority of works in PdM rely on supervised methods
requiring labeled data. Although the use of deep learningmethods
could boost efficiency, these methods need a large amount of data
[19].

Turning our attention to PdM solutions tailored to vehicles, the
proposal in [15] leverages the prediction error of a Multi-Layer
Perceptron (MLP) to detect faults in vehicles. This is achieved
by training the MLP for a regression task, where several vehicle
signals are used to predict the value of the engine load. The
rationale behind this approach is that the MLP will learn to
estimate the engine load with low prediction loss when data are
similar to training ones, but will produce high loss otherwise.
Several works, including [1, 11, 16, 23], have implemented this

759



scheme with more advanced models than a simple MLP. One
drawback of this approach, depending on the underlying model,
is the need for large amounts of data per vehicle to be tagged as
healthy by an expert. When raw data are used, another downside
if we attempt to transfer the solution in our use case, is that,
in our case, the vehicles perform occasionally different types of
rides, and so, for each vehicle, we have to carefully add a balanced
amount of such rides to avoid a high loss in the event of rare rides
that do not constitute a failure. In any case, we test similar, if not
a more advanced methods, regarding step 3 of our framework,
namely TranAD and XGBoost.

In [4], the authors predict the time until the next failure in
vehicles, by integrating contextual information, such as GIS and
weather conditions. They accomplish this by utilizing supervised
techniques likeMLP, random forest, and gcforest. However, in our
particular case, we do not have enough data to train such models
as we have a small number of failures compared to the large
number of vehicles we have. The authors in [12] try to produce
real-time alarms aiming to avoid near-future failures in aerial
vehicles. To accomplish that, they leverage the isolation forest
method. Such a method could become an option for the third
step in our framework, but XGBoost that we tested is expected
to behave at least as well as IF.

Finally, the Grand PdM solution for fleets is presented in [17]
and extended in [7] and [13]. Although these methods are unsu-
pervised, this solution is applied to similar vehicles (buses) that
perform similar urban rides. Moreover the application of such
techniques to raw data, in our case, is irrelevant because we do
not seek anomalies in terms of the deviation of selected data to
their history or other vehicles, given the fact that an instance
of raw data may be an anomaly due to the weather, driver, and
the usage of a vehicle when, as shown in Section 2. Nevertheless,
after our preliminary analysis showed that failures can be spotted
by comparing correlations between periods, we can transform
periods of raw instances into such features and we have explicitly
tested the applicability of the Grand Inductive method from [17].

6 CONCLUSION AND FUTUREWORK
We deal with a challenging PdM scenario in a vehicle fleet man-
agement system, where the failure information is partial and
scarce. We suggest a generic framework for predicting serious
failures of vehicles. In addition, we perform an exploratory and
comparative analysis regarding instantiating the steps of the
proposed framework, examining different combinations of anom-
aly detectors and data transformations. This exercise provides
interesting remarks, such as that different techniques are influ-
enced differently from the data transformations, where the best
transformation for our case is working on the correlations of the
individual signal measurements. To this end, we also propose a
dynamic similarity-based approach for detecting failures, which,
along with an appropriate transformation of data, achieves the
best results, surpassing the performance of other state-of-the-art
techniques, including deep learning ones. Notably, even if the
manner we finally instantiate the framework is different from the
most appropriate one in other cases sharing the fact that no su-
pervised techniques are applicable and the information regarding
the operation environment is partial and evolving, the framework
is still applicable and the investigation process described in this
work can be followed by third parties.

Acknowledgements. The research is funded under the pro-
gramme of social cohesion “THALIA 2021-2027” co-funded by the
European Union, through Research and Innovation Foundation.

REFERENCES
[1] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and

Maria A Zuluaga. 2020. Usad: Unsupervised anomaly detection on multi-
variate time series. In Proc. of the 26th ACM SIGKDD Int. Conf. on Knowledge
Discovery & Data Mining. 3395–3404.

[2] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. 2020.
Automated Anomaly Detection in Large Sequences. In 2020 IEEE 36th Interna-
tional Conference on Data Engineering (ICDE). 1834–1837. https://doi.org/10.
1109/ICDE48307.2020.00182

[3] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.
2000. LOF: Identifying Density-Based Local Outliers. SIGMOD Rec. 29, 2 (may
2000), 93–104. https://doi.org/10.1145/335191.335388

[4] Chong Chen, Ying Liu, Xianfang Sun, Carla Di Cairano-Gilfedder, and Scott
Titmus. 2020. Automobile MaintenanceModelling Using gcForest. In 2020 IEEE
16th Int. Conf. on Automation Science and Engineering (CASE). IEEE, 600–605.

[5] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. 785–794.

[6] Liang Dai and Mohamed-Rafik Bouguelia. 2020. Testing exchangeability with
martingale for change-point detection. arXiv:1810.04022 [math.ST]

[7] Apostolos Giannoulidis and Anastasios Gounaris. 2023. A context-aware
unsupervised predictive maintenance solution for fleet management. Journal
of Intelligent Information Systems 60, 2 (01 Apr 2023), 521–547. https://doi.
org/10.1007/s10844-022-00744-2

[8] Apostolos Giannoulidis, Anastasios Gounaris, Nikodimos Nikolaidis, Athana-
sios Naskos, and Daniel Caljouw. 2022. Investigating Thresholding Techniques
in a Real Predictive Maintenance Scenario. SIGKDD Explor. Newsl. 24, 2 (dec
2022), 86–95. https://doi.org/10.1145/3575637.3575651

[9] Flavio Giobergia, Elena Baralis, Maria Camuglia, Tania Cerquitelli, Marco
Mellia, Alessandra Neri, Davide Tricarico, and Alessia Tuninetti. 2018. Mining
sensor data for predictive maintenance in the automotive industry. In 2018
IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA). IEEE, 351–360.

[10] Steffen Herbold. 2020. Autorank: A Python package for automated ranking
of classifiers. Journal of Open Source Software 5, 48 (2020), 2173. https:
//doi.org/10.21105/joss.02173

[11] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell,
and Tom Soderstrom. 2018. Detecting spacecraft anomalies using lstms and
nonparametric dynamic thresholding. In Proc. of the 24th ACM SIGKDD Int.
Conf. on knowledge discovery & data mining. 387–395.

[12] Samir Khan, Chun Fui Liew, Takehisa Yairi, and Richard McWilliam. 2019.
Unsupervised anomaly detection in unmanned aerial vehicles. Applied Soft
Computing 83 (2019), 105650. https://doi.org/10.1016/j.asoc.2019.105650

[13] Patrick Killeen, Bo Ding, Iluju Kiringa, and Tet Yeap. 2019. IoT-based predictive
maintenance for fleet management. Procedia Computer Science 151 (2019),
607–613. https://doi.org/10.1016/j.procs.2019.04.184 The 10th International
Conference on Ambient Systems, Networks and Technologies (ANT 2019) /
The 2nd International Conference on Emerging Data and Industry 4.0 (EDI40
2019) / Affiliated Workshops.

[14] Panagiotis Korvesis, Stephane Besseau, and Michalis Vazirgiannis. 2018. Pre-
dictive Maintenance in Aviation: Failure Prediction from Post-Flight Reports.
In 2018 IEEE 34th Int. Conf. on Data Engineering (ICDE). IEEE, 1414–1422.

[15] Alessandro Massaro, Sergio Selicato, and Angelo Galiano. 2020. Predictive
Maintenance of Bus Fleet by Intelligent Smart Electronic Board Implementing
Artificial Intelligence. IoT 1, 2 (2020), 180–197. https://doi.org/10.3390/
iot1020012

[16] Hengyu Meng, Yuxuan Zhang, Yuanxiang Li, and Honghua Zhao. 2020. Space-
craft Anomaly Detection via Transformer Reconstruction Error. In Proc. of the
Int. Conf. on Aerospace System Science and Engineering 2019, Zhongliang Jing
(Ed.). 351–362.

[17] Thorsteinn Rögnvaldsson, Sławomir Nowaczyk, Stefan Byttner, Rune Prytz,
and Magnus Svensson. 2018. Self-monitoring for maintenance of vehicle
fleets. Data Mining and Knowledge Discovery 32, 2 (March 2018), 344–384.
https://doi.org/10.1007/s10618-017-0538-6

[18] Uferah Shafi, Asad Safi, Ahmad Raza Shahid, Sheikh Ziauddin, and Muham-
mad Qaiser Saleem. 2018. Vehicle Remote Health Monitoring and Prognostic
Maintenance System. Journal of Advanced Transportation 2018 (18 Jan 2018),
8061514. https://doi.org/10.1155/2018/8061514

[19] Andreas Theissler, Judith Pérez-Velázquez, Marcel Kettelgerdes, and Gordon
Elger. 2021. Predictive maintenance enabled by machine learning: Use cases
and challenges in the automotive industry. Reliability engineering & system
safety 215 (2021), 107864.

[20] Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. 2022. TranAD: Deep
Transformer Networks for Anomaly Detection in Multivariate Time Series
Data. Proc. VLDB Endow. 15, 6 (jun 2022), 1201–1214. https://doi.org/10.14778/
3514061.3514067

[21] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biomet-
rics Bulletin 1, 6 (1945), 80–83. http://www.jstor.org/stable/3001968

760



[22] Marie Lisandra Zepeda-Mendoza and Osbaldo Resendis-Antonio. 2013. Hier-
archical Agglomerative Clustering. Springer New York, New York, NY, 886–887.
https://doi.org/10.1007/978-1-4419-9863-7_1371

[23] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian
Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V
Chawla. 2019. A deep neural network for unsupervised anomaly detection
and diagnosis in multivariate time series data. In Proc. of the AAAI Conf. on
Artificial Intelligence, Vol. 33. 1409–1416.

761


