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ABSTRACT
Almost every organization today is promoting data-driven de-

cision making leveraging advances in data science. According

to various surveys, data scientists spend up to 80% of their time

cleaning and transforming data. Although data management

systems have been carefully optimized for such tasks over sev-

eral decades, they are seldom leveraged by data scientists who

prefer to use libraries such as Pandas, sacrificing performance

and scalability in favor of familiarity and ease of use. As a re-

sult, data scientists are not able to fully leverage the hardware

capabilities of commodity workstations and either end up work-

ing on a small sample of their data locally or migrate to more

heavyweight frameworks in a cluster environment. In this pa-

per, we present PyFroid, a framework that leverages lightweight

relational databases to improve the performance and scalability

of Pandas, allowing data scientists to operate on much larger

datasets on a commodity workstation. PyFroid has zero learning

curve as it maintains all the Pandas APIs and is fully compatible

with the tools that data scientists use (e.g., Python notebooks). We

experimentally demonstrate that, compared to Pandas, PyFroid

is able to analyze up to 20X more data on the same machine, pro-

vide comparable or better performance for small datasets as well

as near-memory data sizes, and consume much less resources.

1 INTRODUCTION
Python is the de-facto language of choice for data scientists [23]

and Pandas is the most favored data manipulation library [32]

as it integrates seamlessly within the Python ecosystem and has

no separate infrastructure requirements. A recent survey [24]

estimates that more than 75% of data scientists operate on data

sizes in the MB or GB range, which can fit on a single lap-

top/workstation. These workstations are single node, have lim-

ited RAM, and a few cores of CPU processing power with optional

GPUs.

Unfortunately, current dataframe systems are inefficient when

deployed on laptops/commodity workstations. For instance, ac-

cording to the creator of Pandas [25], Pandas was not designed

to scale for large datasets as it requires 5X-10X times the RAM

to process a given dataset, resulting in failures or performance

regressions as the data size increases. There have been efforts

to improve the performance and scalability of Pandas work-

loads (e.g., [2, 4, 29]) by using a distributed execution framework

to chunk and parallelize dataframes and operations. However,

these systems retain the inherent scalability limitations of Pandas

dataframes, and their benefits are conditional on the availability

of a big cluster or a large amount of RAM, which are impractical

for low-resource workstations. Another direction of work aimed

at making dataframes lean is by translating imperative dataframe

operations into SQL [3, 19], thereby leveraging decades-long

work in optimizing relational databases for data manipulation.
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However, not all Pandas dataframe operations can be translated

into database queries [29]. Current systems bypass this by either

proposing their own dataframe APIs [18, 21], which breaks exist-

ing scripts, or by shifting the burden of deciding what operations

to push into SQL onto the user [17, 20], which is tedious and

error-prone. Due to these limitations, our customers are forced to

either (a) upgrade to a bulkier machine (which may be costlier),

or (b) use only a sample of the data (which may lead to sub-

optimal results), or (c) resort to micro-management of resources

programmatically (which hurts data scientist productivity).

In this paper, we present PyFroid, a system that addresses this

gap by providing a lightweight, robust and efficient framework

for scaling data analysis on a single node. Specifically, we develop

novel techniques that use dual engine (Pandas and SQL) execu-

tion to automatically identify and pushdown operations from

Pandas into SQL whenever possible or execute untranslatable

operations in the stock Pandas engine. Our techniques employ

lazy evaluation to execute SQL queries on demand and automati-

cally take care of moving data between the two engines when

required. Further, our techniques can optimize Pandas operations

interspersed with other imperative programming statements in

complex control flows making PyFroid practical in real-world

applications.

PyFroid can be easily installed using Python package man-

agers and does not rely on external database infrastructure. With

PyFroid, there is no learning curve, and existing workloads can

immediately benefit from its features without requiring any code

modifications. We use DuckDB [33] as the database accelerator

for PyFroid because it is accessible as a Python library, supports

a wide range of SQL operators including those beyond relational

algebra, operates on both raw files and Pandas dataframes, and

delivers good query performance. Our techniques are not specific

to any database engine or query dialect; other SQL databases that

support cost-based planning, vectorized and multi-core execu-

tion, as well as common operations (type casting, text functions,

date operations, sub-queries and WITH, etc.), can also be inte-

grated with PyFroid and will likely provide performance and

resource utilization benefits compared to purely executing the

workload using Pandas.

Contributions. Our key contributions in this paper are as fol-

lows:

• A prototype Python library, PyFroid, that provides Pandas APIs

backed by the DuckDB engine.

• A hybrid lazy evaluation mechanism that uses imperative-to-

declarative translation for relational Pandas operations and

Pandas runtime for untranslatable imperative statements.

• An evaluation of PyFroid using top-voted Kaggle notebooks

that we make publicly available for others to experiment with,

as well as production Pandas workloads to establish the effi-

ciency and effectiveness of our system.

2 MOTIVATION
Consider the example program shown in Figure 1. The program,

abridged from public notebook N8 (Section 6) uses Pandas APIs
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2 df = pd.read_csv(‘nyc-parking-tickets.csv’)
3 df = df[df[‘VehicleExpDt’] > 2099101] 
4 df = df[‘PlateType’].replace({‘99’: None})

1 import pyfroid.pandas as pd

5 df[‘Issued’] = pd.to_datetime(df[‘Issued’], 
errors=‘ignore`)

6 df[‘Issued’, ‘Summons’]]

Index

PYFROID (Database-accelerated Pandas)Pandas program

DataFrame

Eager Frame

Lazy Frame

Subsequent Operations

Summons

df[‘Issued’]

In-memory 
SQL db

Figure 1: Architecture of PyFroid
Operator count based:
Total SQL-able UDF-able SQL+UDF

217 122 (56%) 27 (12%) 149 (69%)

Operator frequency based (5m scripts):
Total occurrences SQL-able

178117867 137212960 (77%)

Table 1: Feasibility of Pandas APIs to SQL Translation.

to read in a parking tickets dataset, then filters expired vehicles

followed by data cleaning and transformation operations. Us-

ing our techniques, lines 2-4 of the program are automatically

translated into a single SQL query that records all the operations

in those lines - however, the SQL query is not yet executed. In

line 5, the datetime conversion of the column Issued is executed

in Pandas because of the errors=‘ignore’ option that results in

dynamic types, which is not supported by SQL. Finally, in line 6,

a subset of the columns is requested for subsequent operations.

At this point, PyFroid executes a projection SQL query to obtain

only the required column (Summons), joins it with data from

Pandas (Issued), and orders it appropriately using metadata that

is maintained separately (Index) to provide a resultant Pandas

dataframe.

This example illustrates how PyFroid’s techniques enable scal-

ing to large datasets. First, the filter (line 3) has been pushed into

the database, thus a fraction of the rows is retrieved using opti-

mized query execution plans. Note that more complex operations

such as grouped aggregations, joins, etc. may be pushed down

into SQL. Next, the update on line 4 is simply recorded but never

executed as the program does not use the value of the column

PlateType. Finally, only a subset of the entire dataset is materi-

alized in memory and on-demand. We discuss challenges and

underlying techniques including imperative to SQL translation,

computation distribution, and how PyFroid synchronizes state

across engines in Section 3.

To further motivate our work, we conducted a detailed exam-

ination of all the pandas.DataFrame APIs [5]. The results are

shown in Table 1. Based on operator count, around 70% of the

Pandas operations (with their commonly used parameters) can

be expressed using SQL and SQL user-defined functions (UDFs).

In this paper, we focus only on SQL-translatable operators; trans-

lating into UDFs is part of future work. We then analyzed Pandas

operations in all publicly available GitHub Python notebooks

from 2020 [32], amounting to a total of 5 million notebooks. Based

on frequency of occurrences, a higher fraction of these operations

are directly translatable to SQL (77% compared to 56% using plain

operator count), reinforcing that the set of Pandas operators that

are most commonly used by data scientists can be pushed down

into SQL. At the same time, it is clear that SQL alone cannot

handle all the available data operations motivating the need for

hybrid approaches like ours.

3 APPROACH
Our system is rooted in providing fully compatible Pandas APIs

to users, while allowing the system to automatically push opera-

tions down into SQL. There are multiple challenges to achieving

this. Firstly, there is an impedance mismatch between SQL and

Pandas. A SQL query usually consists of a number of operations

including selections, projections, joins, grouped aggregations,

etc. that are specified declaratively and optimized and executed

together in one plan. Pandas queries, on the other hand, may span

over multiple (often tens or hundreds of) lines. Secondly, SQL

queries are expressed over tables, which are two-dimensional

datasets with labeled columns and optional indexes. Queries in

Pandas are expressed over dataframeswhich are two-dimensional

ordered datasets with labeled and ordered columns and indexes.

Operations on dataframes implicitly preserve the data ordering

based on the index, whereas SQL engines are free to reorder data

unless an explicit ORDER BY is specified. Pandas also provides

a Series data structure that is a one-dimensional labeled array

and shares many of the APIs on dataframes, with appropriate

semantics for a single column of data. Lastly, but equally impor-

tantly, fragments of Pandas code that can be pushed down into

SQL may be interspersed with other untranslatable operations.

Handling this intermixing not only requires careful management

of metadata and state, but also a way to distribute operations

across the two execution engines. Next, we discuss the structured

and techniques we propose to handle these challenges.

Structures. PyFroid internally uses the following structures: Hy-
bridFrame, LazyFrame, EagerFrame and Index. HybridFrame is

what the user of the library interacts with, and it provides the

same APIs as Pandas DataFrame. Under the hood, HybridFrame

encompasses three structures: LazyFrame, EagerFrame and Index.

LazyFrame is a wrapper around a SQL query corresponding

to Pandas operations that could be pushed down to SQL. In our

work, the SQL queries are represented as DuckDB relations that
denote virtual tables in the database. These virtual tables do not

actually contain any data - they simply denote a tree of built

up operations. In addition, LazyFrame supports a materialize()
method that can force the DuckDB relation to be executed and

return the result as a Pandas dataframe. Query execution is forced

in conditions described in Algorithm 1, whereby some of the

columns are retrieved from the database/file. The EagerFrame

contains a Pandas DataFrame and is used to store these retrieved

columns. The IndexFrame contains within it a Pandas dataframe

with as many rows as the EagerFrame (as would be the number

of rows in the LazyFrame once materialized) and three columns:

rank – the rank of the current row based on the current ordering,

index_col – the value of the index column (unique row identifier),

and index_col_modified – optionally, the modified value of the

index column. The last column is required because in dataframes,

the index can be updated just as any other column. Each row in

the EagerFrame and LazyFrame also contains the row identifier.

Note that by merging the EagerFrame, materialized LazyFrame

and the IndexFrame, we have all the information required to

reconstruct the dataframe result.

Algorithm. Our approach is outlined in Algorithm 1. The entry
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Algorithm 1
Input: H (base object on which method is invoked), op (Pandas opera-

tion), args, kwargs (arguments)

Output: HybridFrame or Pandas DataFrame

1: procedure HybridLazyEval(H, op, args, kwargs)
⊲ refer to description for details of subroutines used below

2: if columns across LazyFrame and EagerFrame
3: are accessed then
4: mat←Materialize(H )

5: return op(mat, args, kwargs)
6: else if only LazyFrame columns are accessed and
7: op can be translated to SQL then
8: lazyf ← ToSQL(H, op, args, kwargs)
9: index ← UpdateIndex(H.I, lazyf )
10: eagerf ← UpdateEager(index, H.E)
11: return CreateHybridFrame(lazyf, eagerf, index)
12: else ⊲ op needs to happen in Pandas

13: H ←MoveColumnsToEager(H, op, args, kwargs)
14: eagerf ← op(H.E, args, kwargs)
15: index ← UpdateIndex(H.I, eagerf )
16: lazyf ← UpdateLazy(index, H.L)
17: return CreateHybridFrame(lazyf, eagerf, index)
18: end if
19: end procedure

point to our system is the pyfroid.pandas library, which is a drop-

in replacement for Pandas. To leverage PyFroid the user simply

has to import the PyFroid package instead of pandas. Our system
then intercepts each Pandas API call, and subsequent actions are

governed by Algorithm 1. Intuitively, the system checks for each

Pandas operation, whether that operation can be pushed down

into SQL. This depends on two factors: whether the operation has

a SQL counterpart and whether past operations on the columns

referenced have been pushed into SQL. If so (lines 6 to 11), the

equivalent SQL operation is registered for execution on demand;

otherwise, relevant columns are retrieved from the database and

the operation is performed eagerly using the Pandas engine (lines

12 to 17). In this way, we achieve partial pushdown of operations

into SQL. If an operation requires columns spread across the

SQL and Pandas engines, then we merge the data from both the

engines into a new Pandas dataframe and the operation is routed

onto the dataframe (lines 2 to 5).

4 DEEP DIVE
In this section, we illustrate the working of our approach using

the running example from Figure 1, and highlight key aspects of

Pandas to SQL translation and computation distribution across

engines. For simplicity, let’s assume that dataset contains only

the columns referenced in Figure 1, namely VehicleExpDt, Plate-
Type, Issued and Summons, along with an index column Id.

Pushdown to SQL. Line 2 of Figure 1 contains a read_csv opera-

tion, which can be performed in SQL. It triggers the connection to

an empty in-memory DuckDB database and creates a LazyFrame

𝐿 with the DuckDB query SELECT * FROM read_csv (’path/to/csv’).
The query reads relevant metadata and creates a virtual DuckDB

relation, say rel. Along with this, we also create an IndexFrame

with two columns: Id and an arbitrarily assigned rank. In line 3,

the condition can again be pushed into SQL, and the query above

is updated with a WHERE clause. Similarly for line 4. At the end

of line 4, the query becomes:

Q1: SELECT CASE WHEN t0.PlateType = '99' THEN NULL
ELSE t0.PlateType END CASE as PlateType, *

FROM (SELECT *

FROM (SELECT * FROM rel) AS t1
WHERE t1.VehicleExpDt > 2099101) AS t0

Note that at any point during program execution, the LazyFrame

𝐿 contains the accumulated query expression for the slice of com-

putations encountered so far that contribute to the value being

computed. Although the queries obtained, such as Q1, may be

nested and verbose due to the step-by-step nature of our con-

struction, they do not usually lead to performance degradation as

database engines such as DuckDB simplify away these idiosyn-

crasies of query expression and generate an optimized query plan

during execution.

In general, Pandas operators contain many parameters and

multiple syntactic variants can be used to express the same data

processing operation. For instance, the Pandas merge operator
contains 12 parameters. In a simple variation, join keys may be

specified using either a single parameter (on) if the column is

present in both the dataframes, or separate parameters (left_on,
right_on). PyFroid takes care of analyzing the parameters and

translating equivalent variants into a canonicalized query ex-

pression tree. Our current prototype handles common variations

of the following Pandas operations for SQL pushdown: read

data (read_csv, read_sql), inspection (head, describe, shape, info,
columns, __repr__, __str__), full table aggregations (sum, min,
max, mean), grouped aggregations (groupby, value_counts), fil-
ter using a condition or boolean series (df[. . .]), projection of

single or multiple columns (df.attr, df[. . .], drop), handling null
values (dropna, fillna, isna, notna), renaming and adding com-

puted columns (assign, df[. . .]), type casting (astype, to_datetime),
order by one or more columns (sort), joins (merge), union (concat)
distinct (unique), accessing using integer index (iloc), arithmetic

and logical operations (AND, OR, >, <, +, -, *, etc. ), and plotting

(df.plot), among others. The operations we support are among

the most commonly used Pandas operations and enables SQL

acceleration for a large number of scripts (refer Table 2). Pushing

down other operations and more variations of these constructs

is ongoing effort.

A major challenge when translating procedural code to declar-

ative queries is the presence of control flow statements such as

if-else, loops, and function calls. Since PyFroid intercepts Pan-

das API calls to construct query expressions at runtime, jumps

in program flow are naturally supported; thus, optimized SQL

statements can be generated. For instance, consider the following

(abridged) loop fragment adapted from program P12:

df_join_all = []

for date in ["17", "18", "19", "20"]:

df1 = pd.read_csv(f’op_{date}.csv’)

df2 = pd.read_csv(f’token_{date}.csv’)

join = df1.join(df2)

df_join_all.append(df_join)

pd.concat(df_join_all)

Using PyFroid, we are able to translate this fragment into a single

query that is a union of joins. In each iteration of the loop, the

query expression for the corresponding join is appended into

the list df_join_all, and concat then gets translated into a union

of the list of expressions. In some cases, control flow constructs

may force the query expression to be materialized, for example,

when iterating with df.iterrows().

Computation Distribution.We discussed previously the con-

struction of LazyFrame 𝐿 with the SQL query Q1 through lines

1 to 4 from Figure 1. In line 5, the data conversion operation

with dynamic types (errors=‘Ignore’ option) is not translatable to
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SQL. So, the required column, namely Issued along with the index

column Id is moved to the EagerFrame 𝐸 - this entails executing a

projection on top of Q1 and obtaining the dataframe. The Pandas

datetime operation and the update to Issued is executed within

the Pandas engine using 𝐸. Additionally, the query expression in

𝐿 is updated with a projection that excludes the Issued column.

In line 6, columns across both the 𝐸 (Issued) and 𝐿 (Summons)
are referenced. Based on Algorithm 1, at this point, wematerialize

the dataframe contents. This entails executing the query for 𝐿 to

obtain a dataframe, say 𝐿df, and merging it with 𝐸 and 𝐼 to obtain

the dataframe, say 𝐻df. Post the merge, the operation on line 6

and subsequent ones are performed on𝐻df. Our current approach

is to realize the entire dataframe contents when columns across

the EagerFrame and LazyFrame are referenced. This means that

the data for all the columns in 𝐿 is retrieved.

In our work, explicit Pandas merge operations occurring in the

script are translated to database joins for optimal performance.

However, the reader may have observed that we perform the im-

plicit join between internal structures (𝐿df, 𝐸 and 𝐼 ) in the Pandas

engine. In general, joins in Pandas may be slow. However, in our

implementation we observe that once the data is filtered/grouped,

for the reduced dataset size, performing the merge of 𝐿df, 𝐸 and

𝐼 in Pandas does not regress the performance of our system.

We pushdown operations into SQL whenever possible. While

this is usually beneficial, in some cases it may lead to regres-

sions (see Section 6). Our approach of partially materializing

the dataframe on demand enables high scalability even in low-

resource settings. A downside of our approach is that multiple

parts of the dataframe may be materialized separately, and each

materialization leads to a database query. Compared to having

the entire data in memory up front (as is the case in Pandas),

repeated querying can be slower for simple operations, especially

when the dataset is small. However, for complex queries, our ap-

proach is still beneficial. Including these factors in a cost-based

decision is an interesting next step in our work.

5 RELATEDWORK
There have been efforts to improve the performance and scala-

bility of Pandas workloads including parallel processing on dis-

tributed dataframes for faster runtimes (Modin [29] and Dask [2]),

memory mapping for scaling to large datasets (Vaex [10], Po-

lars [30]), leveraging GPUs (CuDF [1] and [9]), dataframe APIs for

relational databases (Ibis [3], Grizzly [19], PySpark [7], Koalas [4]),

and federated execution on cloud backends (Magpie [22], Pon-

der [6]). Figure 2 classifies existing frameworks based on key

requirements for scalable single node systems: (i) Compatibility

with the popular Pandas APIs to enable broader adoption and

easy migration of existing workloads, (ii) Full hardware utiliza-

tion (iii) Lightweight solutions that do not rely on distributed big

data frameworks such as Spark, Ray, etc.

As shown in Figure 2, only Koalas and Modin offer full Pandas

compatibility among these frameworks. Koalas is based on the

Spark ecosystem, which is essentially a big data system so it is

quite heavy when deployed on a single node. Modin a multi-

threadead drop in replacement for Pandas. It is based on dis-

tributed schedulers such as Ray or Dask, and is installed through

Python package managers. Although Modin can parallelize data

processing to use all available cores, under the hood it distributes

Pandas dataframes, which are quite RAM-heavy. Consequently,

Modin requires a lot of memory even at small data sizes. Fur-

ther, for complex operations such as joins, Modin may not use

Dask

PySpark

Pandas

Koalas

Modin*

Ibis

Grizzly

Lightweight

Full Pandas 

compatible

Numpy

Scipy

Vaex

Full hardware 

utilization

PyFroid

Polars

Figure 2: Taxonomy of existing frameworks

optimized execution plans and requires users to specify the join

order [28]. PyFroid leverages the database cost-based optimizer to

provide optimal plans even for complex queries. In our evaluation

(Section 6), we show that Modin has sub-optimal performance

on a single node compared to our system.

Grizzly and Polars also use lazy evaluation. However, their

APIs are not fully Pandas-compatible. Consequently, users need

to rewrite their scripts to leverage these systems, which is te-

dious and impractical. Also, the optimizations available in these

systems are limited. As opposed to PyFroid, which automati-

cally decides when to do eager vs lazy evaluation, when to push

operations into the database and when to fallback to Pandas,

Grizzly users need to make these decisions themselves and man-

ually invoke appropriate constructs in their scripts to translate

Grizzly objects into Pandas dataframes when needed. Similarly,

unlike PyFroid, Polars does not leverage a database and thus

optimizations such as predicate pushdown and join ordering are

implemented from scratch and may be limited in number and

scope. Further, Polars does not support dataframe indexes [31],

which is a key feature of dataframe APIs.

Recent advances in large language models (LLMs) [12, 14]

present interesting opportunities for code translation. However,

LLMs do not provide any guarantees as to the correctness of the

translation, whereas the SQL queries generated by PyFroid are

always correct. Further, PyFroid is also an execution engine and

handles complexities of fallback to Pandas in case of untranslat-

able operations.

Finally, our work is inspired by recent efforts in translation of

data processing and machine learning operations into SQL such

as [11, 13, 15, 16, 34], with a focus on dataframe operations.

6 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation and analy-

sis of PyFroid. We evaluate PyFroid with respect to performance,

resource utilization and data scalability. For our experiments, we

use an Azure Standard DS4 v3 machine with 4 virtual CPUs and

16GB RAM, running Ubuntu 20.04.

Datasets: In our experiments, we use top-voted Kaggle note-

books (N1 to N10) as as well as production notebooks (P11 and

P12) used by data scientists in Microsoft. The Kaggle notebooks

were obtained by querying Kaggle for notebooks that use CSV

datasets between 1GB and 5GB and tagged “pandas” sorted by

the number of votes. We trimmed the notebooks to remove non-

Pandas operations (i.e., invocation of other ML libraries for model

training) and excluded notebooks that contained errors or use

data encodings not supported in DuckDB. The notebooks we

used can be found at [8]. Together, these notebooks contain a

variety of data analysis and plotting operations. Table 2 provides

a detailed breakdown of operations in these notebooks.
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ID Operations
N1 read, inspect, project columns, plot

N2 read, project cols, update index, filter, update, type cast

N3 read, inspect, limit, distinct, project cols, replace, aggrega-

tion (with and without groupby), filter, type cast, plot

N4 read, update index, type cast, remove duplicates, resample

(time series op)

N5 read, type cast, filter, drop columns, rolling aggregates, add

column, plot

N6 read, index, type cast, remove duplicates, resample, add

columns, inspect, plot, reshape (matrix op)

N7 read, project single col, export col as list, filter, aggregates,

reshape

N8 read, inspect, filter, drop cols, type cast, update col, distinct,

export column values, in, project cols, groupby, plot

N9 read, inspect, filter, drop cols, sort, project single col

N10 read, modify dataframe attributes, distinct, filter, inspect,

plot

P11 read, add columns, groupby aggregation

P12 read, join, concat (within a loop), groupby aggregates, in-

spect, plot

Table 2: Operations in notebooks used for evaluation

Figure 3: Micro-benchmarks (dotted red bars denote fail-
ure)

Evaluation Metrics and Goals.We evaluate PyFroid with re-

spect to resource utilization (memory and CPU), data scalability

and performance (end-to-end latency). Our experiments aim to

answer the following questions:

• What are the overheads of SQL pushdown vs Pandas for com-

mon data processing operations?

• How does the performance and resource utilization of PyFroid

compare to that of Pandas on a commodity workstation?

• How does PyFroid compare to other frameworks such asModin

on Ray on a commodity workstation?We note that these frame-

works are designed to perform best on cluster environments

but can be used to process small datasets as well [27]. We

present a comparison with them on a single node to illustrate

their strengths and limitations for this setup and PyFroid’s

contributions.

Micro-benchmarks. We first present a set of micro-benchmark

that highlight the benefits of SQL pushdown for various com-

mon operations. The results are shown in Figure 3, where we

used a data scale of 1.5GB from our running example dataset.

The labels pandas, sql as rs, and sql as df respectively denote

whether the operation is executed in Pandas, in SQL with results

in DuckDB format or in SQL with results serialized to Pandas

dataframe. We see that SQL pushdown is beneficial both in terms

of latency and memory usage for most of the operations, with

benefits especially large where only aggregated results need to

be retrieved, as in groupby and unqiue. Data reading (read) in
DuckDB is fast and cheap because we only need to read the file

metadata. For complex operations such as merge (join), Pandas
fails to run even at the small data size whereas SQL query runs to

completion. Serializing large datasets into the Pandas dataframe

format is inefficient as evidenced by the failures in sql as df for

load, merge and sort operations. Next, we move on to evaluations

on end-to-end workloads.

Resource Utilization. We consider notebooks N1 to P12 and

vary the input data size for each notebook from very small

(100MB) to near-memory (10.5GB). We use random duplication to

make the dataset sizes uniform across various datasets. For each

notebook and dataset size, we run the notebook with PyFroid

and without (i.e., using Pandas) and measure the peak memory

utilization. For some Pandas operations in these notebooks that

can be translated into SQL queries but are not yet handled in

our implementation (refer Section 4 for details), we simulate the

translation and rewrite following Algorithm 1. Naturally, Pandas

operations that cannot at all be pushed down into SQL queries

are executed using the Pandas engine as described in Section 3.

The results are shown in Figure 4a. The label∞ denotes that only

PyFroid could successfully run the notebook at that data size,

whereas Pandas failed. The label × denotes that both PyFroid

and Pandas failed.

As we see in Figure 4a, PyFroid is much less resource intensive

than Pandas. Memory utilization improvements due to PyFroid

range from 1.1X to 84X less than Pandas even when Pandas

succeeds at that scale. In some cases, PyFroid consumes slightly

higher peak memory than Pandas, as seen in N4, N5 and N6.

When most operations in a notebook can be pushed down into

the database, PyFroid consumes much less memory than Pandas

as no intermediate data is materialized. In cases where operations

cannot be pushed down especially early in a notebook, PyFroid

needs to execute the query and convert almost the entire dataset

into a Pandas dataframe. This can be expensive as we saw in

Figure 3; further, the costs compound with materialization for

multiple expressions. Specifically, in N4, N5 and N6, PyFroid falls

back early to the Pandas engine due to untranslatable operations

such as time series sampling, rolling aggregates, reshape, etc.

GB N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 P11 P12
0.1 1.2 2 3.1 0.9 0.9 1.3 1 2 1.4 1 2 3.2

1.5 1.6 9.9 57.2 0.9 1 0.9 1.1 7.2 12.9 × 24.4 ∞
4.5 ∞ ∞ ∞ 0.7 0.9 0.6 1.2 ∞ 58.7 × 84.1 ∞
7.5 × ∞ ∞ 0.7 1 0.7 1.4 ∞ ∞ × ∞ ∞
10.5 × ∞ ∞ 0.8 1.1 0.8 1.6 ∞ ∞ × ∞ ∞

(a) Peak memory utilization
GB N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 P11 P12
0.1 1 1.2 0.5 1 1.2 1.2 0.8 0.9 1.3 1 1.5 0.7

1.5 0.8 1.7 0.4 1.1 1.3 1.4 0.9 0.7 2.4 × 3 ∞
4.5 ∞ ∞ ∞ 1.3 1.5 1.7 1.1 ∞ 1.6 × 1.4 ∞
7.5 × ∞ ∞ 1 1.2 1.5 1.2 ∞ ∞ × ∞ ∞
10.5 × ∞ ∞ 1.1 1.3 1.6 1.2 ∞ ∞ × ∞ ∞

(b) Running Times

Figure 4: Pandas vs PyFroid (numbers denote the fraction
𝑃𝑎𝑛𝑑𝑎𝑠/𝑃𝑦𝐹𝑟𝑜𝑖𝑑 , greener is better).
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ID Memory (GB) Latency (s)
Modin PyFroid Benefit Modin PyFroid Benefit

N1 6.1 3.6 1.7 59 71.2 0.8

N2 6.0 1.5 4.0 42.7 15.5 2.7

N3 10.3 0.1 102.5 170.8 236.8 0.7

N5 2.6 1.1 2.4 57 21.5 2.7

N7 6.0 4.9 1.2 42.9 33.3 1.3

N9 2.5 0.1 24.8 23 7.3 3.2

P11 5.0 0.05 100.6 19.1 14.5 1.3

Table 3: Modin vs PyFroid (Benefit denotes the fraction
𝑀𝑜𝑑𝑖𝑛/𝑃𝑦𝐹𝑟𝑜𝑖𝑑 , higher is better).

Figure 5: Data Scalability of various frameworks

Figure 6: End-to-end latency with various frameworks

Table 3 compares Modin and PyFroid for the evaluated note-

books. Overall, we observed that typically, Modin is more mem-

ory intensive than Pandas and PyFroid. Beyond 1.5GB data size,

we observed that Modin increasingly only succeeds on very few

notebooks, so we choose to report our results for this data size.

There are a few failures for Modin even at this scale and we ex-

cluded those notebooks from Table 3. We note that we installed

and used stock Modin on Ray following the guide at [26]; Modin

experts may be able to extract more performance using configu-

ration tuning. Nevertheless, as we see from Table 3, PyFroid pro-

vides huge benefits in memory utilization compared to Modin (up

to 100x), while also providing comparable to significant benefits

in end-to-end latency. The memory utilization benefit obtained

depends on the nature of the workload. As noted before, Modin

distributes Pandas dataframes, which are memory heavy, across

each worker in the underlying execution framework such as Ray.

As a result, the memory utilization of Modin shoots up even at

small data sizes. For the cases where Modin failed, the memory

utilization shot up to 100% before the system crashed.

CPU Utilization: CPU utilization in PyFroid and Modin is usually

higher (upto 4X) than in Pandas due to the use of all the cores.

However, in our experiments, we observed that for a specific

workload, CPU utilization does not rise in correlation with data

sizes.

Scalability. In Figure 5, we compare the scalability of PyFroid,

Pandas and Modin. We plot for each notebook, the maximum

dataset size for which the framework successfully ran the note-

book, with Pandas as the baseline (y=1). For instance, in N1, both

Pandas and Modin run successfully until data size 1.5GB whereas

PyFroid runs successfully until 4.5GB, so the value for Modin

would be 1 and PyFroid would be 3. We exclude in the chart note-

books for which all frameworks had the same maximum dataset

size (N5 - 10.5, N7 - 10.5 and N10 - 0.5) or if the notebook had

APIs yet unsupported by Modin (N4, N6 and N8). As we see in

Figure 5, PyFroid can scale up to 20𝑋 bigger datasets than Pandas

and Modin. This is because PyFroid avoids a full load of the data

into memory and leverages SQL database for complex operations

such as joins (e.g., P12). By analyzing the individual notebook

operations, we found that plotting operations that retrieve a lot

of data (e..g, correlation matrices) negatively affect the scalability

of all three frameworks.

End-to-end Latency.We first compare the end-to-end latency

of Pandas vs PyFroid. As we see in Figure 4b, PyFroid consis-

tently outperforms Pandas in most cases, with benefits up to 3x

even in notebooks that Pandas succeeds. Note that the benefits in

latency are often accompanied by benefits in resource utilization

as seen in the two tables in Figure 4, which reinforces the holistic

benefits due to our techniques.

In some cases, using PyFroid may lead to performance degra-

dation. For instance, notebook N3 at 1.5GB data scale has 2.5x

higher latency using PyFroid compared to Pandas. This is because

N3 contains repeated inspection operations (head, info, unique,

count, etc.). While Pandas has data materialized up front to re-

solve these operations quickly, in PyFroid, each such operation

forces a separate query execution leading to higher latency. On

the plus side, our approach significantly reduces peak memory

utilization (over 50x less than Pandas). Overall, the number of

regressions due to PyFroid is small and as data size increases,

PyFroid continues to complete execution whereas Pandas fails in

many cases.

In the next chart (Figure 6), we compare the end-to-end latency

using PyFroid, Modin and Pandas on notebooks N5 and N7 at

various dataset sizes. We picked those two notebooks as these

were the only ones where all three frameworks completed at all

dataset sizes. As far as it concerns the remaining notebooks, we

note that only PyFroid completed at larger sizes and the other

two frameworks failed much earlier. As we see, PyFroid executes

similarly or in significantly less time than Pandas and Modin. As

the data sizes increase, the benefits due to PyFroid also increase.

7 CONCLUSION
In this paper, we identified a gap in existing systems for effi-

ciently scaling Pandas workloads on a commodity workstation

and presented PyFroid, a system that addresses this gap by trans-

lating Pandas operations into SQL queries that can run on an

embedded database. For operations that cannot be translated

to SQL, PyFroid runs them efficiently using the Pandas engine

through on-demand materialization, and transparently puts to-

gether results from the database and Pandas. Our experiments

demonstrate that our system is resource-efficient and can provide

significant speed and scale on a variety of workloads.
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