
Pythagoras: Semantic Type Detection
of Numerical Data in Enterprise Data Lakes
Sven Langenecker

LÄPPLE AG & DHBW Mosbach
s.langenecker@laepple.de

Christoph Sturm
DHBW Mosbach

christoph.sturm@mosbach.dhbw.de

Christian Schalles
DHBW Mosbach

christian.schalles@mosbach.dhbw.de

Carsten Binnig
Technical University of Darmstadt & DFKI

carsten.binnig@cs.tu-darmstadt.de

ABSTRACT
Detecting semantic types of table columns is a crucial task to en-
able dataset discovery in data lakes. However, prior semantic type
detection approaches have primarily focused on non-numerical
data despite the fact that numerical data play an essential role in
many real-world enterprise data lakes. Therefore, existing models
are typically rather inadequate when applied to data lakes that
contain a high proportion of numerical data. In this paper, we
introduce Pythagoras, our new learned semantic type detection
approach specially designed to support numerical along with
non-numerical data. Pythagoras uses a GNN in combination with
a novel graph representation of tables to predict the semantic
types for numerical data with high accuracy. In our experiments,
we compare Pythagoras against five state-of-the-art approaches
using two different datasets and show that ourmodel significantly
outperforms these baselines on numerical data. In comparison
to the best existing approach, we achieve F1-Score increases of
around +22%, which sets new benchmarks.

1 INTRODUCTION
Enterprise data lakes contain numerical data. Enterprise
data lakes serve as invaluable repositories of diverse data types,
enabling organizations to store and manage vast amounts of in-
formation [8, 20]. In enterprise data lakes, numerical data plays a
dominant role, making up a much larger proportion compared to
non-numerical data [17] since they provide insights into various
business domains, including finance, manufacturing, healthcare,
and marketing. Numerical data often contain critical information
such as sales figures, production metrics, customer demograph-
ics, and financial records. Therefore, it is essential to provide a
solution that can automatically detect the correct semantic type
of table columns containing numerical values, enabling data an-
alysts and data scientists to find required data for downstream
analysis and thus address the dataset discovery problem in data
lakes [4, 5, 10, 15, 21].
Semantic typing targets non-numerical data. In order to
enable the discovery of data in data lakes and in particular to
provide a solution for the associated task of semantic type detec-
tion, many solutions using deep learning techniques have been
proposed in the past [6, 13, 18, 26, 30]. Unfortunately, all these
existing approaches have primarily focused on detecting the se-
mantic type of non-numerical columns, and with that leaving
a critical need for innovative approaches that effectively detect

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

NBA Ply Stats

Ply FPos PPG AssPG RebPG

LeBron
James

SF/PF 31.3 7.5 8.2

...

Myles
Turner

PF/C 15.4 2.1 9.8

Textual
Column

Numerical
Column

Content

Column
Names

Table
Name

tablename

Neccessary
Context Information

column headers + values

Semantic Type Detection
Model

basketball.player.assists_per_game

column headers + values

Column to
Predict

Figure 1: Figure shows an example of predicting the seman-
tic type of the numerical table column ’AssPG’. To predict
the correct type, it is crucial for the model to have the pos-
sibility to incorporate textual context information such as
the table name and neighboring non-numerical columns.

semantic types of numerical columns [17]. The reasons why ex-
isting models fall short on numerical data is mainly because of
the fact that corpora that were used to train and validate these
models primarily contain non-numerical data. Therefore, the
models were developed to handle mainly non-numerical data.
Numerical data is much harder. To predict the semantic type
of table columns containing numerical values, it is essential to
have textual (non-numerical) data of the same table as context
information as illustrated in Figure 1. Predicting, for example, the
semantic type of the column ’AssPG’ by using only the included
values {7.5,...,2.1} is almost impossible while values of columns
with textual types such as ’Ply’ are more indicative for the type.
The reason for this is that numerical values have in general a
limited information entropy1 and are often similarly distributed
for different semantic content [18].
Context is essential for numerical data. To address this prob-
lem, rich non-numerical contextual information, such as the con-
tents of neighboring non-numerical columns, column headers,
and table names can be leveraged to increase accuracy in deter-
mining the correct semantic type of the numerical column. In
the example of Figure 1 the table name ’NBA Ply Stats’ and the
values of the textual columns (’Ply’ and ’FPos’) can be leveraged

1Generally numerical values can be encoded with much less bits than string values
resulting in lower overall entropy values [25]

Industrial & Applications Paper

Series ISSN: 2367-2005 725 10.48786/edbt.2024.62

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.62

as context information. This enables the model to recognize that
the table belongs to the basketball domain, thereby enhancing
its ability to predict the semantic type of the ’AssPG’ column
as ’basketball.player.assists_per_game’. As such, for a semantic
type detection approach designed to handle numerical data, it
is crucial to incorporate the capability to leverage all contextual
information within the model architecture. Unfortunately, exist-
ing model architectures do not have such a predefined technique
where non-numeric contextual information can be strategically
leveraged for predicting numerical columns.
Semantic type detection for numerical data. In this paper, we
thus introduce our approach based on a novel model architecture
for semantic typing called Pythagoras, which can not only pre-
dict the semantic type of non-numerical table columns with high
accuracy but also of numerical table columns. To achieve this,
the main idea of the new model architecture is to use graph neu-
ral networks (GNNs) together with a new graph representation
of tables and their columns. This graph representation includes
directed edges to provide necessary contextual information (e.g.
table name, neighboring non-numerical column values) for pre-
dicting the correct semantic type of numerical columns using the
GNN message passing mechanism. Thus, the model learns which
contextual information is relevant for determining the semantic
type. To the best of our knowledge, our semantic type detection
model Pythagoras is the first approach in this direction.
Contributions of the paper. The main contributions of this
paper are: (1) First, we propose a new graph representation of ta-
bles. In this graph data structure, we use directed edges to model
the information flow within tables. Using this graph representa-
tion, Pythagoras can learn selectively which context information
should be taken into account to establish robust predictions on
numerical data. (2) As a second contribution, we propose a new
GNN-based neural network architecture that is able to use our
new graph data structure as input and predict the semantic type
of table columns. This architecture consists of three main com-
ponents, (a) a pre-trained language model which encodes call
values of tables, (b) a subnetwork to encode an additional spe-
cific feature set of the numerical values, (c) and a GNN with a
heterogeneous graph convolutional module for aggregating all
information and embedding context in the type prediction of
columns. (3) Finally, as a third contribution, we show the effec-
tiveness of the graph representation and the model architecture
of Pythagoras by comparing against five existing state-of-the-art
semantic type detection models on two different data lakes that
mimic the data distribution of enterprise data lakes and contain
tables with non-numerical and numerical columns. The results
of this experiment demonstrate that our new model outperforms
all baselines on numerical data significantly. To support the inte-
gration of our approach into existing applications and to enable
further research, we open sourced all our code, data and trained
model: https://github.com/DHBWMosbachWI/pythagoras.git.
Outline of the paper. In Section 2 we first introduce Pythagoras
and our new graph representation of tables. Section 3 details the
model architecture. Results and analyses of our experiments are
presented in Section 4, followed by a discussion of related work
in Section 5. Section 6 concludes the paper.

2 OVERVIEW OF PYTHAGORAS
In the following, we introduce our new semantic type detection
approach Pythagoras.

2.1 Graph Representation of Tables
Figure 2a demonstrates how we convert a table and its columns
into a graph representation using an example table in Figure 2a.
The table contains a table name (𝑡𝑛), two non-numerical columns
(𝑐𝑛𝑛), and three numerical columns (𝑐𝑛), each with column head-
ers (𝑐ℎ) and column values (𝑣1, 𝑣2, ..., 𝑣𝑚). In the figure, we can see
how the table is transformed into a graph 𝐺 = {𝑉 , 𝐸} composed
of a set of nodes V and a set of edges E including four different
node types 𝑉𝑡𝑛,𝑉𝑛𝑛,𝑉𝑛 , and 𝑉𝑛𝑐𝑓 for different artifacts.

The first node type 𝑉𝑡𝑛 (green) represents the tablename. Ad-
ditionally, the graph contains a node of type 𝑉𝑛𝑛 (orange) for
each non-numerical column. This node type represents the en-
tire column including column values and headers. In the same
manner, for each numerical column, we create a node of type 𝑉𝑛
(blue) representing numerical columns and their contents. Finally,
nodes with a node type 𝑉𝑛𝑐𝑓 (red) are added for each numerical
column to encode specific features of the numerical columns.

We decided to use an additional node type𝑉𝑛𝑐𝑓 to encode spe-
cific features for numerical columns since this allows us to first
use a pre-trained language model (LM) for computing a represen-
tation based on the joint features that are shared between both
non-numerical and numerical columns such as column headers .
In addition, we further add the nodes𝑉𝑛𝑐𝑓 for the numerical-only
columns, each holding a vector with additional specific features
for numerical columns for which we use a separate encoding
strategy with a separate simple multilayer perceptron (MLP) net-
work. To be more precise, we additionally encode 192 different
statistical features for encoding a numerical column. We publish
the full list of features in an extended technical report of this
paper2.

2.2 Leveraging Contextual Information
As described before, only using the numerical values for predict-
ing the semantic type of numerical columns is in general not
sufficient, and contextual information is needed. Due to this as-
pect, we add directed edges to our table graph representation to
predefine in which way necessary additional context information
should be injected through the message-passing mechanism of
GNNs [16] into the numerical column representation (node 𝑉𝑛)
and thus enrich it for better predictions.

More precisely, as shown in Figure 2awe construct direct edges
from each non-numerical column node 𝑉 1

𝑛𝑛 , 𝑉 2
𝑛𝑛 to all numerical

column nodes 𝑉 1
𝑛 ,𝑉

2
𝑛 ,𝑉

3
𝑛 (yellow edges) to provide the context

information from the non-numerical columns to the numerical
columns. Furthermore, we add directed edges in the graph from
the table name node 𝑉𝑡𝑛 to all non-numerical 𝑉𝑛𝑛 as well as
numerical𝑉𝑛 nodes (green edges). This edge handles not only the
contextual information for numerical columns but also for non-
numerical columns. As we will show in our experiments, using
the table name as context information also leads to performance
improvements for non-numerical columns. Finally, the graph has
directed edges for integrating the additional statistical features
into the encoding of numerical columns (red edges from𝑉𝑛𝑐𝑓 →
𝑉𝑛).

As a consequence when using this graph structure as basis
for our GNN-based model architecture (cf Section 3), the vector
representation computed for the numerical column nodes 𝑉𝑛
during training result in an enhanced information content that is
more suitable for an accurate prediction of the underline semantic

2This technical report can be found at: https://github.com/DHBWMosbachWI/
pythagoras.git

726

Textual
Column Node

Numerical
Column Node

Tablename
Node

Numerical Column
Feature Node

Directed Edges from
Each Textual Column
Node to all Numerical

Column Nodes

Directed Edges from
Tablename Node to all

Column Nodes

Graph
Representation

NBA Ply Stats

Ply FPos PPG AssPG RebPG

LeBron
James

SF/PF 31.3 7.5 8.2

...

Myles
Turner

PF/C 15.4 2.1 9.8

Textual Column Numerical Column

Content

Column
Names

Table
Name

(a) Graph Representation

Feature Specific
Subnetwork

GNN

In
iti

al
 N

od
e

R
ep

re
se

nt
at

io
ns

BERT

Input Features
(192 Units)

ReLu
(512 Units)

Serializations

Tablename
Node

Textual
Colum Nodes

Numerical
Colum Nodes

Numerical Column
Feature Node

Heterogenous Graph Convolution Module

H
id

de
n

S
ta

te
O

ut
pu

t o
f t

he
 G

N
N

Textual Colum Nodes Numerical Colum Nodes

Final Classification Layer

Convolutional
Layer

Convolutional
Layer

Convolutional
Layer

(b) Model Architecture

Figure 2: (a) Shows the conversion of a table into a heterogeneous graph representation. The key aspect of the graph is that
it provides all the necessary contextual information through its structure (nodes and directed edges), resulting in improved
predictions of the semantic types of numerical columns. (b) Shows the complete model architecture of the neural network.

Learned Edge
Specific Weights

New Vector Representation
After Traversing the GNN

Aggegation Function
of the Messages

Weighted Vector
Message

Figure 3: Heterogeneous graph convolutional module of
Pythagoras for the nodes 𝑉𝑛 . Information from the nodes
𝑉𝑛𝑛 ,𝑉𝑡𝑛 and𝑉𝑛𝑐𝑓 is passed to node𝑉𝑛 . Each edge connection
(𝑊𝑛𝑛,𝑊𝑡𝑛,𝑊𝑛𝑐𝑓 ,𝑊𝑛) has its own learned weights, which de-
termine how strongly weighted the information is sent
over the edges. Finally, all messages (vectors) are combined
to form a new representation of the node by an aggregation
function.

type. Interestingly, leveraging context by modeling edges in a
GNN not only improves the prediction of numerical but also
non-numerical types as we show in our evaluation (cf. Section 4).

3 MODEL ARCHITECTURE
In Figure 2b we can see the model architecture of Pythagoras.
In the following, we explain first the details of the model archi-
tecture and then explain how the model can be used to detect
numerical semantic types.

3.1 Architecture and Training
The model comprises three essential components. These compo-
nents include (1) a pre-trained LM to encode all features from

non-numerical and numerical columns 3, (2) a specific subnet-
work to process the additional features of numerical columns
and (3) the GNN to aggregate all information.

The upper part of the architecture in Figure 2b shows how
we generate the input of the BERT model to get the initial rep-
resentations for each column. Additionally, we use BERT to en-
code table names. To serialize the individual columns, we encode
the input sequence for non-numerical as well as for numerical
columns, using the column header and the column values as fol-
lows: 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑐𝑖) ::= [CLS] 𝑐ℎ 𝑣1 𝑣2 ... 𝑣𝑚 [SEP]. Additionally,
to generate the initial representation of the node 𝑉𝑡𝑛 we thus se-
rialize the table name as follows: 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑡𝑐) ::= [CLS] 𝑡𝑐 [SEP].
For columns and table names, we use the representation com-
puted by BERT for the CLS token as initial node representation
for the GNN.

To embed the additional extracted features of the numerical
column values, the model contains a feature-specific subnetwork
similar to the approach in [13]. As can be seen in the architec-
ture, the subnetwork consists of a linear layer that maps the
192 provided features to a vector that matches the shape of the
other initial vector representations (BERT outputs vectors with
dimensions of 768). This network is trained end to end with the
GNN while the BERT parameters are frozen.

The initial vector representations generated by the BERT
model and the subnetwork are used as initial internal repre-
sentation for all nodes 𝑉𝑡𝑛 , 𝑉𝑛𝑛 , 𝑉𝑛 , and 𝑉𝑛𝑐𝑓 in our graph data
structure which serves as input for our GNN model. As GNN,
we use a heterogeneous graph convolutional module that com-
bines different graph convolutional layers [16] for each occurring
edge type. Since we have 3 different edge types in our graph, the
heterogeneous convolutional module combines 3 independent

3We use BERT but Pythagoras is independent of how to generate the initial embed-
dings, and there may exist alternative language models or embedding methods that
could potentially yield even better results in this context.

727

graph convolutional layers. The heterogeneous convolution mod-
ule first performs a separate graph convolution on each edge
type, then sums the message aggregations on each edge type as
the final result for the nodes. Figure 3 shows the behavior of this
module for a numerical column node 𝑉𝑛 that is connected with
other nodes over the different edge types. The module works
in a similar way also for non-numerical columns 𝑉𝑛𝑛 leverag-
ing, however, only information from table name as shown in
Figure 2a.

The module allows the model to learn separate weights for
the different edge types and thus enables it to embed connected
neighboring nodes and their information to different degrees.
For example, the model can learn for 𝑉𝑛 nodes that the infor-
mation of the table name (provided by 𝑉𝑡𝑛) is less important
than the information of adjacent non-numerical columns (pro-
vided by 𝑉𝑛𝑛). By learning distinct weights for each edge, we
can effectively capture the nuances and dependencies in the data,
ultimately enhancing the model’s ability to make contextually
informed predictions that lead to the overall effectiveness of our
approach, which we will show more in detail in Section 4.5. After
traversing the GNN, we extract the hidden states of the nodes
𝑉𝑛𝑛 (representing updated non-numerical columns) as well as
of 𝑉𝑛 (representing updated numerical columns). Subsequently,
these hidden states are then fed into a final classification layer
to perform the semantic type classification task. In this last clas-
sification layer, the output size is determined by the number of
distinct semantic types present in the corpus.

3.2 Detecting Numerical Types
To highlight the advantage of using our graph representation
of tables together with a GNN for semantic type detection of
numerical data types, let us take a look at the following exam-
ple. Considering the node 𝑉 1

𝑛 in Figure 2a which stands for the
numerical column ’PPG’ (points per game statistic of a basket
player) of the table. The column contains values in the range
of about 15-32, and its semantic type could be ambiguous. The
correct type might be basketball.player.points_per_game, foot-
ball.player.yards_per_game or temperature).

However, after iterating over a GNN layer, the values of the
two non-numerical columns 𝑉 1

𝑛𝑛,𝑉
2
𝑛𝑛 are embedded because of

the designed yellow edges. These provide basketball player names
(Lebron James, ..., Myles Turner) as well as basketball field posi-
tions (SF/PF, ..., PF/C) as context information. According to this
additional data, it is clear that the semantic type temperature is not
very likely for this column. Because of the fact, that tables about
player statistics in basketball as well as in football are structured
very similarly and contain both columns with player’s names and
field positions, it is not yet clear whether the semantic type is bas-
ketball.player.points_per_game or football.player.yards_per_game
for example.

Besides the previous context data of the non-numerical col-
umns, information about the table name is also injected via the
green edges during a GNN layer pass. This information contains
the text ’NBA Ply Stats’ (’NBA’ is the name of the basketball
league) and it is now unambiguous determinable that basket-
ball.player.points_per_game must be the valid semantic type. The
other passed information from the additional statistical feature
nodes 𝑉𝑛𝑐𝑓 also provides an improvement for distinguishing
ambiguities, since the value range of numerical columns with dif-
ferent semantic types can be the same but the value distribution

Table 1: Characteristics of the datasets in our experiments.

Dataset #Tables Non-Num. Num. #sem.
Cols./Table Cols./Table Types

SportsTables 1,187 2.83 18.1 462
GitTables Numeric 6,577 2.08 8.95 219

can be different. These different characteristics are covered by
the extracted statistical features of numerical columns.

4 EXPERIMENTAL EVALUATION
In the following, we first introduce the two datasets SportsTables
and GitTables before we describe our experimental setup and
evaluation methodology. Afterward, we discuss the main results
of our experiments.

4.1 Data Sets and Baselines
Datasets. For evaluating Pythagoras, we use two different real-
world data lakes with a large number of semantically annotated
tables. When selecting the datasets, the goal was to choose a
corpora that contain tables with a high proportion of numerical
columns. This allows us in particular to explore and compare the
existing models with Pythagoras on numerical data. As shown
in Table 1, we use two corpora SportsTables [17] and GitTables
Numeric which is based on [12]. Both corpora contain a high
number of numerical columns per table and represents a numer-
ical to non-numeric ratio commonly found in enterprise data
lakes [18].
SportsTables [17]. As the first data corpus in our experiments,
we use SportsTables. The corpus contains real-world data tables
collected from various sports domains such as soccer, basket-
ball, baseball, and football using web scraping techniques. Such
data tables are especially rich in numerical columns as many
different sport-specific statistical measurements are reported.
As can be seen in Table 1, the tables in the corpus contain 2.83
textual and 18.1 numerical columns on average. The corpus in-
cludes a very high number of 462 unique semantic types. Thereby
semantic types are very fine granular, which is a major chal-
lenge for semantic type detection models. For example, there
are types such as ’basketball.player.assists_per_game’ or ’soc-
cer.player.assists_per_game’.
GitTables Numeric [12]. The original GitTables data set is a corpus
of tables created by extracting CSV files from GitHub repositories.
Table columns are labeled with semantic types from Schema.org
[11] and DBpedia [2] using two different automated annotation
methods. In our experiments, we have focused on the annotations
origin from DBpedia and the results of the semantic annotation
method. For our experiments, we constructed a derived corpus
called GitTables Numeric by specifically selecting tables that
have a high proportion of numerical columns with the purpose
to mimic real-world enterprise data lakes. To achieve this, we
only included tables where at least 80% of all table columns are
numerical. In order to have enough samples of each semantic
type to train, validate, and test the models, we also filtered out
columns that have a semantic type occurring less than 10 times
in total. Based on these filter criteria, we ended up with a corpus
that contains 6,577 tables with 2.08 textual and 8.95 numerical
columns per table on average (see Table 1) and a total of 219
semantic types.

728

Table 2: Experimental results on the SportsTables corpus.

Model support weighted F1-Score macro F1-Score
numerical non-numerical overall numerical non-numerical overall

Sherlock [13] 0.609 0.856 0.641 0.555 0.767 0.57
Sato [30] 0.703 0.961 0.736 0.650 0.903 0.668

Dosolo [26] 0.313 0.822 0.379 0.245 0.782 0.285
Doduo [26] 0.623 0.98 0.67 0.567 0.933 0.594

GPT-3 (fine-tuned)[3] 0.446 0.872 0.501 0.404 0.760 0.423
Pythagoras 0.829 0.996 0.851 0.790 0.97 0.803

Baselines. In our evaluation, we compare our model Pythagoras
against five state-of-the-art semantic type detection models. As
baselines we considered Sherlock [13], Sato [30], Dosolo [26], and
Doduo [26]. Despite that Sato and Doduo also incorporate context
information to predict the semantic type of a column, they do not
specifically address numerical-based columns and do not offer
a predefined approach for injecting contextual information into
the prediction of numerical columns. All models were trained on
the same data as Pythagoras.

Given the recent advancements in large language models
(LLMs) like GPT-3.5 [3, 22], which have been extensively trained
on vast amounts of data, one might wonder if such models can-
not predict the semantic type for non-numerical as well as for
numerical columns with high accuracy through a straightfor-
ward finetuning. Finetuning an LLM to a specific task has already
shown success [14, 19, 24, 27]. In light of these considerations, we
additionally explore the capabilities of recent LLMs in our study
by adding a fine-tuned GPT-3.5 model. We opted for fine-tuning
as opposed to prompt designs due to its potential to yield higher
performances and to train on a larger number of examples. To
build this baseline model we fine-tuned the gpt-3.5-turbo model,
following the instructions in [1] using the same training data we
used for Pythagoras.

4.2 Experimental Design
Setup. To run the experiments, we split each dataset into three
parts: training, validation, and test set. We divided the datasets
into 60% training, 20% validation, and 20% testing splits. Since
in both datasets, the gold labels were assigned in an automatic
manner by using the individual column headers, we did not
include the headers in the serializations of the columns, which is
different from what is described in Section 2. When running the
experiments, we trained each model using the training split and
conducted hyperparameter tuning on the validation set.

In addition, we used the performance results on the valida-
tion split during training to apply an early stopping mechanism.
To measure the final performance of each model, we loaded
the checkpoint of the model with the highest F1-Score on the
validation set and then applied it to the test data. We ran each ex-
periment with five different random seeds and reported the mean
across multiple runs to obtain statistically reliable results. As eval-
uation metrics, we used support-weighted F1-Score, weighted by
the number of columns per semantic type and the macro average
F1-Score as used in previous studies [6, 13, 26, 30].
Pythagoras implementation. We implemented our model Py-
thagoras using Python together with the modules PyTorch [23],
DGL [28] and the Transformers library [29]. As described in Sec-
tion 2, our neural network consists of three main components.
A pre-trained LM to generate initial vector representations, a

subnetwork for the numerical-based feature set, and a GNN that
allows to exchange context information. As pre-trained LM, we
used the vanilla BERT [7] (bert-base-uncased) model to be com-
parable to [26] which comes with 12 encoder layers. We used
tokenizer and pre-trained model of the Transformers library from
Hugging Face [9]. During the training process, we froze the 12
layers of BERT, preventing their weights from being updated. The
graph data structure and the GNN were implemented with the
DGL library. To update the weights of the GNN during training,
we applied an Adam optimizer with an initial learning rate of
10−5 and a linear decay scheduler with no warm-up. Since our
purpose is to realize a multi-class prediction task (one semantic
type label per column), we used the cross entropy loss as a loss
function.

4.3 Exp. 1: Overall Efficiency
Results on SportsTables. Table 2 shows the experimental re-
sults on SportsTables. For each model, we list the F1-Scores over-
all data types to show the total performance, but also the separate
average F1-Scores for only numerical and non-numerical data
types, respectively. As the first main result, we can see in the
table that our model Pythagoras outperforms all existing state-of-
the-art models in all reported aspects. Looking only at the results
on the numerical columns, we can see that our model achieves an
improvement of +17.92% support weighted F1-Score and +21.53%
macro F1-Score. These results verify that our designed mecha-
nism of providing context information to predict the semantic
type of numerical data is more suitable than the methods in the
existing models Sato and Doduo.

In Sato, contextual information is provided by a table topic
vector, which is formed by a accumulation of all values in the
table. Since tables in the SportsTables dataset contains a large
proportion of columns with numerical values (on average 18.1 are
numerical column and 2.83 are non-numerical, see Table 1), this
table topic vector does not have the necessary effect. In addition,
Satos linear-chain conditional random field (CRF) also does not
lead to significant improvements, since the tables in SportsTables
are not always structured in the same way (column orders vary
between tables). This aspect can be seen by the comparison of
Sato to Sherlock, which is the same model without a table topic
vector and a linear-chain CRF module. The improvements from
Sherlock to Sato are not significant.

Doduo also achieves only moderate performance values with
0.623/0.564 (support weighted/macro) F1-Score. On one hand, this
is due to the fact that only very few individual column values
can be included in the token sequence, since the BERT model
is limited to 512 elements and the tables have on average 20.93
columns. On the other hand, the BERT model learns the structure

729

Table 3: Experimental results on the GitTables corpus.

Model support weighted F1-Score macro F1-Score
numerical non-numerical overall numerical non-numerical overall

Sherlock [13] 0.725 0.989 0.775 0.411 0.491 0.707
Sato [30] 0.733 0.991 0.781 0.443 0.707 0.491

Dosolo [26] 0.518 0.986 0.606 0.245 0.694 0.343
Doduo [26] 0.761 0.992 0.804 0.409 0.749 0.489

GPT-3 (fine-tuned)[3] 0.531 0.938 0.610 0.143 0.277 0.211
Pythagoras 0.813 0.990 0.846 0.476 0.893 0.544

of the tables which, as with Sato, has negative effects with non-
identical cross-table structures. Furthermore, it is still unclear
how deep the understanding of numbers is in LMs like BERT,
since they are essentially pre-trained on textual data. Unlike the
existing models, our model is independent of the column order
of the tables due to the graph structure. If columns are arranged
differently between tables, this has no negative effect.

When we examine the results on textual data, we generally
observe that all models perform well. In particular, the models
Sato, Doduo, as well as our model Pythagoras achieve high accu-
racy. Interestingly, also for non-numerical columns our model is
slightly better than existing models with 0.996/0.970 F1-Scores.
This improvement is due to the design aspect that our model
uses the contextual information of the table name also for the
non-numerical column representations (𝑉𝑛𝑛 → 𝑉𝑛 edges). More-
over, our results demonstrate the aspect that on numerical data,
the prediction of the semantic type is in general harder than the
prediction of non-numerical data.

In summary, the results on the SportsTables dataset demon-
strate that our model architecture, in conjunction with the graph
representation of tables, leads to significantly improved perfor-
mance in predicting semantic types for numerical-based columns.
Results on GitTables. Table 3 shows the experimental results
on GitTables using the same metrics as before on SportsTables.
The results show that Pythagoras outperforms all other models
in predicting the semantic types. Considering the performance
on numerical columns, it becomes evident that our model sur-
passes the performance of the best existing model, Doduo, by a
remarkable improvement of +6.83%/16.38% F1-Score.

This gain in performance highlights the effectiveness of our
model in handling numerical data, setting a new benchmark in
this domain by outperforming all state-of-the-art approaches.
Different from the results on the SportsTables corpus, among the
baselines, Doduo and Sato perform nearly equally. This is mainly
due to the aspect that the GitTables corpus contains tables with
fewer columns on average, and therefore Doduo can use more
column values in its token sequence and with that build a better
representation using the BERT model.

Looking at the performance on non-numerical data columns,
we can see that all models achieve mostly the same support
weighted F1-Scores (about 0.990). However, considering themacro
F1-Scores our model Pythagoras reaches by far the best value
with 0.893. This is an improvement to the second-best model
Doduo by +19.23%, showing again the benefit of providing the
table name as contextual information for predicting the semantic
type of non-numerical columns. In summary, the results on Git-
Tables show that our model Pythagoras sets new state-of-the-art
performances for predicting the semantic type of numerical table
columns.

4.4 Exp. 2: Performance for Individual Types
Figure 4 shows a more detailed analysis of the performances
between Pythagoras and Sato on numerical columns in Sport-
sTables. We chose Sato as comparison model because it was the
best baseline model on numerical columns in this dataset. On the
left side, the pie chart shows for how many semantic types of
numerical columns which model performed better regarding the
F1-Score. Out of a total of 384 numerical semantic types, Pythago-
ras was able to achieve substantially better performances than
Sato on 202 of them. For 80 types, the two models achieve equal
F1-Scores and for 74, Sato is better than Pythagoras. This demon-
strates that our model is not only more accurate for individual
numerical semantic types but also for a very large proportion of
them.

To show how large the F1-Score differences between the two
models across the numerical types are, boxplots of the differences
for the cases Pythagoras>Sato and vice versa are shown on the
right of Figure 4. In the case where our model achieves higher
F1-Scores, we can see that the median value of the distances is
0.2. The 0.75 quantile is 0.4 and there are also a few types where
our model is better than Sato by more than 0.9. In addition, the
distribution is shifted upwards towards the larger distance values.
In the case where Sato is better, the median is about 0.1 and the
0.75 quantil is 0.2. The distribution is also shifted upwards, but
not as much as in the other case. In conclusion, these results show
that there are many types for which Pythagoras performs much
better than Sato and Sato can only achieve very low F1-Scores,
and the differences to our model are significant. In the other
case, for the majority of types in which Sato performs better, our
model Pythagoras achieves only slightly lower scores.

Overall, this suggests that our model architecture and the
method we designed for providing context information are better
suited for detecting the semantic type of numerical data.

4.5 Exp. 3: Ablation Study
Different graph variants. To verify the different design aspects
of our approach, we tested variants of Pythagoras. At first, we
tested modifications of our graph representation of tables. In par-
ticular, we wanted to investigate which contextual information
has which effect on the prediction of the semantic type. Table 4
shows the results of this ablation study by displaying support
weighted and macro average F1-Scores on numerical columns.
The first row reports the results of using our regular model and
graph while the next rows presents the results when various
nodes and edges are removed in the graph representation. Here
w/o 𝑉𝑡𝑛 means that in the graph the node representing the table
name has been removed and thus also the provision of this con-
text information for the prediction of the semantic type of the
columns. Note, that the other nodes𝑉𝑛𝑛 and𝑉𝑛𝑐𝑓 are still present

730

Pythagoras > Sato

202

Sato > Pythagoras

74
Equal

80

Pythagoras > Sato Sato > Pythagoras
0.0

0.2

0.4

0.6

0.8

1.0

 F
1

Sc
or

e

0.2000

0.0998

Figure 4: The left chart shows the number of numerical
types for which Pythagoras performs better than Sato and
vice versa. In the right chart we see box plots for the F1-
Score differences between the two models on the different
numerical semantic types where Pythagoras was better
than Sato and vice versa.

Table 4: Ablation study results on only numerical columns
of the SportsTables dataset.We tested different graph struc-
tures that provide different types of contextual informa-
tion (upper part). The lower part shows results when in-
cluding the column header 𝑐ℎ as additional information in
the serialization of a column.

Variant support weighted macro
avg F1-Score avg F1-Score

Pythagoras 0.829 0.790
w/o 𝑉𝑡𝑛 0.812 0.759
w/o 𝑉𝑛𝑛 0.785 0.733
w/o 𝑉𝑛𝑐𝑓 0.813 0.765
w/o 𝑉𝑡𝑛 , 𝑉𝑛𝑛 0.724 0.693
w/o 𝑉𝑡𝑛 , 𝑉𝑛𝑛 , 𝑉𝑛𝑐𝑓 0.324 0.252

w/ original 𝑐ℎ 0.991 0.950
w/ synthesized 𝑐ℎ 0.972 0.926

in the graph and still provide contextual information to the nu-
merical columns representations. Equally, w/o 𝑉𝑛𝑛 means that
the edges of non-numerical to numerical columns have been re-
moved and thus the flow of information from the non-numerical
columns no longer occurs during a GNN layer pass. However, in
this variant, the other nodes are present.

The first finding that can be seen in the results is that when
we remove the nodes 𝑉𝑛𝑛 , we see the highest performance drop.
The F1-Score decreases in this case -0,044/-0,057 in comparison
to the regular model. Thus, we can conclude that the most im-
portant contextual information for a correct prediction of the
semantic type of numerical-based columns are the values of the
non-numerical columns from the same table. The second most
important context is the table name (𝑉𝑡𝑛) and the least important
are the statistical features of the numerical values in the columns
(𝑉𝑛𝑐𝑓).Without the table name as context, themodel performance
decreases a bit more than without the statistical features. To see
how good the performance is when making a semantic type
prediction only using the numerical values of the columns (𝑉𝑛
and 𝑉𝑛𝑐𝑓), we have also considered a variant in which 𝑉𝑡𝑛 (table
name) and 𝑉𝑛𝑛 (non-numerical columns) nodes are not present.

With this variant, the F1-Score drops very sharply and the model
only achieves values of 0.724/0.693. This result again shows the
immense importance of textual context information in predict-
ing the semantic type of numerical data. In addition, we have
tested a variant in which only the 𝑉𝑛 nodes are present (w/o 𝑉𝑡𝑛 ,
𝑉𝑛𝑛 , 𝑉𝑛𝑐𝑓). As expected, we just get similar performances to the
Dosolo model, since in this constellation both model structures
are very similar.
Different column serializations. As mentioned before, in the
experiments of Section 4.2, we did not include the original col-
umn headers 𝑐ℎ in the serialization of a column because they
were previously used to semi automatically assign the true se-
mantic types (gold labels) to the columns. However, to show the
impact column headers can have on the performance of numeri-
cal column predictions, we created synthetic column headers and
used them in an experiment. We created the synthesized column
headers using GPT by giving us a list of 10 possible abbreviations
for the respective column headers. For example, for the header
”Player Age” GPT provided the list [”PA”, ”PlAge”, ”PAG”, ”PLAG”,
”PlrAge”, ”PlyAg”, ”PLA”, ”PrAge”, ”PlyrA”, ”PlayA”]. Afterward,
for each column, we randomly selected an abbreviation from
the list and used it as the column header. The lower part of Ta-
ble 4 shows the results of this experiment. We can see that the
inclusion of column headers has an additional positive effect
on predicting the semantic types of numerical data, achieving
F1-Scores of 0.972/0.926 (close to the performance when using
the original highly indicative column headers).

5 RELATEDWORK
In the following, we will present an overview of existing ap-
proaches and discuss the main shortcomings when applied to
numerical data.
Columnwise Models. Columnwise models exclusively leverage
values from a single column, omitting the inclusion of contextual
information from the table. Sherlock [13] is columnwise model
which extracts multiple features, such as character distributions,
word embeddings, text embeddings, and column statistics from
individual columns. These features are then processed through
a combination of multi-layer subnetworks and a primary net-
work, which comprises two fully connected layers. Dosolo [26]
is a columnwise model that uses the pre-trained BERT model
combined with an attached output layer to implement a semantic
type detection model. Given that BERT receives token sequences
(i.e. text) as input, they convert a column into such a sequence.
When serializing the columns, the individual column values are
first converted into a string and then concatenated to a sequence.
TablewiseModels. Tablewise models leverage the entire table as
input. The advantages of this approach lie in its ability to utilize
contextual information from the table, enhancing the precision of
semantic type prediction for individual table columns. Building
upon Sherlock, Sato is a tablewise model that incorporates Latent
Dirichlet Allocation (LDA) features to capture table context and
integrates a CRF layer to learn column type dependency. With
this, Sato’s prediction quality improves over Sherlock. Dosolo &
Doduo are both models from [26]. In contrast to Dosolo, Doduo
is a tablewise model designed to process an entire table as input
to the BERT model. To do this all columns and their values are
concatenated one after the other to form an input sequence. The
major difference between the two approaches and their serializa-
tion techniques is that with Dosolo a column type is predicted
independently of other data, whereas Doduo captures the data of

731

neighboring columns to make a prediction of a column semantic
type.
Discussion on Existing Approaches. Recent research papers
[6, 26, 30] have shown that columnwise models are limited since
they can not use context information when predicting the seman-
tic types of columns. As the need for contextual information is
even more important for numerical columns, columnwise models
are unsuitable for its detection.

As such, Sato [30] and Doduo [26] incorporate also context in-
formation like the table-topic or values fromneighboring columns
as described above. However, these models are mainly designed
to handle non-numerical data since used corpora contain almost
entirely textual data. If tables contain many numerical and only a
few textual columns the context information provided is reduced
and the methodologies implemented in Sato and Doduo will not
provide the necessary context information to work on numeri-
cal data. For example, the table-topic vector of Sato provides no
benefit, since numerical values are dominant in the table. With
Doduo, the serialization of the table also contains essentially nu-
merical data and this leads to the same effect. However, we show
that a controlled and predefined embedding of context informa-
tion, as we implemented it in Pythagoras, leads to a significant
improvement on numerical columns. Another shortcoming of
Doduo is the limited amount (512 Elements) of column values
that can be included when serializing the table. With this, in-
creasing the number of table columns means a decreasing the
number of values of each column in the input.

For wide tables, this results in an insufficient column repre-
sentation and also to only a few values that serve as context
information. This is a problem for the prediction on numerical
columns, where context information is needed. In our experi-
ments, we demonstrated that our new model Pythagoras can
handle wide tables containing many numerical columns in a bet-
ter way. Furthermore, Sato and Doduo have the disadvantage
that they essentially learn the order of the columns in the table.
This creates a major dependency that tables must have the same
column arrangement to ensure the model works adequately. In
our opinion, table structures are not always the same, especially
in data lakes. For example, Sato’s pairwise potentials are learned
only for adjacent columns. Whenever there is a different order
of the columns, which causes direct neighbors are changed, the
learned potentials are no longer useful. Doduo is also sensitive to
the column order in a table because the underline BERT model is
sensitive to the order in the input sequence. However, our model
Pythagoras is completely independent of the column order due to
the used graph representation of tables together with the GNN
architecture.

6 CONCLUSION
The task of semantic type detection of table columns stored in
data lakes is crucial to address the dataset discovery problem.
Due to the fact that a large proportion of data in enterprise data
lakes are numerical [18] and often contains critical information,
it is even more important to provide a solution that can detect the
underline semantics for these data types robustly. While recent
papers propose approaches for extracting semantic types, unfor-
tunately, they have been designed primarily on non-numerical
data and therefore do not provide accurate performances when
used on numerical data columns. To tackle this problem, we sug-
gested in this paper our new semantic type detection approach
Pythagoras, specifically designed to robustly handle numerical

columns. Our graph representation of tables and GNN architec-
ture establish an intrinsic mechanism that provides all necessary
context information to determine the correct semantic type of
numerical columns. Experimental results comparing Pythago-
ras against five state-of-the-art models on two different datasets
containing mainly numerical table columns show that our ap-
proach sets new benchmarks for predicting the semantic type of
numerical data.

ACKNOWLEDGMENTS
This work was partially funded by the German Federal Ministry
of Education and Research (BMBF) within the “The Future of
Value Creation – Research on Production, Services and Work”
program (funding number 02L19C150) and by the state of Hesse
as part of the NHR program. We also thank hessian.AI, 3AI, DFKI,
and DHBW for their support.

REFERENCES
[1] Open AI. 2023. Fine-tuning. Open AI. Retrieved October 22, 2023 from

https://platform.openai.com/docs/guides/fine-tuning
[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-

ganiak, and Zachary Ives. 2007. DBpedia: A Nucleus for a Web of Open
Data. In The Semantic Web, Karl Aberer, Key-Sun Choi, Natasha Noy, Dean
Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana
Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 722–735.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models
Are Few-Shot Learners. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS’20).
Curran Associates Inc., Red Hook, NY, USA, Article 159, 25 pages.

[4] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2019. Dataset Search: A
Survey. The VLDB Journal 29, 1 (aug 2019), 251–272. https://doi.org/10.1007/
s00778-019-00564-x

[5] Christina Christodoulakis, Eric B. Munson, Moshe Gabel, Angela Demke
Brown, and Renée J. Miller. 2020. Pytheas: Pattern-Based Table Discovery in
CSV Files. In VLDB, Vol. 13. VLDB Endowment, 2075–2089. https://doi.org/
10.14778/3407790.3407810

[6] Xiang Deng, Huan Sun, Alyssa Lees, YouWu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. In VLDB, Vol. 14. VLDB
Endowment, 307–319. https://doi.org/10.14778/3430915.3430921

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Association for Computational Linguistics,
Minneapolis, Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[8] James Dixon. 2014. Data Lakes Revisited. https://jamesdixon.wordpress.com/
2014/09/25/data-lakes-revisited/.

[9] Hugging Face. 2023. bert-base-uncased. Hugging Face. Retrieved October 22,
2023 from https://huggingface.co/bert-base-uncased

[10] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery
in Data Lakes: State-of-the-Art and Future Directions. In Companion of the
2023 International Conference on Management of Data (Seattle, WA, USA)
(SIGMOD ’23). ACM, New York, NY, USA, 69–75. https://doi.org/10.1145/
3555041.3589409

[11] R. V. Guha, Dan Brickley, and Steve Macbeth. 2016. Schema.Org: Evolution of
Structured Data on the Web. Commun. ACM 59, 2 (jan 2016), 44–51. https:
//doi.org/10.1145/2844544

[12] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. GitTables: A
Large-Scale Corpus of Relational Tables. Proc. ACM Manag. Data 1, 1, Article
30 (may 2023), 17 pages. https://doi.org/10.1145/3588710

[13] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind
Satyanarayan, Tim Kraska, Çagatay Demiralp, and César Hidalgo. 2019. Sher-
lock: A Deep Learning Approach to Semantic Data Type Detection. In SIGKDD
(Anchorage, AK, USA) (KDD ’19). ACM, New York, NY, USA, 1500–1508.
https://doi.org/10.1145/3292500.3330993

[14] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How Can
We Know What Language Models Know? Transactions of the Association for
Computational Linguistics 8 (2020), 423–438. https://doi.org/10.1162/tacl_a_
00324

732

[15] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-
Based Semantic Table Union Search. Proc. ACM Manag. Data 1, 1, Article 9
(may 2023), 25 pages. https://doi.org/10.1145/3588689

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[17] Sven Langenecker, Christoph Sturm, Christian Schalles, and Carsten Binnig.
2023. SportsTables: A new Corpus for Semantic Type Detection. In Daten-
banksysteme für Business, Technologie und Web (BTW 2023), 20. Fachtagung
des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 06.-10,
März 2023, Dresden, Germany, Proceedings (LNI, Vol. P-331). Gesellschaft für
Informatik e.V., 995–1008. https://doi.org/10.18420/BTW2023-68

[18] Sven Langenecker, Christoph Sturm, Christian Schalles Schalles, and Carsten
Binnig. 2023. Steered Training Data Generation for Learned Semantic Type
Detection. Proc. ACM Manag. Data 1, 2, Article 201 (jun 2023), 25 pages.
https://doi.org/10.1145/3589786

[19] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. In VLDB,
Vol. 14. VLDB Endowment, 50–60. https://doi.org/10.14778/3421424.3421431

[20] ChristianMathis. 2017. Data Lakes. Datenbank-Spektrum 17, 3 (2017), 289–293.
[21] FatemehNargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Aro-

cena. 2019. Data Lake Management: Challenges and Opportunities. In VLDB,
Vol. 12. VLDB Endowment, 1986–1989. https://doi.org/10.14778/3352063.
3352116

[22] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J.
Lowe. 2022. Training language models to follow instructions with human
feedback. ArXiv abs/2203.02155 (2022).

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library.. InNeurIPS, Hanna M.Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché Buc, Emily B. Fox, and Roman Garnett (Eds.).
Curran Associates Inc., Red Hook, NY, USA, Article 721, 12 pages.

[24] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton
Bakhtin, Yuxiang Wu, and Alexander H. Miller. 2019. Language Models as
Knowledge Bases?. In EMNLP-IJCNLP 2019, Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics, 2463–
2473. https://doi.org/10.18653/V1/D19-1250

[25] Claude Elwood Shannon. 1948. A Mathematical Theory of Communication.
The Bell System Technical Journal 27 (1948), 379–423. http://plan9.bell-labs.
com/cm/ms/what/shannonday/shannon1948.pdf

[26] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating Columns with Pre-Trained
Language Models. In SIGMOD. ACM, New York, NY, USA, 1493–1503.

[27] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Sam
Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-Trained Transformer
is Almost All You Need towards Democratizing Data Preparation. In VLDB,
Vol. 14. VLDB Endowment, 1254–1261. https://doi.org/10.14778/3457390.
3457391

[28] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis,
Jinyang Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric,
Highly-Performant Package for Graph Neural Networks. ArXiv abs/1909.01315
(2019).

[29] Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei
Zhang. 2021. TUTA: Tree-Based Transformers for Generally Structured Table
Pre-Training. In SIGKDD (Virtual Event, Singapore) (KDD ’21). ACM, New
York, NY, USA, 1780–1790. https://doi.org/10.1145/3447548.3467434

[30] Dan Zhang, Madelon Hulsebos, Yoshihiko Suhara, Çağatay Demiralp, Jinfeng
Li, and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in
Tables. In VLDB, Vol. 13. VLDB Endowment, 1835–1848. https://doi.org/10.
14778/3407790.3407793

733

