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ABSTRACT
Time series naturally comprise multiple inherent patterns of
behavior that create the information we perceive. While these
patterns frequently serve as a starting point for the analysis of
large time series databases, they often overwhelm data scien-
tists due to their volume and complexity. Extracting the most
prevalent of these patterns thus still remains a challenge in many
analytical methods. In this short paper, we propose an efficient
approach to determine the most frequent inherent patterns of
common behavior in large time series databases. To this end, we
formally model time series by means of Gaussian processes and
show how to find the most representative components corre-
sponding to local time series patterns by introducing the CATGP
(Component Analysis in Time series with Gaussian Processes)
algorithm. We examine our proposal on different benchmark
times series databases and show that the CATGP algorithm effi-
ciently discovers representative components in the underlying
time series databases.

1 INTRODUCTION
Time series epitomize a complex data type which appears across
numerous application domains including industry, medicine, me-
teorology, economics or marketing, to name just a few. This
data type comprises time-dependent measurements, such as tem-
perature or air pressure measurements [4], stock prices [18] or
quality control indicators [3] and is frequently encountered in
combination with physical or virtual sensory. In this way, the
observed measurements captured bymeans of time series provide
an approximation of real-world processes which are typically un-
known from the database perspective. In practice, these processes
are often the result of several phenomena appearing and inter-
acting simultaneously. For instance, meteorological temperature
measurements contain daily and yearly periodicity, multiple lin-
ear increases and decreases as well as additional noise. Similarly,
measurements from the manufacturing domain might contain
specific patterns corresponding to the state of a machine indicat-
ing its oscillation or deterioration. In general, such patterns reflect
multiple underlying process components which are intuitively
to grasp for a human but difficult to analyze for a machine.

As indicated above, these process components correspond to
real world phenomena and are thus difficult to infer from time
series databases without further expert and domain knowledge.
For example, two additive processes with logarithmic increases
would result in a time series that contains one logarithmic trend.
To separate this trend into the actual process components, prior
domain knowledge is required. To streamline the user’s input
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process and reduce the need for an exhaustive specification of
domain knowledge, we assume that the measurable time series
components adequately represent the underlying process compo-
nents. In this way, our proposal becomes universally applicable
across diverse domains, eliminating the necessity for pre-existing
domain-specific knowledge.

In order to generate insights into time series databases, one
might want to examine the correlation between multiple compo-
nents by finding frequently appearing combinations, inferring
potential rules and identifying anomalous behavior. This paper
will present the necessary methodology to enable such examina-
tions.

A necessary prerequisite is the extraction of components hid-
den in time series databases. Automatically extracting such time
series components still poses a difficult problem, where some
approaches have been proposed in the past: Statistical time series
decomposition is for instance used in economics to separate the
data into seasonality, trend and noise [19]. While this approach
befits the intended use-case of analysing sales data, it’s difficult to
use it for inferring other types of components, such as behavior
that follows a known differential equation [8].

As a domain-agnostic alternative, the Automatic Bayesian Co-
variance Discovery (ABCD) [17] method uses Gaussian processs
(GPs) to construct a probabilistic model fitting the data’s behavior
that can be translated into natural language. This process will be
described in more detail in Section 3. The possibility to include
prior knowledge in the GP model via its kernel ensures that even
complex components can be modelled [8]. While this approach
is already a powerful tool in the right setting, it only delivers
descriptions for individual time series and doesn’t directly facil-
itate the comparison of multiple time series. Here, we propose
Component Analysis in Time series with Gaussian Processes
(CATGP), a method to expand this form of analysis by compar-
ing the components of multiple time series and finding frequent
components and component combinations.

To do so, we use the principle behind ABCD to link time series
components to GP kernel components and treat these kernel
components as items in frequent item set mining. The concept has
been introduced before, using trees [13]. In this paper, we want
to define a precise mathematical basis for both the extraction of
components from time series and the analysis of said components.
We define the necessary operations and relations in the kernel
space in Section 4. Overall, our approach brings the problem of
extracting components and identifying frequent combinations
from the data space into the GP model space, which brings us
additional flexibility and interpretability from GP kernels. This
process is depicted in Figure 1.

The rest of this paper is structured as follows: Section 2 presents
relevant works on time series component analysis and frequent
item set mining. In Section 3, we introduce the necessary basics
of GPs and their kernels. In Section 4, we introduce our method
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Figure 1: The process of CATGP. The goal is to identify
correlations between time series components, as they are
the best indicators for correlations between process com-
ponents. For this examination, we model the data using a
GP kernel search and perform the analysis on the resulting
models. The separation of models into components and
the subsequent frequent component mining are described
in Section 4

CATGP, before we discuss the initial results in Section 5. Finally,
Section 6 concludes this work with an outlook on future work.

2 RELATEDWORK
Our proposed approach connects two different fields of analy-
sis: The division of time series data into separate, interpretable
components and the mining of frequent items in a transactional
database.

Analysing the components of a time series is a common prob-
lem in areas such as economics and physics. Different domains
developed different specialised solutions for the extraction of
these components. In economics, the data to be analyzed is usu-
ally a singular time series depicting, for example, sales over time.
Statistical analysis can be used to look for seasonal and linear
trends [19]. However, this method can not detect components
that have not been defined by the user. We are also not aware
of any works that perform this method for components beyond
seasonality, trend and noise.

In settings with physical sensors, users can often use multiple
detectors to record data, resulting in multiple time series that
contain identical components. A classic example are guests at
a party, whose voices are recorded by multiple microphones.
To isolate individual components, the Independent Component
Analysis (ICA) [16] performs independence tests via high order
statistical moments. This method requires the components to be
present in multiple time series.

Neither of these methods facilitates the extraction of complex
structural components from multiple independent time series for
further comparisons. This type of analysis is mainly possible with
GPs and the corresponding kernel search methods [7, 10, 14, 17].
Section 3 will briefly touch on some of these methods.

The field of frequent item set mining emerged with the Apriori
algorithm [2]. This method identifies frequent items and combi-
nations of items in a given database, where frequency is defined

(a) Low period length (b) High period length

Figure 2: Differences in GPmodels with the periodic kernel
[9], using different parameters for the period length. The
samples shown here are priors without any data.

by a minimum rate of occurrence and items can be any cate-
gorical data. Later advances in this field, such as the FP-Growth
algorithm [12], offer increased efficiency.

If the ordering of items is important for the use case, sequential
pattern mining can be used to search for frequent and interesting
sequences of items [1, 11]. This field is still developing today,
as the steady increase in available data requires more and more
efficient tools.

All of these methods require the database entries to be sets of
items, where similarities between items are simply defined by the
trivial metric, meaning items are either identical or unrelated. The
goal of this paper is therefore, to define the necessary operations
and relations on the infinite-dimensional space of GP kernels to
apply item set mining on them. These definitions are derived in
Section 4.

3 GAUSSIAN PROCESSES
In this section, we provide a short overview of Gaussian Pro-
cesses.

Inferring the underlying process from recorded data points is
a challenge that is still subject to current research. This includes
inferring unknown data points via interpolation, forecasting to
not yet recorded data or fitting a modelling function onto the
known data.

GPs are among the most commonly used types of models for
these purposes. They are very proficient at fitting a distribution
to the given data points and allow for the incorporation of prior
knowledge into the modelling process.

GPs are probabilistic, non-parametric machine learning frame-
works [21]. A model 𝐺𝑃 (𝑚,𝑘) depends on a mean function𝑚 :
R→ R and a covariance function, also called kernel, 𝑘 : R × R ×
Θ → R to infer an unknown function from data samples. The
space Θ contains the kernel’s parameters and depends on the
specific kernel in use. An exemplary showcase of the effect of
these parameters on the kernel’s behavior is shown in Figure 2.
In many cases, the kernel contains all necessary information and
the mean function can be set to zero [21]. As such, this work also
only regards zero-mean GPs.

The kernel describes, how the modelled data depend on each
other. For example, there are popular kernels that represent pe-
riodic or linear behavior within the data [9]. Such kernels can
also be added or multiplied to create more complex and more
descriptive kernels [10]. The quality of predictions or interpola-
tions using a GP directly depends on how well the model’s ker-
nel describes the data’s behavior. Consequently, optimal model
selection would require extensive prior knowledge about the
underlying process that the data represent. In settings where

618



this knowledge is not given, one can either use general-purpose
kernels or apply an automatic kernel selection algorithm, that
constructs a fitting kernel for the given data [6, 7, 10, 14, 17].

Recently, there has been more research into kernel search
methods that split the time series at change points and find
segment-based "local" kernels. Algorithms like the Concatenated
Composite Covariance Search [7] or Event-Triggered Kernel Ad-
justments [15] can be used to segment and model long time series
including multiple change points. In these settings, analyzing the
resulting local models or generalizing to a global model requires
comparisons between the kernels. In addition, it has been shown
that kernel search methods can be employed to create natural-
language descriptions of a time series [17]. This uses the property
that the product of kernels is equivalent to inter-dependent struc-
tures, such as periodic patterns with linearly rising amplitudes,
while the sum of kernels can be equated to independent processes
that run in parallel to create the data.

In this paper, we consider products of kernels to represent
statistically dependent behavior and sum of kernels to represent
statistically independent behavior, cf. [7]. In this way, kernel
products represent inseparable patterns which are the smallest
units defining a kernel that we refer to as components.

In the next section, we will introduce a method to find the
most commonly-occurring components.

4 PROPOSED METHOD
In this section, we introduce the CATGP method for finding fre-
quent time series components modelled via Gaussian Processes.
For this purpose, we focus on kernel components, which are in-
herently encountered in GPs. As a result, the problem of finding
the most representative components in a time series is attributed
to the ability of GPs to infer an interpretable kernel for the given
data [9, 10, 17].

Prior to the application of CATGP, we make use of a kernel
searchmethod [6, 7, 10, 14, 17] to find the best fittingGP kernel for
each time series in the database. These kernels are parameterized
functions, that are constructed by adding or multiplying several
base kernels together (cf. Section 3) and can therefore become
arbitrarily complicated. Our analysis is primarily concentrated
on the types of patterns that a kernel corresponds to, independent
of the parameters’ initialization. Therefore, we categorize the
kernels that only differ in parameterization into equivalence
classes.

Definition 4.1 (Kernel equivalence class). The equivalence class
[𝑘] of a kernel 𝑘 is defined as the class of all kernels that only
differ from 𝑘 by values of their parameters:

[𝑘] := {𝑘 (·, ·, 𝜃 ) : 𝜃 ∈ Θ}
Furthermore, we define the sum and product of two classes as

[𝑘1] + [𝑘2] :=[𝑘1 + 𝑘2] = {𝑘1 + 𝑘2 : 𝑘1 ∈ [𝑘1], 𝑘2 ∈ [𝑘2]}

[𝑘1] × [𝑘2] :=[𝑘1 × 𝑘2] = {𝑘1 × 𝑘2 : 𝑘1 ∈ [𝑘1], 𝑘2 ∈ [𝑘2]}

Consequently, a kernel class represents a structure on an ab-
stract level, so that differences in amplitude, steepness, frequency
and other properties don’t affect the class label. Since all funda-
mental kernels that we use have a scaling parameter as a prefactor
and no kernel is constant, this definition implies the following
properties:

[𝑘1], [𝑘2] ⊆[𝑘1 + 𝑘2]
[𝑘1], [𝑘2] ⊈[𝑘1 × 𝑘2]

These properties align with a very intuitive definition of a
class’s components: Since products of kernels correspond to
inter-dependency [17], a product isn’t separable for a compo-
nent analysis. The set of all possible components for kernels can
therefore be defined as follows.

Definition 4.2 (Set of possible components). Given a set of base
kernel classes B, we define the set of all possible component
classes as K = {Π𝑛

𝑖=1 [𝑏𝑖 ] : 𝑛 ∈ N, [𝑏𝑖 ] ∈ B}

This set contains everything that we would consider compo-
nents in kernels. It consequently corresponds to the potential
time series components that we are able to identify with our
approach. Every given GP kernel’s class is a sum of (usually up
to three) set elements. This makes the decomposition of such a
class straight forward.

Definition 4.3 (Component decomposition). The set of compo-
nents that make up a class [𝑘] is given by the multiset

C([𝑘]) = (𝐴,𝑚)

where

𝐴 = {[𝑐] ∈ K : [𝑐] ⊆ [𝑘]} and

𝑚 = 𝑐 ↦→𝑚𝑎𝑥

(
{𝑛 ∈ N :

𝑛∑︁
𝑖=1

[𝑐] ⊆ [𝑘]}
)
.

We use a multiset instead of a regular set for this definition,
so that in cases where one component is contained multiple
times within the same kernel, these multiple occurrences are not
ignored. Consequently, we can write each kernel class as the sum
of its components:

(𝐴,𝑚) = C([𝑘]) ⇔ [𝑘] =
∑︁
[𝑐 ]∈𝐴

𝑚 ( [𝑐 ] )∑︁
𝑖=1

[𝑐]

Since our method of analysis is inspired by frequent item set
mining, for example with the Apriori algorithm [2], we now
require three more definitions before we formulate the CATGP
algorithm: The length and support of a class and the join of two
classes. Using the component decomposition, we can intuitively
define the length of a class, or even an initialized kernel, in the
following way:

Definition 4.4 (Length). A kernel 𝑘 and its equivalence class
[𝑘] have the following length:

L(𝑘) := L([𝑘]) = |C([𝑘]) |.

Our final goal regarding the GP components is to define, what
constitutes as a "frequent" component and to identify all compo-
nents in a given set of kernels, that match this definition. Con-
sequently, we define the support of any class as the amount of
given kernels that the class is contained in.

Definition 4.5 (Support). The support of a class [𝑐] given a
sequence of kernels 𝐾 = (𝑘1, ..., 𝑘𝑁 ) is

𝑠𝑢𝑝𝑝 ( [𝑐]) = |{𝑖 ∈ (1, ..., 𝑁 ) : [𝑐] ⊆ [𝑘𝑖 ]}|

Note that this definition implies that multiple occurrences of a
component in one kernel do not compensate the non-occurrence
in other kernels.

The final required definition is an operator that joins two
classes to their smallest common superset, that is also a viable
kernel class.
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Definition 4.6 (Join). The join of two classes [𝑘1] and [𝑘2]
is equivalent to the join definition for item sets in the Apriori
algorithm: the result is the smallest possible item set (here kernel
class) that contains both the given sets.

[𝑘1] ⊔ [𝑘2] :=𝑚𝑖𝑛 ({[𝑘] ∈ K : [𝑘1], [𝑘2] ⊆ [𝑘]})

We now have the necessary mathematical language to formu-
late our algorithm in detail (see Alg. 1). The CATGP algorithm
takes a sequence of GP kernels and a minimum threshold for
the support of components and delivers all component classes
and sums thereof whose support exceeds the given threshold. To
determine these classes, we first extract the fundamental com-
ponents of the given kernels by using the kernel decomposition
(Def. 4.3). The components with sufficient support are added to
the output set and then used to create potentially frequent classes
of length 2. Here, the Apriori principle is applied, since any class
containing a non-frequent subclass can not be frequent itself [2].
The steps of calculating the support for the candidates and then
creating the next generation of candidates is repeated until no
further potentially frequent classes can be found.

Algorithm 1: CATGP
Data: GP models (𝑘1, ..., 𝑘𝑁 ), minimum support𝑚𝑖𝑛𝑆𝑢𝑝𝑝
Result: Frequent kernel component classes

{[𝑐1], ..., [𝑐𝑛]}
1 1-element candidates 𝐶1 =

⋃𝑁
𝑖=1 C([𝑘𝑖 ])

2 𝑖 = 1
3 Output 𝑜𝑢𝑡 = {}
4 while 𝐶𝑖 ≠ do
5 Frequent sets 𝐹𝑖 = {}
6 for [𝑐] ∈ 𝐶𝑖 do
7 if 𝑠𝑢𝑝𝑝 ( [𝑐]) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝𝑝 then
8 𝑜𝑢𝑡 = 𝑜𝑢𝑡 ∪ {[𝑐]}
9 𝐹𝑖 = 𝐹𝑖 ∪ {[𝑐]}

10 𝐶𝑖+1 = {}
11 for [𝑐1], [𝑐2] ∈ 𝐹𝑖 do
12 if L([𝑐1] ∩ [𝑐2]) == 𝑖 − 1 then
13 [𝑐] := [𝑐1] ⊔ [𝑐2]
14 if ∀[𝑐′] ⊆ [𝑐] : L([𝑐′]) == 𝑖 − 1 ⇒ [𝑐′] ∈ 𝐹𝑖

then
15 𝐶𝑖+1 = 𝐶𝑖+1 ∪ {[𝑐]}

16 𝑖 = 𝑖 + 1
17 return out

CATGP’s complexity is in 𝑂 (𝑁 ∑
𝑖 |𝐶𝑖 |), which is derived di-

rectly from Apriori [2]. The sum potentially scales exponentially
with the number of unique component classes in the database.
This is limited by the amount of base kernels |B| and the maxi-
mum complexity of a kernel, which is a parameter of the kernel
search [10]. For most applications, these values will be rather low.
For settings with a high variety of base kernels or a high kernel
complexity, higher efficiency can be achieved when the presented
operations and notations are used for a different frequent item
set mining algorithm, like FP-Growth [12].

5 EXPERIMENTS
In this section, we present the functionality of the CATGP algo-
rithm in two experiments. First, we analyze the Plane database

[5], which contains time series depicting the outlines of different
plane types, with two different configurations to show CATGP’s
ability to generate insights. Afterwards, we generate a GP data-
base from a singular time series to demonstrate an alternative
application of CATGP.

In our first analysis, we focus on showing that CATGP’s results
allow the user to derive insights into the given GP models and
the modelling process. To do so, we first create GP models for all
time series in the training set of Plane. This database contains 7
classes of plane types, which we analyze separately with CATGP.
The results are shown in Tables 1 and 2. The chosen minimum
support is set to 10%, but we chose to only list the two most
frequent components for readability.

Class 1. component 2. component
1 𝑅𝑄 (53%) 𝑃𝐸𝑅 (46%)
2 𝑅𝑄 (50%) 𝑅𝑄 × 𝑅𝑄 (50%)
3 𝑅𝑄 (55%) 𝑃𝐸𝑅 (22%)
4 𝑃𝐸𝑅 × 𝑅𝑄 (50%) 𝑅𝑄 × 𝑅𝑄 (25%)
5 𝑅𝑄 × 𝑅𝑄 × 𝑅𝑄 × 𝑅𝑄 (23%) 𝑅𝑄 × 𝑅𝑄 × 𝑅𝑄 (23%)
6 𝐿𝐼𝑁 × 𝑃𝐸𝑅 (27%) 𝑃𝐸𝑅 × 𝑅𝑄 (27%)
7 𝑃𝐸𝑅 × 𝑅𝑄 (35%) 𝑃𝐸𝑅 (30%)

Table 1: Experiment 1: Most frequent components per class
in the Plane training set [5]. The GP models were created
using Compositional Kernel Search (CKS) [10] with the
base set of 𝐿𝐼𝑁, 𝑃𝐸𝑅, 𝑅𝑄 , describing the linear, periodic and
rational quadratic kernel respectively [9]. CKS was run for
4 iterations. The support of the components is denoted as
relative support within the given class.

Class 1. component 2. component
1 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (60%) 𝑃𝐸𝑅 (33%)
2 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (92%) 𝐿𝐼𝑁 × 𝑃𝐸𝑅 (50%)
3 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (88%) 𝑃𝐸𝑅 × 𝑃𝐸𝑅 + 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (44%)
4 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (81%) 𝐿𝐼𝑁 × 𝑃𝐸𝑅 (50%)
5 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (76%) 𝑃𝐸𝑅 × 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (23%)
6 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (83%) 𝑃𝐸𝑅 × 𝑃𝐸𝑅 + 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (33%)
7 𝑃𝐸𝑅 × 𝑃𝐸𝑅 (65%) 𝐿𝐼𝑁 × 𝑃𝐸𝑅 (50%)

Table 2: The same experiment as Table 1, but the models
were created from a smaller base set of 𝑃𝐸𝑅, 𝐿𝐼𝑁 , denoting
the periodic and linear kernel respectively, and with 3
iterations of CKS.

Table 1 shows some clear differences between the classes when
using the three mentioned base kernels. Especially class 5 seems
to favor highly adaptable models, like products of multiple ratio-
nal quadratic kernels. In general, the rational quadratic kernel is
very prominent, which is probably because it is the least special-
ized of the base kernels. The linear kernel is the most specialized
and only appears in class 6 commonly. The variety of results
suggests that the minimum support was chosen too low, or that
the amount of instances per class was not sufficient to generate
valuable insights into every class.

Table 2 shows another very interesting phenomenon. By re-
moving the rational quadratic kernel from the set of base kernels,
we limit the model selection’s possibilities to construct highly
adaptable kernels. As a result, all classes contain the product
of two periodic kernels most frequently. The time series are all
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Figure 3: Analysis of the Mauna Loa time series data set
[17, 20] using CATGP. The data is shown on top and the
four most common components or sums of components,
applied to arbitrary data segments, are shown on the bot-
tom, ordered from most frequent to least. The exact sup-
port was 86%, 63%, 59% and 45% respectively.

symmetrical on the Y-axis, which is why a periodic component
is to be expected. The reason for why this didn’t show up in the
previous experiment is, that our model selection uses the GP
likelihood for evaluation, which favors adaptable kernels.

In an alternative method of application, CATGP can be used to
analyze patterns and components within a singular time series.
To do so, we can extract subsequences as overlapping windows of
equal length from the time series, perform a GP model selection
on each subsequence and define our model database as the re-
sulting GP models. Here, we demonstrate this with two different
real-world data sets.

The subsequences for our experiments have a length of 50 and
we use a stepsize of 30, so the first subsequence is from index
1 to 50, the second from 31 to 80 etc. All subsequences are Z-
scaled to improve the GP performance [21]. The GP models are
then created by applying the CKS algorithm with 5 iterations
to the subsequences, which means that our kernels are made
up of up to 5 base kernels. The set of base kernels contains
the linear, periodic and squared-exponential kernel, denoted as
𝐿𝐼𝑁, 𝑃𝐸𝑅, 𝑆𝐸 respectively. We set a minimum support of 10% for
our experiments. With the subsequence sampling, the results
of CATGP can be interpreted as frequencies and correlations
between local patterns of behavior.

We are not aware of any existing methods that determine
correlations of time series components, so we visually determined
realistic components in the data sets and compared CATGP’s
results to these expectations.

The first iteration of this experiment analyzes the Mauna Loa
time series data set [17, 20]. It shows a series of 𝐶𝑂2 measure-
ments at the Mauna Loa weather station over a long period of
time. Naturally, the most important components are periodic and
linear trends. The results of the analysis are shown in Figure
3. CATGP has successfully identified periodic and linear trends
with 86% and 63% support respectively. The combined structure
of periodic and linear behavior has a support of 59%. Finally, the
squared-exponential kernel, which is very adaptable and there-
fore often favored in the kernel selection, was the fourth most
frequent component with a support of 45%.

While the support of the periodic and linear components ide-
ally would have been higher, CATGP was still able to identify
the most important features of the data set. It is also important
to mention, that a GP kernel search is not a deterministic process
and can occasionally result in non-optimal models.

Figure 4: Analysis of the Termperature time series data set
using CATGP. The data is shown on top and the four most
common components or sums of components, applied to
arbitrary data segments, are shown on the bottom, ordered
from most frequent to least. The exact support was 40%,
25%, 21% and 18% respectively.

Repeating the experiment with the Temperature time series
data set [17] yields the results presented in Figure 4. Given the
much noisier and broadly periodic nature of the data, we ex-
pect high frequencies for the periodic kernel and the squared-
exponential kernel. The results only roughly match this expec-
tation: The two most frequent components are products of base
kernels, which can adapt to noisy data more effectively than
single base kernels because they have more parameters. Even so,
the overall support for the most frequent components is very low,
showing more variance between the local models. This data set
has 1000 data points, so the subsequences of length 50 don’t con-
tain enough data to show the primary periodic behavior. Instead,
linear kernels are used to model the local ascend or descend.
These results show that CATGP requires careful consideration
of how to create the local kernels.

These experiments show, that the CATGP algorithm can suc-
cessfully extract frequent components from a given set of GP
models. It also became clear that the insights into a singular time
series that CATGP generates via slicing heavily depend on the
selection of subsequences. The code for these experiments can
be found here: https://github.com/JanHuewel/CATGP/

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have proposed an algorithmic approach for
finding the most representative components from time series
data. For this purpose, we have leveraged Gaussian processes
and proposed the CATGP algorithm for determining frequent
kernel component classes. The experimental evaluation indicates
a great potential for CATGP to advance the field of time series
analysis, but also possible causes of failure that will need to be
examined further.

There are some open challenges, which are yet to be researched
further: The choice for the minimum support has a great impact
on the results, but valid values depend heavily on the data and
the setting in question. For now, CATGP can easily be modified
to find the most frequent sets instead, without a minimum thresh-
old, at the cost of some efficiency. Additionally, the set of base
kernel classes needs to be defined by the user, which restricts the
methods ability to find unexpected patterns. However, this can
also be used to incorporate prior knowledge about the origin of
the data into the search.

As for future work, we plan to expand CATGP to incorpo-
rate the kernels’ parameters into class definitions. This enables
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users to differentiate between low-frequency and high-frequency
periods, linear increases and decreases or noisy and noise-free
segments. Furthermore, we will examine the ability of CATGP to
find association rules between components and their meaning
for large time series databases. Finally, the process of selecting
subsequences for local GP models will be improved and directly
included into the CATGP algorithm.
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