
Private and Efficient Federated Numerical Aggregation
Graham Cormode

Meta

gcormode@meta.com

Igor L. Markov

Meta

imarkov@meta.com

Harish Srinivas

Meta

harishs@meta.com

ABSTRACT
Aggregating data generated locally by smartphones and other

edge devices is vital for distributed applications and system-

performance monitoring but carries significant risks when data

is mishandled. In this work, we develop and deploy numerical

aggregation protocols that (𝑖) are compatible with several notions

of privacy, (𝑖𝑖) come with attractive accuracy-privacy tradeoffs

when used with differential privacy, (𝑖𝑖𝑖) empirically improve

upon prior protocols. Our protocols promote a basic tenet of

privacy — not sharing unnecessary information. For each private

value, at most one bit is used. This supports (𝑖) privacy metering

that enables privacy controls and (𝑖𝑖) worst-case guarantees not

covered by differential privacy. We emphasize ease of implemen-

tation, compatibility with existing infrastructure, and compelling

empirical performance. We report on our experience deploying

the method for online aggregation in an industrial context.

1 INTRODUCTION
Smart phones and smart watches, fitness trackers, automotive

electronics, building sensors, and other edge devices frequently

collect large amounts of private data that would not otherwise be

shared, including locations, timestamps, behaviors, personal pref-

erences, as well as data related to financial and medical informa-

tion. While useful to various tasks such as improving products or

online advertising, such data can be stolen and used maliciously,

prompting serious concerns and mistrust in technology among

the public, government regulators, and some industry partici-

pants. Recent laws and regulations limit collection or storage of

private data, and operating systems producers (e.g., Apple and

Google) are restricting data collection. Learning to work with

less private data than before is a challenge for today’s technology

providers, but also reduces risks. Convincing the public that uses

of private data are safe is also challenging [27]. Nevertheless, this

work is motivated by the real need of organizations to gather data

to monitor the operation of their systems, and receive actionable

signals on system health.

Decades ofwell-intentioned efforts using data de-identification

have nevertheless resulted in high profile examples of data leak-

age [22], showing that it requires considerable work and care to

develop reliable privacy-enhancing technologies. More recently,

principled technical solutions for improving data privacy are

receiving significant attention from academia and industry, in-

cluding Google (Chrome [15]), Microsoft (Windows [10]), Apple

(iOS [9]), Intel (SGX [18]) and others. To limit the impact and

potential damage caused by a private datum, it is common to

use aggregation whenever possible, and this often suffices. Dis-

tributed applications often compute sample mean and variance,

the 90th percentile, or a histogram over a sufficiently large sam-

ple. For example, federated learning computes sample means

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the

27th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

for gradient updates. To protect data from leakage before ag-

gregation is complete, Intel offers hardware with Secure Guard

Extensions (SGX) [18], which assumes trust in the security of

hardware beyond an edge device and in communications with

such hardware. Another potential danger is that the aggregated

data may reveal some information about individual clients (in
rare cases). To prevent that, federated analytics methods [24] use

aggregation protocols with mathematical guarantees (differential
privacy [14], extended to federated learning [9, 21, 23]), where

the underlying idea is to add noise to private data before aggrega-

tion to provide plausible deniability through randomized response
techniques [31].

Under differential privacy, any contribution of any client is

compatible with any private values for that client, but some

contributions are more likely. The strength of differential privacy

is captured by the parameter 𝜖 > 0 which (via exp(𝜖)) bounds
the likelihood of truthfully reporting about the correct data — the

lower the 𝜖 , the stricter the privacy requirement. Local differential
privacy extends these guarantees to each client locally regardless

of third-party servers [30], so that aggregators do not see original

data.

We describe progress in several directions: (𝑖) improving effi-

ciency of numerical aggregation, with and without differential

privacy (DP), (𝑖𝑖) providing easy-to-understand worst-case guar-

antees on disclosure of private data that add to probabilistic

guarantees from DP, (𝑖𝑖𝑖) deploying the scheme via a broad-use

implementation built upon company infrastructure. While math-

ematically rigorous, DP techniques alone do not currently ap-

pear compelling to the media [16], the public, civic groups [25],

government regulators, the industry [19] and even the research

community [11][30, Section 7]. In particular, differential privacy

alone does not provide common-sense worst-case privacy guar-

antees that consumers and product managers tend to assume

— that an individual’s data are safe from unauthorized parties

(such parties are not considered in the DP formalism). To this

end, we describe how we implemented numerical aggregation in

an end-to-end industry infrastructure to provide both intuitive

privacy via disclosure limitation and formal DP guarantees for

various metric and system health monitoring tasks. We share

insights from our deployment experience at Meta to inform other

privacy implementations.

1.1 Our approach and contributions
Our work seeks simpler, more reliable, and more efficient tech-

niques for numerical aggregation compatible with or extending

prior solutions, suitable for practical deploymentwithin federated

systems [4]. In doing so, we do not introduce novel differentially

private mechanisms, but rather we provide a DP guarantee for

our techniques by leveraging off-the-shelf mechanisms as needed.

Our approach naturally accommodates asynchronous updates,

whereas secure aggregation can require batching a sufficient

number of updates to provide privacy.

Bit-efficient numerical aggregation. Our technical contribu-
tions include the introduction, analysis and evaluation of more

efficient techniques for the computational estimation of means,

Industrial & Applications Paper

Series ISSN: 2367-2005 734 10.48786/edbt.2024.63

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.63

variances, and related quantities. These have applications to mea-

suring statistics directly (e.g., to evaluate an experiment), and to

training ML models. We approximate real numbers with fixed-

point (or integer) representations, expand them in binary, select

some of the resulting bits, and postprocess those bits before com-

municating them. We refer to our techniques as “bit-pushing”.

For 𝑏-bit integers, bit-pushing samples at most one bit per value,

providing worst-case privacy guarantees that many end-users

can understand. Intuitively, ensuring comparable accuracy would

require drawing samples from 𝑏 times more clients. However,

our optimization of bit-sampling frequencies limits the required

increase of population size by an empirically-low constant factor.

Sampling individual binary digits and communicating them in

isolation may seem natural in retrospect, but recent literature in

the field pursues other, more complicated approaches and does

not report industry deployments.

Several considerations are both novel and important to the

correctness and efficiency of our approach to make it suitable

for deployment: (1) the bits we extract from the numbers to

be aggregated form a linear decomposition of such numbers in

each bit
1
; (2) communicated bits have distinct weights associated

with them (in the linear decomposition); (3) the sets of num-

bers that share a specified value of some bit do not usually form

ranges, but do overlap (Section 2 surveys prior work). Additional

considerations are helpful to simplify analysis, streamline im-

plementation or improve performance: we sample bits using a

custom-optimized frequency distribution; sampling frequencies

can be adjusted based on early sampling results—in particular,

unused bits (with estimated mean 0) do not need to be sampled;

where genuine random sampling is unnecessary, we replace it

with quasi-Monte Carlo (QMC) methods, which reduces scope

for poisoning attacks.

Validation and deployment.We describe the validation work

done to understand the performance of bit-pushing prior to de-

ployment, and report our additional experiences in online deploy-

ment.We show empirically that gathering statistics using the new

binary-expansion approach offers significant advantages over

established approaches as well as recently proposed techniques.

Our formal analysis shows that the error decreases quickly, pro-

portionally to 1/
√
𝑛, where 𝑛 is the number of client bit reports

(formalized in Lemma 3.1). In practice, we see that gathering

reports from a few thousand users is sufficient to achieve a nor-

malized RMSE of around 3% for a 10-bit quantity, and ten thou-

sand reports ensure that the error level is comfortably below 1%.

We observe that the efficiency of other approaches often relies

on knowing tight bounds on the range in which the values fall.

We relax this assumption and allow our approach to adapt to

the distribution of values observed in practice. Last, we observe

that mean estimation is not so meaningful for quantities with

high skew: estimates based on sampling will inevitably be high-

variance or biased, no matter how the samples are aggregated.

Instead, our method can report an upper bound on the aggregated

samples, and flag when this bound changes significantly over

time, indicating a heavy-tail and/or non-stationary distribution.

With this understanding, we have deployed bit-pushing online

to gather performance statistics at scale in our FA stack.

Privacy metering. In addition to improved bit-efficiency, bit-

pushing supports novel privacy controls where private data is

metered not at the value level (such as an integer representing

someone’s current longitude), but at the bit level. Rather than

1
Note though that signed binary expansions are not linear in the sign bit.

transmit an entire private valuewith noise added, our aggregation

protocols only transmit a single private bit (and limit subsequent

bits per value and per client)
2
. To this end, we show how to

perform many types of aggregation by combining random bits

from different edge devices. At a time when many federated

analytics stacks are under active development, our work suggests

that limits on transmitting private information can be surfaced

as controls at the level of mobile platforms and, perhaps, help the

public improve trust in technology. Deploying privacy metering

is beyond the scope of this work.

2 PRIORWORK
𝜖-Local Differential Privacy (𝜖-LDP or just LDP) requires that

for any possible output value O emitted by the client, the proba-

bility of producing O for a different input varies by at most a fac-

tor of exp(𝜖). Many LDP mechanisms use randomized response,

wherein a binary value is reported accurately with probability

𝑝 ≥ 1

2
, else its complement is sent. Duchi et al. combine ran-

domized response with randomized rounding in an early work

on LDP [13]. Assuming that input value 𝑥 is pre-scaled so that

0 ≤ 𝑥 ≤ 1, we can treat 𝑥 as a probability, and represent it with 1

with probability 𝑥 , else with 0 (randomized rounding), then apply

randomized response. Gathering many such noisy binary reports

from clients, we can compute an unbiased estimate of the popu-

lation mean, with variance bounded as a function of the privacy

parameter 𝜖 . Similar ideas have been deployed for Windows app

usage-data collection [10]. Later modifications by Wang et al.
choose values closer to the input with higher probability than

those that are further away, giving a “piecewise” mechanism [28].

Communication-efficient numerical aggregation (regardless

of privacy) is illustrated by theoretical work on low-bandwidth

sensor networks [20] with “the constraint that the communi-

cation from each sensor to the fusion center must be a one-bit

message.” Despite different objectives and resource metrics, ba-

sic analysis by Luo [20] concords with ours: in the absence of

further information about the data distribution, sending binary

digits with exponentially decreasing probabilities is an optimal

strategy. More recent interest in communication-efficient trans-

mission of values (also not tied to privacy) has been motivated by

machine-learning applications. Dealing with multi-dimensional

data, distributed ML applications may be able to leverage bit-level

efficiency to reach packet efficiency. Ben-Basat et al. analyze lead-
ing approaches for estimating a real value using a single bit sent

from a client to a server, as a function of the amount of shared

randomness between the two parties [3]. In our setting, the rele-

vant point of comparison is given by subtractive dithering.3 For
an input value 0 ≤ 𝑥 ≤ 1, each client samples ℎ ∈ 𝑈 [0, 1], and
sends 𝑏 = 1 if 𝑥 ≥ ℎ. The server receives 𝑏 and ℎ, and estimates

𝑥 = 𝑏 +ℎ − 0.5. This offers some privacy when ℎ ≈ 1

2
, but when ℎ

is chosen to be close to 0 or 1, we can learn if the value of 𝑥 is close

to ℎ. The variance for each estimate (between 0 and 1) is bounded

by a constant. In order to use subtractive dithering as a baseline

for comparisons to our work, we apply randomized response to

the input-dependent output 𝑏 to get an LDP guarantee.

2
Reducing the private data communication to a single bit provides an intuitive level

of privacy that can be appreciated by non-expert users. However, a formal privacy

guarantee is often required in addition. Our goal in this work is to engineer simple

procedures that provide an intuitive notion of privacy augmented by a formal

guarantee.

3
When we evaluated in our setting several approaches that were described in [3],

subtractive dithering was a clear frontrunner.

735

Algorithm 1: Basic bit-pushing algorithm

Input :No. of bits 𝑏, bit weights 𝑝 , no. of clients 𝑛
Output : (Result 𝑟 , mean of bits𝑚, sum of bits 𝑠)

1 Initialize result 𝑟 = 0

2 for 𝑗 = 0 to 𝑏 − 1 in parallel do
3 Contact 𝑐 [𝑗] = 𝑝 [𝑗] · 𝑛 clients to request bit 𝑗

4 Gather weighted sum of bits as 𝑠 [𝑗]
5 Compute bit means𝑚[𝑗] = 𝑠 [𝑗]/𝑐 [𝑗]
6 𝑟 ← 𝑟 + (2𝑗 ·𝑚[𝑗])
7 return (𝑟,𝑚, 𝑠)

The need for adaptive protocols. The methods above assume

inputs in the range [0, 1] or, equivalently, in some range [𝐿, 𝐻]
so they can be mapped to [0, 1] via 𝑓 (𝑥) = 𝑥−𝐿

𝐻−𝐿 . Assuming loose

bounds on the input values has a negative impact on accuracy:

while methods that are optimal for [0, 1] can be applied to [𝐿,𝐻],
the variance of their estimates scales with (𝐻 − 𝐿)2 [3]. More

promising are protocols that adapt to the data distribution and

“zoom in” on the range where the data truly lies. We implement

such adaptation in our protocols using a small number of rounds

and show (𝑖) sharper analytical bounds for variance, backed by

(𝑖𝑖) reduced variance in simulations. When combined with the

intuitive nature of the bit-level privacy metering and ease of

achieving a formal 𝜖-LDP guarantee, bit-pushing becomes an

attractive option for mean estimation and related tasks. Our ap-

proach to localizing the range of the data could also be combined

with other methods to estimate the mean within the resulting

range. The advantage of the bit-pushing approach to find the data

range is that it operates with only a single-round of interaction,

rather than multiple rounds required by binary search.

3 THE BIT-PUSHING APPROACH
We outline bit-pushing for mean estimation, and formally analyze

its properties. Bit-pushing can be used as a subroutine in many

applications including federated learning, and can be extended

to aggregate some nonlinear quantities.

3.1 Basic bit-pushing algorithm
Assume that each client 𝑖 out of 𝑛 owns a private value 𝑥𝑖 : we

work with 𝑏-bit integer and fixed-point values. In the narrative

below, we first assume non-negative integers, but this is not a

limitation of the approach. Our goal is to estimate the mean

𝑥 =
∑𝑛
𝑖=1
(𝑥𝑖/𝑛). We write 𝑥 (𝑗) to denote the 𝑗 ’th bit in the bi-

nary representation of 𝑥 , and 𝑥 (𝑗) to denote the 𝑗 ’th bit of the

mean, 𝑥 . In the basic form of bit-pushing, each client selects bit 𝑗

with probability 𝑝 𝑗 , and sends the value of their input at this bit

location, as the pair ⟨𝑥 (𝑗𝑖)
𝑖

, 𝑗𝑖 ⟩. An alternative is where the server

randomly selects a 𝑝 𝑗 fraction of clients to report back on bit 𝑗 .

This reduces variance in the number of reports of each bit and

removes the need for the server to specify a sampling distribution

to clients. Unless stated otherwise, we adopt this quasi-Monte

Carlo sampling method by default. Algorithm 1 gives pseucocode

for the core functionality of bit-pushing, given a probability vec-

tor 𝑝 of weights to sample bits with. The full proofs of all claims

and accompanying empirical sensitivity analysis are presented

in an extended technical report [8].

Lemma 3.1. The basic bit-pushing protocol provides an estimate

that is unbiased and has variance equal to 1

𝑛

∑𝑏−1

𝑗=0

4
𝑗𝑥 (𝑗) (1−𝑥 (𝑗))

𝑝 𝑗
.

Proof. Let 𝑋 (𝑗) denote the distribution of the 𝑗 ’th bit value.

We can assume that each 𝑋 (𝑗) follows a Bernoulli distribution
with parameter E[𝑋 (𝑗)]. Assuming the quasi-Monte Carlo case,

where bit 𝑗 is reported on by exactly 𝑛𝑝 𝑗 clients, our estimate

𝑋 (𝑗) is the mean of these𝑛𝑝 𝑗 reports. Clearly E[𝑋 (𝑗)] = E[𝑋 (𝑗)],
which, by linearity of expectation, is 𝑥 (𝑗) . Our estimate 𝑋 is the

sum of these bit means, weighted by 2
𝑗
, so 𝑋 =

∑𝑏−1

𝑗=0
2
𝑗𝑋 (𝑗)

(applying linear decomposition), and by definition,

E[𝑋] = E
[∑𝑏−1

𝑗=0
2
𝑗𝑋 (𝑗)

]
=
∑𝑏−1

𝑗=0
2
𝑗𝑥 (𝑗) = 𝑥 . (1)

For bit 𝑗 , each report on this bit is assigned weight 2
𝑗
. The cor-

responding contribution to the variance isV[2𝑗𝑋 (𝑗)] = 4
𝑗𝑥 (𝑗) (1−

𝑥 (𝑗)). Averaged over the 𝑛𝑝 𝑗 reports, the contribution to the vari-

ance from the estimate of bit 𝑗 is 4
𝑗𝑥 (𝑗) (1 − 𝑥 (𝑗))/(𝑛𝑝 𝑗), so the

overall variance of the estimator is

V[𝑋] = ∑𝑏−1

𝑗=0

4
𝑗

𝑛𝑝 𝑗
𝑥 (𝑗) (1 − 𝑥 (𝑗)) := 1

𝑛

∑𝑏−1

𝑗=0

𝛽 𝑗

𝑝 𝑗
(2)

□

Corollary 3.2. If each client sends 𝑏
send

bits, the variance

decreases to 1

𝑛𝑏
send

∑𝑏−1

𝑗=0

4
𝑗𝑥 (𝑗) (1−𝑥 (𝑗))

𝑝 𝑗

This result relies on the fact that the mean is a linear function

of the values at each bit location. Clearly, the quality of this

bound will depend on the choice of the sampling probabilities

𝑝 𝑗 , so we consider different choices for setting the 𝑝 𝑗 values. We

note that it is likely that individual bits will be correlated – for

example, if the mean is close to a power of 2, then it is much

more likely that the top-two most significant bits of the input

will be 01 or 10 than 11 or 00. This does not affect our variance

bounds. If the number of bits sent by the client, 𝑏
send

, is 1, then

such correlations do not impact the protocol, since each sampled

input value is independent of the others. Meanwhile, if 𝑏
send

> 1,

then bit correlations will have negative covariance, and so reduce

the variance of our estimates further. In what follows, we focus

on the case 𝑏
send

= 1.

Uniform sampling probabilities. The simplest setting is to

pick 𝑝 𝑗 = 1/𝑏max, i.e., each bit is uniformly likely to be picked. In

this case, our bound on the variance becomes
𝑏max

𝑛

∑𝑏max−1

𝑗=0
𝑥 (𝑗) (1−

𝑥 (𝑗))4𝑗 ≤ 𝑏max

3𝑛 4
𝑏max

(since 𝑥 (1 − 𝑥) ≤ 1

4
for 0 ≤ 𝑥 ≤ 1). Com-

monly, we may expect that the mean value is proportional to

2
𝑏max

(i.e., when 𝑥 (𝑏max)
is a constant). Then we can write the

variance as proportional to𝐶𝑏max
𝑥2/𝑛, and the expected absolute

error is proportional to

√
𝑏max · 𝑥/

√
𝑛. However, this is a subop-

timal choice, and we can do strictly better as discussed below.

Increasing𝑏
send

from 1 towards𝑏max removes the dependence on

𝑏max in the variance, although when 𝑏
send

= 𝑏max, the algorithm

is equivalent to sending the client’s entire input value.

Weighted sampling probabilities. It seems intuitive that higher-

order bits should have greater probability of being sampled, since

they contribute more highly to the computation. Some natural

choices are 𝑝 𝑗 ∝ 2
𝑗
, or more generally, 𝑝 𝑗 ∝ 𝑐 𝑗 = 2

𝛼 𝑗
for some 𝑐

or 𝛼 . We see next that this is indeed a principled choice.

Optimizing sampling probabilities. The optimal bit sampling

probabilities are determined by the variance of each bit.

Lemma 3.3. The variance of the bit-pushing estimator is min-

imized by picking 𝑝 𝑗 =
∑𝑏−1

𝑗=0

√
𝛽 𝑗

𝐴
, where 𝛽 𝑗 = 4

𝑗𝑥 (𝑗) (1 − 𝑥 (𝑗)),
and 𝐴 =

∑𝑏−1

𝑗=0

√︁
𝛽 𝑗 .

736

Proof. For a fixed budget of bit samples, we seek to mini-

mize V[𝑋] = 1

𝑛

∑
𝑗
𝛽 𝑗

𝑝 𝑗
with 𝛽 𝑗 , 𝑝 𝑗 > 0. To optimize variance

in terms of 𝑝 𝑗 such that

∑
𝑗 𝑝 𝑗 = 1, we perform unconstrained

optimization of

𝑓 (𝑝1, . . . , 𝑝𝑘−1
) = 𝛽𝑘

1 −∑𝑘−1

𝑗=0
𝑝 𝑗
+
𝑘−1∑︁
𝑗=0

𝛽 𝑗

𝑝 𝑗
(3)

Seeking a local extremum inside the probability simplex, we find

∀𝑖 = 1..𝑘 − 1,
𝜕𝑓 (𝑝1,...,𝑝𝑘)

𝜕𝑝𝑖
=

𝛽𝑘

(1−∑𝑘−1

𝑗=0
𝑝 𝑗)2
− 𝛽𝑖

𝑝2

𝑖

= 0 (4)

Therefore ∀𝑖, 𝑙 𝛽𝑖

𝑝2

𝑖

=
𝛽𝑙

𝑝2

𝑙

⇒ 𝑝𝑖/𝑝𝑙 =
√︁
𝛽𝑖/𝛽𝑙 (5)

and this extends to 𝑙 = 𝑘 via renumbering. Therefore, 𝑝 𝑗 =√︁
𝛽 𝑗

𝑝𝑘√
𝛽𝑘

, and to find 𝑝 𝑗 , we can just 𝐿1-normalize the vector of√︁
𝛽 𝑗 . To confirm this unique critical point as the global minimum,

we compute

∀𝑖, 𝑗 𝜕V

𝜕𝑝𝑖 𝜕𝑝 𝑗
=

{
0, for 𝑖 ≠ 𝑗

2𝛽 𝑗/𝑝3

𝑗
𝑛 for 𝑖 = 𝑗

(6)

Given that 𝑝 𝑗 , 𝛽 𝑗 > 0 ∀𝑗 , the Hessian is positive semidefinite. □

From Lemma 3.1 and our independence assumption, we have

𝛽 𝑗 = 𝑥 (𝑗) (1 − 𝑥 (𝑗))4𝑗 , where 𝑥 (𝑗) denotes the mean value at the

𝑗 ’th bit index. If we simply bound the contribution of 𝑥 (𝑗) (1 −
𝑥 (𝑗)) values by 1

4
, so that 𝛽 𝑗 = 1

4
4
𝑗
, this leads us to set 𝑝 𝑗 =

2
𝑗/(2𝑏 − 1), and so we obtain

V[𝑋] ≤ 1

𝑛

∑
𝑗 (2𝑏 − 1)𝑥 (𝑗) (1 − 𝑥 (𝑗))2𝑗 < 𝑥 (2𝑏−2)/𝑛. (7)

If the inputs make use of most input bits, then 𝑥 is reasonably

large, i.e., 𝑥 ∝ 2
𝑏
, and so V[𝑋] ∝ 𝑥2/𝑛. Hence, the expected

absolute error will be of magnitude 𝑥/
√
𝑛. Sending 𝑏

send
> 1 bits

per client would further reduce this absolute error by a factor of

1/
√︁
𝑏

send
.

Local vs. central randomness. On the surface, it does not

matter whether the choice of which bit(s) to sample is performed

by each client (local randomness) or prescribed by the server to

each client (central randomness). Since the local setting is more

vulnerable to clients who may try to poison the response by

distorting the reported values of high-order bits, we favor central

randomness.

3.2 Adaptive bit-pushing
A more sophisticated approach is to use a first round of bit-

pushing to estimate the bit means 𝑥 (𝑗) . That is, we first choose a
set of sampling probabilities 𝑝 𝑗 independent of the input, and ask

a 𝛿 fraction of the clients to report an input bit according to this

distribution. From these reports, we estimate 𝑥 (𝑗) as 𝑥 (𝑗) for all
𝑗 , and use these estimates to compute a new set of weights based

on 𝛽 ′
𝑗
= 𝑥 (𝑗) (1 − 𝑥 (𝑗))4𝑗 . We can then perform a second round

of bit-pushing using sampling probabilities 𝑝 𝑗 =
√︃
𝛽 ′
𝑗
/∑𝑏−1

𝑗=0

√︃
𝛽 ′
𝑗

for the remaining 1 − 𝛿 fraction of clients. To instantiate this

two-round approach, we need to determine (𝑖) what split param-

eter 𝛿 to apply; and (𝑖𝑖) how to choose the initial weights 𝛽 𝑗 .

Naively, we might choose 𝛿 = 1

2
to balance accuracy of learned

𝛽 ′
𝑗
s and accuracy of reported results. For 𝛽 𝑗 s, we might default

to choosing 𝛽 𝑗 = 4
𝑗
(and hence 𝑝 𝑗 ∝ 2

𝑗
), according to the above

argument. Our full analysis [8] guides the choice of 𝛿 as
1

3
, and

Algorithm 2: Adaptive bit-pushing algorithm

Input :No. of bits 𝑏, no. of clients 𝑛, parameters 𝛼 , 𝛾 , 𝛿

Output :Result 𝑟
/* Round 1: */

1 for 𝑗 = 0 to 𝑏 − 1 do
2 Compute 𝑝1 [𝑗] = (2𝑗)𝛾
3 Normalize 𝑝1: 𝑝1 ← 𝑝1/sum(𝑝1)
4 Run basic bit-pushing:

(𝑟1,𝑚1, 𝑠1) = BitPushing(𝑏, 𝑝1, 𝛿𝑛)
/* Round 2: */

5 for 𝑗 = 0 to 𝑏 − 1 do
6 Compute 𝑝2 [𝑗] = (4𝑗 ·𝑚1 [𝑗] · (1 −𝑚1 [𝑗])𝛼
7 Normalize 𝑝2: 𝑝2 ← 𝑝2/sum(𝑝2)
8 Run basic bit-pushing:

(𝑟2,𝑚2, 𝑠2) = BitPushing(𝑏, 𝑝2, (1 − 𝛿)𝑛)
/* Final aggregation: */

9 Combine means𝑚3 = (𝑠1 + 𝑠2)/(𝛿𝑛 ∗ 𝑝1 + (1 − 𝛿)𝑛 ∗ 𝑝2)
10 for 𝑗 = 0 to 𝑏 − 1 do
11 𝑟 ← 𝑟 + 2

𝑗 ·𝑚3 [𝑗]
12 return 𝑟

we will try different settings for both these choices in our em-

pirical evaluations. Algorithm 2 provides pseudocode for the

adaptive bit-pushing approach, where ∗ is used to denote scalar-

vector multiplication. We next analyze the variance of two-round

adaptive bit-pushing, and relate it to 𝜎2
, the variance of the input.

Lemma 3.4. The variance of adaptive bit-pushing is bounded

by𝑂
(
𝐶𝑏max

(
𝜎2

𝑛 +
4
𝑏max

𝑛3/2

))
, where 𝑏max is the index of the highest-

order bit that is non-zero in the input and 𝐶𝑏max
is a scaling factor.

Assuming that each input bit has constant variance (discussed

in the proof), this expression simplifies to 𝑂 (𝜎2/𝑛).
Comparison to alternate approaches. The benefit of adaptive
bit-pushing can be most easily understood when we have only

a loose estimate of 𝑏, the number of bits to represent the input

values. Formethodswhich scale the input down to the range [0, 1]
and then scale the estimated fraction back up, the variance of the

resulting estimate is proportional to (2𝑏)2/𝑛. For (non-adaptive)
bit-pushing, it is proportional to 2

𝑏𝑥/𝑛, as shown in (7). Since

adaptive bit-pushing allows us to identify any bits 𝑗 with 𝑥 𝑗 = 0,

we can bound the variance of the estimate by 2
𝑏max𝑥/𝑛,4 or use

the above analysis to argue that the variance is proportional to

𝑏max𝜎
2/𝑛 plus lower order terms. Compared to the bound (7)

for our non-adaptive protocol, variance is reduced by a factor

proportional to 2
𝑏−𝑏max

.

Caching. Rather than producing our final estimate based solely

on the reported values from the second round, we can pool the

reports from both rounds. The net effect will be to gain more

reports for each bit index, which should only improve the ob-

served accuracy. We evaluate this “caching” technique in practice

in Section 4.

3.3 Formal privacy guarantees
Reducing the number of bits transmitted about private data em-

bodies the concept of dataminimization, and provides an intuitive

4
Note that 2

𝑏max
is a perhaps unintuitive quantity in this expression, and arises from

pessimistically assuming that sampling weights are proportional to 2
𝑗 /(2𝑏max) .

737

notion of privacy to users. This can be augmented with more

formal notions of privacy, to provide a strict guarantee.

Secure aggregation. Using a secure aggregation primitive en-

sures that the server knows the sum of the input values, with-

out revealing anything further about the inputs of individual

clients [26]. This can naturally apply to the bit-pushing approach,

where the server can gather the sum and count of each bit loca-

tion, and derive the mean from this information. However, this

does not yet provide a differential privacy guarantee, for which

extra steps are required.

Local differential privacy. Given a (private) bit 𝑦, randomized
response is a simple procedure to mask the bit: with (public) prob-

ability 𝑝 , we report 𝑦, otherwise we report 𝑦 = 1 − 𝑦. To unbias

this report, we replace a reported value 𝑟 with
𝑟−(1−𝑝)

2𝑝−1
. If we

run this procedure with 𝑝 =
exp𝜖

1+exp𝜖 , the mechanism achieves

the 𝜖 (local) differential privacy guarantee [14]. It is straightfor-

ward to give bit-pushing an 𝜖-LDP guarantee: we apply random-

ized response to each bit before it is sent, and unbias the results

at the server side. The variance of this unbiased estimator is

exp𝜖

(exp𝜖−1)2 [29]. In contrast to the above analysis, this variance

is independent of the bit means 𝑥 (𝑗) . When we apply random-

ized response to bit-pushing, we assign 𝑝 𝑗𝑛 clients to report on

bit 𝑗 , which is scaled by 2
𝑗
. Hence, we bound the variance by∑𝑏−1

𝑗=0

4
𝑗

𝑝 𝑗𝑛
exp𝜖

(exp𝜖−1)2 . This is optimized following the above argu-

ment by setting 𝑝 𝑗 = 2
𝑗/(2𝑏 − 1), producing a total variance

bound of 𝑂 (4𝑏𝑛
exp𝜖

(exp𝜖−1)2). Note that for small 𝜖 < 1, this bound

is 𝑂 (4𝑏𝑛 ·
1

𝜖2
), and the expected absolute error is 𝑂 (2𝑏/𝜖

√
𝑛).

Because of the DP noise, we cannot rely on the bit means of

unused bits to be zero. Instead, we apply filtering to determine

which bits are mostly noise and should have their weight reduced.

We can apply a simple heuristic of “bit squashing”: if the value

of a bit mean is below an absolute threshold, we assume that

this bit is capturing noise and ‘squash’ it (i.e., downweigh its

importance).

Distributed privacy guarantees. Local differential privacy can

entail a large amount of noise, since each client adds sufficient

noise to mask their own contribution. In the distributed privacy

case, we instead have each client add only a small amount of

noise, so that the aggregation of the noise is comparable to that

added in the central differential privacy model. The data gath-

ered in bit-pushing protocols is essentially a collection of binary

histograms (counts of 0 and 1 bits for each bit index), for which

accurate protocols exist under distributed privacy. Randomized

response already provides a stronger distributed privacy guaran-

tee [6], while Balcer and Cheu describe a similar approach based

on Bernoulli noise addition [2]. More recently, Bharadwaj and

Cormode show that random sampling is sufficient to give differ-

ential privacy, provided that very small counts are removed from

the reporting [5]. The expected absolute error for a histogram due

to the Bernoulli noise addition is 𝑂 (1

𝜖2𝑛
log 1/𝛿) to give (𝜖, 𝛿)-

differential privacy when there are 𝑛 clients. After scaling to

estimate the mean, we obtain an error bound of𝑂 (2
𝑏

𝜖2𝑛
log(1/𝛿)),

with an improved dependence on 𝑛 compared to the local case.

3.4 Variance estimation
The empirical variance of a collection of data items is another

fundamental aggregate. For instance, having estimates of the

mean and the variance immediately enables feature normaliza-
tion in federated learning. Computing the variance of the inputs,

𝜎2
, can be reduced to two mean estimations of derived values:

V[𝑋] = E[(𝑋 − E[𝑋])2] = E[𝑋 2] − (E[𝑋])2. These two expres-

sions are equivalent when evaluated exactly but behave differ-

ently when used for estimation, where sample means replace

expectations.

Lemma 3.5. The estimated variance with bit-pushing via sam-
ple means in E[(𝑋 − E[𝑋])2] has variance proportional to (𝜎2 +
𝑥2/𝑛)2/𝑛, while the estimated variance with bit-pushing via sam-
ple means in E[𝑋 2] − (E[𝑋])2 has variance proportional to (𝜎2 +
𝑥2)2/𝑛.

Other functions, e.g., higher moments, products and geometric

means, can also be approximated via bit-pushing; see [8] for

details.

4 VALIDATION AND DEPLOYMENT
We now present our validation of the algorithm in practice and

its deployment in industry infrastructure. Offline tests rely on

Python implementations to simulate the computational costs and

accuracy of mean estimation, and study performance scaling.

Along with bit-pushing, we also implement methods based on

piecewise-constant output distribution [28] (“piecewise”), and

subtractive dithering [3] (“dithering”). Other DP methods (e.g.,

randomized rounding and Laplace noise) exhibited errors 2-3

times larger in all cases, so are omitted from the plots. We com-

pare leading prior methods to two-round adaptive bit-pushing

(“adaptive”) and the single-round approach with fixed allocation

of weights to bits (“weighted”).

Our initial focus is on comparing the accuracy of the differ-

ent techniques, measured by the normalized root-mean-squared

error (NRMSE): in each experiment, we compare the true (empiri-

cal) value of the mean 𝜇 to the estimate 𝑥 , and compute the mean

of the squared difference over 100 independent repetitions, then

divide by the true mean 𝜇 for normalization. We perform exper-

iments on both human-generated and synthetic data. To study

performance scaling, we generated synthetic data by drawing

values from Normal, uniform and exponential distributions with

varying parameters, as specified below. The human-generated

data (census data for short) are the distribution of people’s ages

from publicly-available US Census data.
5
We only compute the

mean age and the variance of ages to check how well our meth-

ods work. Error bars on our plots indicate the standard error. Our

default number of clients — 10K — is representative of typical fed-

erated analytics scenarios. The offline experiments in Sections 4.1

and 4.2 are easy to reproduce, reconfigure, and scale. In Section

4.3, they are complemented by qualitative findings from real-time

product data.

4.1 Accuracy experiments
Figure 1 shows evaluation of accuracy for mean and variance.

Here, we evaluate the subtractive dithering approach [3] as an

alternative approach which reveals only one bit of information

about the client’s value. We compare against the single-round

and adaptive bit-pushing techniques, with default parameters

𝛾 = 0.5, 𝛿 = 1/3, and testing both 𝛼 = 0.5 and 𝛼 = 1.

Figure 1a shows the accuracy as we vary the mean of the input

(Normal) distribution. There is a general trend for the normalized

error to decrease, as the normalizing constant increases faster

5
https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29 — see [12].

738

Weight (= 0.5) Weight (= 1.0) Adaptive Dithering

500 1000 1500

0.0050

0.0075

0.0100

0.0125

N
R

M
S

E

(a) Estimating mean with 𝜇 varying

500 1000 1500

10 1

101

103

N
R

M
S

E
(b) Estimating variance with 𝜇 varying

12 14 16 18
bit depth for =1000

10 2

10 1

N
R

M
S

E

(c) Estimating mean with varying bit depth

Figure 1: Accuracy experiments on Normal distributed data with standard deviation 𝜎 = 100

Weight (= 0.5) Weight (= 1.0) Adaptive Dithering

2500 5000 7500 10000
N

0.02

0.04

0.06

N
R

M
S

E

(a) Estimating mean with varying 𝑛

25000 50000 75000 100000
N

10 2

10 1

N
R

M
S

E

(b) Estimating variance with varying 𝑛

10.0 12.5 15.0
bit depth

10 1

100

N
R

M
S

E

(c) Estimating mean with varying bit depth

Figure 2: Accuracy experiments on census data

than the magnitude of the errors. This is most notable for the

dithering approach around powers of two, where there is a step

up in error at the point where we increase the bound on the

input values by a factor of 2. As in the previous experiments, in a

single round, choosing weights based on 𝛼 = 0.5 generally leads

to more accurate results. Across the whole domain, we find that

the adaptive approach reliably achieves the least error.

We see a different set of behaviors when we attempt to es-

timate the variance of the distribution, in Figure 1b. This is a

harder task, as evidenced by error values, which are substantially

larger. We allocate a larger cohort of 100,000 clients to this task.

Here, the dithering approach is orders of magnitude worse, due

to its inability to adapt to the scale of the input values. Among

the weighted approaches, it is now the 𝛼 = 0.5 results that are

preferred. However, the adaptive approach achieves the best ac-

curacy. The larger user cohort moderates the errors: the adaptive

approach keeps the normalized errors down in the 1-2% range.

Increasing the number of participating clients 𝑛 would improve

the accuracy further.

We further study the importance of finding accurate bounds

on the magnitude of the quantities involved in Figure 1c. We

vary the “bit depth”, which is the number of bits 𝑏 used in the

bit-pushing algorithms (so 2
𝑏
is the bound used for the dithering

approach). We see that all the one-round approaches grow in

error as 𝑏 increases: less so for 𝛼 = 0.5, since less weight is

apportioned to the (vacuous) high order bits than in the 𝛼 = 1.0

case. The adaptive approach, meanwhile, is able to identify the

Weight (= 0.5)
Weight (= 1.0)

Adaptive
Piecewise

Dithering

0.25 0.50 0.75

100

N
R

M
S

E

(a) Mean estimation, 𝜖 < 1

2 4

10 1

N
R

M
S

E

(b) Mean estimation, 𝜖 > 1

Figure 3: Differential privacy experiments on census data

redundant bits in the first round, and discards them in round two.

Hence, it is largely oblivious to the increase in bit depth.

A corresponding set of experiments varying 𝑛 on census data

are shown in Figure 2. As expected, the normalized error for both

mean (Figure 2a) and variance (Figure 2b) estimation tends to

decrease as 𝑛 increases, broadly consistent with the predicted

dependence on 𝑛−1/2
. Unsurprisingly, there is some fluctuation,

with the adaptive approach showing more variability for smaller

values of 𝑛 for variance estimation. Again, we see that the adap-

tive approach handles the increasing number of bits the best of

the methods (Figure 2c).

739

0.0 0.2 0.4
0.0

0.1

0.2

0.3

0.4

N
R

M
S

E

Adaptive

(a) Varying the threshold for bit squashing

0 2 4 6 8 10 12 14 16 18

0.00

0.25

0.50

0.75

1.00

(b) Histogram of bit means

12 14 16 18 20

10 2

10 1

100

N
R

M
S

E

Weight (= 0.5)
Weight (= 1.0)
Adaptive
Dithering

(c) Varying bit depth under DP, 𝜖 = 2.0

Figure 4: Accuracy experiments on synthetic data with differential privacy

4.2 Differential privacy tradeoffs
In this section, we study the impact of providing a differential

privacy (DP) guarantee on mean estimation. We additionally

consider the “piecewise” mechanism [28], as well as our previ-

ous one-bit methods augmented with randomized response to

provide a DP guarantee in the local model. Figure 3 shows the

RMSE accuracy as we vary the privacy parameter 𝜖 , split into

two regimes: high privacy (𝜖 < 1), Figure 3a, and moderate pri-

vacy (𝜖 ≥ 1, Figure 3b). We omit results for Laplace noise, where

the observed error was considerably higher than others, as ex-

pected. On a log-scale plot, the lines are fairly closely clustered,

but we see that in this experiment, the single round approach

with 𝛼 = 1.0 achieves the least error. Only when 𝜖 > 3 do we

see points where the adaptive and piecewise approaches achieve

lower error. Note that the absolute value of RMSE is an order

of magnitude larger than without DP noise. This is consistent

with our theoretical analysis, where we showed that the variance

depends on 𝜖 (as
exp𝜖

(exp𝜖−1)2), and is independent of the value of

the bit means. Hence, the adaptive approach (focusing on bits

with higher variance) holds no advantage here.

Figure 4a shows the effect on RMSE as we vary the threshold

for bit squashing (Section 3.3), as a multiple of the expected

amount of DP noise. It turns out that applying a threshold of

0.05–0.2 is very effective at improving accuracy by almost two

orders of magnitude. Figure 4b shows an example in more detail,

with a histogram of the estimated bit means for the noisy data

with 𝜖 = 2, along with the threshold of 0.05. We see that the DP

noise causes some of these estimates to exceed 1.0 or fall below

0.0 (when the DP subtrahend exceeds the true mean). However,

there is a clear “dense” region up to bit 10, with higher bits

showing random noise. The bit-squashing approach treats bits

11 and above as noise, and bases the estimate on bits 0-10 only.

Figure 4c shows this in practice as we increase the bit depth: the

adaptive approach using bit squashing maintains the same level

of accuracy, while all other methods grow in error proportional

to the magnitude of the (noisy) values.

4.3 Deployment experience
Having quantified the performance and scaling of bit-pushing

through our offline tests, we implemented it online in the Fed-

erated Analytics (FA) software stack at Meta, which is part of

the Papaya platform for Federated Learning [17]. As an alterna-

tive to industry-standard aggregation, bit-pushing does not use

additional data or compute additional types of statistics. How-

ever, it reduces private data sharing from entire values to a sin-

gle (binary) digit per value. We implement differential privacy

according to common industry practice: by (𝑖) enforcing local

differential privacy via client-side randomized data transforms,

(𝑖𝑖) adding distributed noise via sampling [5] (see Section 3.3

for details). Our deployment of bit-pushing aggregates device
health and performance metrics to monitor summary statistics.

6

Different metrics imply different value distributions and exercise

different cornercases for our aggregation protocols, providing a

comprehensive online evaluation, as well as comparisons to other

aggregation techniques. We detail insights from the deployment

evaluation of the bit-pushing algorithm over several months with

emphasis on numerical accuracy, robustness and latency.

Deciding the number of bits. Our deployment experience un-

derlined the importance of calibrating data aggregation protocols

to the extremely heterogeneous data distributions found in the

wild, which can be very different from analytically-modeled sta-

tistical distributions. For several metrics, we saw distributions

with extreme outliers. For example, when observing features

whose most typical values are 0 and 1, we might see a few single-

digit values, but some rare clients report values that are orders of

magnitude higher. Any of the methods considered for mean esti-

mation will struggle with such extreme distributions and produce

inaccurate estimates. Notably, estimating the mean might not be

appropriate for such data: the sample mean is very sensitive to

which outlier clients respond and share their data. Robust statis-
tics are more appropriate, such as the median and percentiles,

but a first approach is to apply winsorization to the input, such

as via clipping. In conjunction with bit-pushing, this can be re-

alized by clipping the inputs to a fixed number of bits 𝑏 – say, 8

or 16 – so that large values are truncated to 2
𝑏 − 1. Leveraging

domain knowledge to choose the appropriate number of bits

leads to good accuracy in practice, without having to know tight

bounds on the values that might appear in practice. At the other

extreme, some metrics/features gathered turn out to be constant,

making mean and variance estimation moot. Such checks can be

performed offline.

Performance of aggregation protocols on unexpected data dis-

tributions is particularly relevant to federated debugging, where
distributed data can be affected by misconfigurations or mistakes

6
As per Sections 1.1 and 3, at most one binary digit is shared for each sensitive value,

and this bit is perturbed by randomized response [31] to offer plausible deniability,

over and above the security guarantees of secure aggregation.

740

in software. In such cases, diagnosis of problematic issues is

complicated by the inability to read distributed private data.

Impact of noise. After clipping, the accuracy of online mean

estimation matched those observed during offline validation, and

errors relative to ground-truth data collection were small. Hence,

offline simulations are sufficient to set the parameters for online

noise. Likewise, the inclusion of privacy noise in deployment

increases uncertainty correspondingly to the offline case. 1 We

observed empirically that local differential privacy does increase

the magnitude of variability in results, but not so much as to

change the conclusions drawn from noise-free data analysis. 2

When many high-order bits do not contain information of value,

the adaptive approach reduces the observed error by significant

factors. 3 We also found that achieving a central differential
privacy guarantee by having the enclave apply thresholding to

the reported bit counts was effective, and introduced a negligible

amount of noise compared to the non-thresholded sample [5].

Robustnesswith respect to intermittent connectivity.Client
devices participating in FA exhibit diverse system characteristics,

and their network connection can be unreliable. Two properties

of the bit-pushing algorithm make it attractive in practice: 1

The algorithm succeeds even with a small subset (10s of thou-

sands) of devices responding to queries, compared to the scale

of the entire device population. It does not require all devices

to be available at query time. 2 It is not overly sensitive to

the bit-sampling probability. Client devices can drop out at any

point of the federated protocol, so to accommodate this, the bit

sampling probabilities were auto-adjusted based on the dropout

rate, improving utility.

Latency and number of rounds. Federated data collection

provides strong guarantees of accuracy and privacy, but comes

at the cost of increased latency to gather data. When the devices

are available to communicate with the server, they are assigned

a compute task, perform this computation on local data, and

report back the result, sometimes executing multiple rounds

of a protocol. The typical time to complete a round on our FA

stack is a matter of minutes, so even adaptive bit-pushing which

performs two rounds of data collection is fast, particularly over

statistics that are readily available (e.g., represent the previous

day’s activity). However, when applied to more selective queries,

e.g., restricting eligibility to clients in a particular geography,

it can take longer for a sufficient number of eligible clients to

make themselves available. Here, it is pertinent to achieve good

accuracy as a function of number of participants, and to enforce

a minimum cohort size for privacy.

Aggregating multiple local values per feature. The literature
on federated analytics typically describes algorithms that take

a single value from each client [1, 24, 32]. However, for many

features of interest, most clients hold several values (e.g., device

parameter readings at different times), while a small subset may

hold up to millions of observations. Handling this circumstance

is largely a matter of semantics: we could choose to elicit a single

value from each client by sampling or local aggregation, or else
we could provide a multiset or weighted response. A discrepancy

is possible if we define ground truth using the mean of all client’s

values, but compute a federated mean based on sampling: clients

with many values differ in value distribution from the rest of the

population. In our setting, it is appropriate to aggregate a single

value per client, so we define the ground truth for data collection

via sampling (taking the mean produced similar results).

5 CONCLUSIONS AND PERSPECTIVES
Performing accurate, private analytics is vital in many applied

industrial contexts. Measurement needs at Meta motivated our

study of practical private numerical aggregation algorithms. Our

mathematical results and our offline evaluation show that bit-

pushing offers high numerical accuracy while sharing at most

one bit of a client’s value to the server using industry-standard

randomized response [31]; bit-pushing greatly outperforms prior

techniques when aggregated values are in a narrow range un-

known in advance.

Notions of optimality for single-bit estimates have been ex-

plored in the recent literature, and methods such as subtractive
dithering were shown optimal [3]. Hence, it may look surprising

that bit-pushing empirically outperforms those methods. This ap-

parent paradox stems from the assumptions made in prior proofs

of optimality. In particular, optimality is invalidated when the

true mean can be narrowed down further within a fixed subrange

[0, 1], and this bracketing is performed by adaptive bit-pushing

using the same type of inputs used by other protocols. In other

words, prior optimality results can provide loose bounds in prac-

tice, and in some practical cases we improve accuracy by orders

of magnitude.

Limitations of the approach are the flip side of its advantages:

when a tight bound on the values is known in advance, then

bit-pushing and prior methods attain similar accuracy. However,

accuracy is not the only relevant metric. When a single bit

of the client’s input does not reveal sensitive information, bit-

pushing alone can provide an intuitive privacy promise to non-

experts. When some bits of a value can be privacy-revealing

(say, disclosing whether a value is above or below a threshold),

plausible deniability for communicated bits is ensured using

differential privacy via noise [31].

Communication costs of our approach are low, since only a

single private bit of data is disclosed. However, there are addi-

tional overheads to include header information, and list which

bit was sampled, so the distinction between sending a single bit

versus a few numeric values is not so meaningful: both can be

easily communicated within a single (encrypted) network packet.

In settings where each client sends multiple bits, or reveals in-

formation about multiple features, the communication benefits

become more apparent.

Robustness to poisoning attacks is a concern for many LDP

algorithms [2, 7]. Since the result averages over all client reports,

no one client can influence the outcome significantly. However,

if clients choose which bit to report, then an adversarial client

could pick the most significant bit (𝑏max) and deterministically

send a 1 (say), to bias the result upwards. In this setting, central

randomness, where the server picks the bits to report (Section 3.1),

reduces the impact of such poisoning attacks.

Trustworthy privacy infrastructure is needed to support

novel federated analytics protocols. We have taken one such

algorithm from theory to practice in the Papaya platform [17].

Our approach limits private bits shared by the device, but the

device will naturally share additional (non-private) bits to imple-

ment the protocol. Platforms for federated analytics and learning

could provide configurable aggregation services that would pack-

age private bits into larger network packets and provide layers

of separation to rule out the mixing of private and non-public

bits. With such infrastructure, it can be relatively easy to add

privacy metering and monitoring, potentially giving the users

greater control of their data privacy.

741

Acknowledgments.We are grateful to colleagues who provided

input and feedback on this work, including Ilya Mironov, Akash

Bharadwaj, Kaikai Wang, Peng Chen, and Dzmitry Huba.

REFERENCES
[1] Eugene Bagdasaryan et al. 2021. Towards Sparse Federated Analytics: Location

Heatmaps under Distributed Differential Privacy with Secure Aggregation.

CoRR abs/2111.02356 (2021). arXiv:2111.02356 https://arxiv.org/abs/2111.

02356

[2] Victor Balcer, Albert Cheu, Matthew Joseph, and Jieming Mao. 2021. Connect-

ing Robust Shuffle Privacy and Pan-Privacy. In Proc. Symp. Discrete Algorithms,
SODA. SIAM. https://doi.org/10.1137/1.9781611976465.142

[3] Ran Ben-Basat, Michael Mitzenmacher, and Shay Vargaftik. 2020. How

to send a real number using a single bit (and some shared randomness).

arxiv:2010.02331. arXiv:2010.02331 https://arxiv.org/abs/2010.02331

[4] Akash Bharadwaj and Graham Cormode. 2022. An Introduction to Federated

Computation. In SIGMOD International Conference on Management of Data.
ACM, 2448–2451. https://doi.org/10.1145/3514221.3522561

[5] Akash Bharadwaj and Graham Cormode. 2022. Sample and Threshold Differ-

ential Privacy: Histograms and applications. In AISTATS.
[6] Albert Cheu. 2021. Differential Privacy in the Shuffle Model: A Survey of

Separations. CoRR abs/2107.11839 (2021). arXiv:2107.11839 https://arxiv.org/

abs/2107.11839

[7] Albert Cheu, Adam D. Smith, and Jonathan R. Ullman. 2021. Manipulation

Attacks in Local Differential Privacy. J. Priv. Confidentiality 11, 1 (2021).

https://doi.org/10.29012/jpc.754

[8] Graham Cormode and Igor L. Markov. 2021. Bit-efficient Numerical Ag-

gregation and Stronger Privacy for Trust in Federated Analytics. CoRR
abs/2108.01521 (2021). arXiv:2108.01521 https://arxiv.org/abs/2108.01521

[9] Differential Privacy Team at Apple. [n.d.]. Learningwith Privacy at Scale. https:

//machinelearning.apple.com/research/learning-with-privacy-at-scale.

[10] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Teleme-

try Data Privately. In NeurIPS. 3571–3580. https://proceedings.neurips.cc/

paper/2017/hash/253614bbac999b38b5b60cae531c4969-Abstract.html

[11] Josep Domingo-Ferrer, David Sánchez, and Alberto Blanco-Justicia. 2021. The

limits of differential privacy (and its misuse in data release and machine

learning). Comm. ACM 64, 7 (2021), 33–35. https://doi.org/10.1145/3433638

[12] D. Dua and C. Graff. 2019. UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml. University of California Irvine.

[13] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. 2018. Minimax optimal

procedures for locally private estimation. J. Amer. Statist. Assoc. 113, 521
(2018), 182–201.

[14] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of

Differential Privacy. Foundations and Trends in Theoretical Computer Science 9,
3-4 (2014).

[15] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR:

Randomized Aggregatable Privacy-Preserving Ordinal Response. In Proc. ACM
SIGSAC Conf. Comput. and Commun. Security. ACM, 1054–1067. https://doi.

org/10.1145/2660267.2660348

[16] Andy Greenberg. 2017. How One of Apple’s Key Privacy Safeguards Falls

Short. https://www.wired.com/story/apple-differential-privacy-shortcomings.

Wired (September 2017).

[17] Dzmitry Huba et al. 2022. PAPAYA: Practical, Private, and Scalable Federated

Learning. In MLSys. mlsys.org. https://arxiv.org/abs/2111.04877

[18] Intel Specialized Development Tools. [n.d.]. Software Guard Ex-

tensions. https://software.intel.com/content/www/us/en/develop/topics/

software-guard-extensions.html.

[19] Dan Levy. 2020. Speaking Up for Small Businesses. https://www.facebook.com/

business/news/ios-14-apple-privacy-update-impacts-small-business-ads.

Facebook for Business.

[20] Zhi-Quan Luo. 2005. Universal decentralized estimation in a bandwidth

constrained sensor network. IEEE Trans. Inf. Theory 51, 6 (2005), 2210–2219.

https://doi.org/10.1109/TIT.2005.847692

[21] Brendan McMahan and Daniel Ramage. 2017. Federated Learning: Col-

laborative Machine Learning without Centralized Training Data. https:

//ai.googleblog.com/2017/04/federated-learning-collaborative.html. Google

AI Blog.

[22] Paul Ohm. 2009. Broken Promises of Privacy: Responding to the Surprising

Failure of Anonymization. UCLA Law Review, Vol. 57, p. 1701, 2010 (2009).
[23] Matthias Paulik and et al. 2021. Federated Evaluation and Tuning for On-

Device Personalization: System Design & Applications. arXiv:2102.08503.
[24] Daniel Ramage and Stefano Mazzocchi. 2020. Federated Analytics: Collabora-

tive Data Science without Data Collection. https://ai.googleblog.com/2020/05/

federated-analytics-collaborative-data.html. Google AI Blog.

[25] Mike Schneider. 2021. Groups: Census privacy tool could hurt voting rights

goals. https://apnews.com/general-news-907d94c8e280b173dc2942feda181348.

Associated Press.

[26] Aaron Segal et al. 2017. Practical Secure Aggregation for Privacy-Preserving

Machine Learning. In CCS. https://eprint.iacr.org/2017/281.pdf

[27] Royal Society. 2021. Privacy Enhancing Technologies report. https:

//royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/

privacy-enhancing-technologies-report.pdf.

[28] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin,

Junbum Shin, and Ge Yu. 2019. Collecting and Analyzing Multidimensional

Data with Local Differential Privacy. In IEEE Int’l Conf. Data Eng. IEEE, 638–
649. https://doi.org/10.1109/ICDE.2019.00063

[29] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

Differentially Private Protocols for Frequency Estimation. In USENIX Security
Symp. USENIX Association, 729–745. https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/wang-tianhao

[30] Teng Wang, Xuefeng Zhang, Jinyu Feng, and Xinyu Yang. [n.d.]. A Com-

prehensive Survey on Local Differential Privacy: Toward Data Statistics and

Analysis. arXiv:2010.05253.
[31] S. L. Warner. 1965. Randomized response: A survey technique for eliminating

evasive answer bias. J. Amer. Stat. Assoc. 60, 309 (1965), 63–69.
[32] Wennan Zhu et al. 2020. Federated Heavy Hitters Discovery with Differential

Privacy. In AISTATS, Vol. 108. PMLR, 3837–3847. http://proceedings.mlr.press/

v108/zhu20a.html

742

