O

proceedings

Optimizing Counterfactual-based Analysis
of Machine Learning Models Through Databases

Aviv Ben Arie Daniel Deutch Nave Frost
Intuit Inc. Tel Aviv University Tel Aviv University
USA Israel Israel
aviv_benarie@intuit.com danielde@post.tau.ac.il navefrost@mail.tau.ac.il
Yair Horesh Idan Meyuhas
Intuit Inc. Tel Aviv University
USA Israel

yair_horesh@intuit.com

ABSTRACT

In the context of Machine Learning models, counterfactuals (CFs)
are hypothetical perturbations to a given input of the model that
would result in a different classification outcome. Multiple lines
of recent work have proposed algorithms for finding CFs (hereby
referred to as CF Generators) and demonstrated their value in
providing insights for model owners. However, obtaining these
insights may be computationally expensive, often requiring many
invocations of these algorithms with complex constraints. In this
work, we complement these efforts by presenting CFDB: a re-
lational, declarative framework for CF-based analysis. Users of
CFDB specify analysis tasks as declarative queries over a rela-
tional schema tailored for CFs. CFDB then compiles the spec-
ification into a series of CF requests, to be fed as input to CF
Generators. The main advantage of this approach is that it allows
to optimize the tradeoff between CF generation time and qual-
ity. Specifically, our optimizations are based on the observation
that often, one may satisfy multiple CF requests using the same
CFs, thereby reducing the total number of costly CF Generator
invocations. We design algorithms that identify when such re-
use is possible and optimize the computation accordingly. We
experimentally demonstrate the usefulness of our approach and
our optimizations, in the context of multiple datasets, multiple
previously proposed Counterfactual Generators, and use cases
such as assessing model fairness.

1 INTRODUCTION

Counterfactuals (CFs for short) explain the results of Machine
Learning classifiers through perturbations to instances that lead
to altered classifications. Given the importance of automated
decision-making, combined with the complexity of models that
make these decisions, such explanations are crucial in facilitating
transparency and fairness of decision-making and in helping
model owners to debug and improve their models.

Consider for example a loan application classifier, used for
recommendations on whether each such application should be
approved or rejected. For a rejected application, a counterfactual
could indicate that a slight raise to the applicant’s income would
lead to approval. Another counterfactual may reveal that for an
applicant with the same profile except for a different gender, the
loan application would have been approved.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

597

idanmeyuhas@mail.tau.ac.il

A counterfactual concerning a single prediction is useful for
providing an explanation to the relevant individual, such as the
loan applicant in the above example. If, by contrast, the model
owners wish to obtain insights on the model as a whole, they typ-
ically need a representative set of CFs, across multiple instances,
that fit their analysis goals. For example, the model owners may
specifically be interested in CFs for false positives, to reveal the
underlying cause for this type of error. They may further wish
to restrict attention to CFs that change a particular feature, or
a set of features, such as gender and/or race. The results may
be telling concerning the fairness of the model. Taking this idea
a step further, the work of [30] defines the burden of a group
of instances as the average distance from the original instances
of CFs obtained for this group. Unexpectedly high burden for a
specific group, such as instances with a particular gender or race,
may indicate potential unfairness in the model. Model robust-
ness is captured similarly, as the (normalized) distance between
instances and their CFs.

CFs are typically characterized according to two aspects. The
first is feasibility, namely CFs that satisfy some given constraints.
These constraints may refer to the modification they induce (for
instance, the modified features [27]), or to the new instance that is
formed (e.g. it should satisfy some given database constraints [3]).
The second is quality, which is typically measured as the distance
of the CF from the original instance (captured via either L0 or
other measures, depending on the data type), i.e. the magnitude
of change it induced. A CF that is in the proximity to the given
instance is typically regarded as more useful than a distant one.

Finding feasible and high-quality CFs is a highly non-trivial
task, and the survey of [33] overviews many different approaches.
There may be infinitely many counterfactual candidates (all val-
uations to features), and finding even a single counterfactual for
a single instance is in general computationally intractable even
for simple white-box models (see e.g. [3]). Heuristics may fail
or may be prohibitively slow, for instance, when the data has
high dimensionality or the decision boundaries of the model are
highly fragmented. A commonly used solution is to restrict the
search for CFs to a pool of available instances, e.g. those in the
training dataset [27], looking for the instances that are close to
the instance for which one wishes to compute counterfactuals.
This approach significantly accelerates computation but is inher-
ently non-robust, in the sense that good CFs for a given instance
(e.g. ones that are indeed close to the instance, and satisfy some
given constraints) may simply not be available in the pool (see
e.g. Section 6.3 of [29] for further discussion). The problem is
exacerbated because, as explained above, model owners often
need to analyze many instances (e.g., representatives of classes

10.48786/edbt.2024.51

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.51

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

of interest [30]) and obtain many CFs for each instance. CF gen-
eration at scale is indeed computationally expensive: a CF-based
analysis such as the one described above for model fairness may
take over 30 minutes (see Section 5).

Main contributions and novelty. To this end, we present in
this paper a novel solution for optimizing counterfactual-based
analysis. We next list our main contributions and then provide
details on each of them.

e We introduce (Section 3.1) CFQL, a declarative query lan-
guage for the specification of properties of interest (con-
straints) that CFs should satisfy, before their generation.
CFQL thereby provides a uniform and generic interface
that can interact with a counterfactual generation package
of choice (referred to as a CF generator), out of the many
existing ones.

e We introduce (Section 3.2) a CFQL query evaluation algo-
rithm, namely an algorithm that translates the declarative
specification to a sequence of CF generator calls, executes
them, and stores the obtained CFs in the database. The
algorithm leverages c-tables [14] in a novel way: in the
seminal paper by Imielinski and Lipski [14], c-tables were
designed to capture incomplete information; here we use
them as means for transforming declaratively specified
constraints into boolean ones. These constraints are then
fed to a CF generator, and the obtained CFs are stored in
the database.

e A main motivation for the declarative nature of CFQL is
that it provides opportunities for under-the-hood optimiza-
tions whose goal is to minimize the number of invocations
of the CF generator. This optimization problem was never
studied before, to our knowledge, and in Section 4 we pro-
vide the first algorithm that optimizes the number of CF
generator calls. At a high level, the main idea is to con-
struct a graph whose nodes are the compiled constraints
and the edges stand for logical implications amongst them.
The graph allows to reveal opportunities for re-use: for
two constraints cy, cg, if ¢1 logically implies ¢y, then a CF
that satisfies c; is also guaranteed to satisfy cy. It is thus
sensible to first invoke the oracle with ¢; as input; the
output may potentially be useful as a fulfilment of the
CF request captured by ¢y, depending on the proximity
of retrieved CF to the instance. We allow control over
the tradeoff between the number of CF oracle calls and
the quality (in terms of distance of obtained CFs) via a
user-specified reuse threshold.

e We have conducted an extensive experimental study, that
examines the performance and usefulness of our frame-
work across multiple datasets and use cases. The exper-
imental results show that our solution indeed allows to
re-use CFs in an informed way, thereby significantly speed-
ing up CF-based analysis, while also obtaining CFs of high
quality. We compare our solution to a baseline that repeat-
edly calls the CF generator for every given instance and
constraint, as done in absence of our framework.

In our technical development, we will focus on the analysis of
Machine Learning classifiers, which in turn was the main focus
of the vast majority of research on counterfactuals (see [33]). The
conceptual contributions nevertheless apply to counterfactual-
based analysis beyond classifiers. In Section 4.4 we detail the
needed adaptations to support CF-based analysis for other Ma-
chine Learning models.

998

A. Ben Arie, D. Deutch, N. Frost, Y. Horesh, and I. Meyuhas

We next provide more details on each component of the solu-
tion.

Uniform, Declarative Interface with CFQL(Section 3.1). We in-
troduce a simple relational schema, which may store information
on models, instances and prior model outputs. Importantly, it
includes a dedicated relation that will be used to store the gen-
erated CFs. We introduce a query language called CFQL that
has an SQL-like syntax but unique semantics: CFQL is used to
define queries that specify the desired CFs of interest before CF
Generation. For instance, a CFQL query may “select” CFs that
involve altering the applicant’s salary, with respect to instances
for which the prediction was false positive. Such a query is in-
terpreted as requesting the generation of such CFs (with respect
to the instances that are actually stored in the database). These
requests are to be fulfilled by a CF generator, namely a function
that looks for CFs. The generator itself is treated as an oracle, in
the sense that it may be implemented by one of the many exist-
ing tools for this purpose. More details on the query semantics
follow.

From CFQL Queries to CF Generation via c-tables (Section 3.2).
The space of possible CFs is infinite, and it is impossible to mate-
rialize all of them and then select those in which the analyst is
interested. To address this challenge, we design a unique seman-
tics for CFQL as outlined next. CFQL queries are not interpreted
as selection criteria over existing CFs but rather as specifications
of constraints over CFs that are of interest.

For CFQL evaluation, we need to feed the specified constraints
to a CF generator, namely an algorithm that looks for CFs for
the given model and instances that satisfy the constraints. How-
ever, CF generators expect, as input, boolean constraints. This
means that the declarative specification of constraints expressed
by CFQL queries needs to be compiled into boolean expressions
before they can be passed to CF generators. We propose a novel
compilation method, giving rise to an operational semantics for
CFQL. The main observation that lies at the core of our method
is that one can leverage conditional tables (c-tables) [14] for this
purpose. Intuitively, c-tables allow to place variables in relation
cells whose values are unknown. We design variables that cor-
respond to the contents of CFs, prior to their generation. Query
evaluation over tables with such unknowns yields particular
boolean conditions associated with the query output. These are
precisely the boolean expressions that capture the constraints
expressed by the query. The expressions are then fed to a CF
Generator of choice, thereby looking for CFs that comply with
the CFQL query specification.

Efficient Evaluation via Ordering CF Generator Calls (Section 4).
The evaluation algorithm outlined so far invokes the CF generator
for every instance and constraint. This may be computationally
costly. To this end, we develop novel optimizations that reduce
the number of CF generator invocations. The idea is that a CF
generated in response to an CF generator invocation with a par-
ticular instance I and constraint C as input, may also be useful
for another constraint C’ and possibly for another instance I’, in
which case we may re-use it instead of invoking the CF generator
again. To indeed be useful for I’ and C’, the CF needs to (1) satisfy
C’ and (2) be close enough to I, with respect to an appropriate
distance metric.

To achieve the former, we design an optimization that takes
place after query evaluation yields a c-table, but before invok-
ing the CF generator. The optimization analyzes the boolean

Counterfactual-based Analysis Through Databases

expressions, looking for logical implication amongst them: the
intuition is that if we find such implication c; = c¢3, then we
are guaranteed that CFs that satisfy ¢; will also satisfy c;.

A challenge, then, is that deciding logical implication amongst
all pairs of boolean expressions is computationally costly, even
if we use a state-of-the-art SAT solver to decide each individual
implication. We design a series of optimizations and pruning
strategies that significantly reduce the computational cost.

For the latter, namely the proximity of the CF to the instance,
we incorporate a user-defined reuse threshold, above which we
refrain from re-use. To set the threshold, the analyst may look at
a sample of CFs obtained for multiple instances, and observe the
density of CFs for instances of interest). CFDB then decides on a
sequence of CF Generator invocations, executes it in order, and
stores the obtained CFs in the database.

Experimental Study (Section 5). We have implemented our so-
lutions and conducted an experimental study that examines the
effectiveness of our approach, the execution time they incur, and
the trade-off between execution time and obtained CF distances
for our optimizations. The experimental results show that our
solution is effective in accelerating CF generation if one is will-
ing to allow some deterioration in CF quality. In particular, we
replicated the experiment conducted by [30] on analyzing model
fairness by generating a pool of CFs. We show that we can reach
the same conclusions as [30], i.e. achieve CFs that are of high
enough quality to analyze fairness, significantly faster than via
direct use of the CF generators. We show that our solution is
effective in exploiting re-use: it consistently achieves a significant
reduction in execution time for a variety of CF-based analysis
goals, different Machine Learning models, and datasets.

2 PRELIMINARIES

We start by recalling (1) the notion of counterfactuals for Machine
Learning models, (2) a database schema for storing them, and
(3) the notion of c-tables [14] which will serve as a tool in our
solution.

2.1 Counterfactuals in Machine Learning

Let M be a Machine Learning model and let f3, ..., f be the model
features. An instance I is a valuation for the features, namely
a vector (xi, ..., Xp). Given an instance I as input, the model M
outputs a prediction M(I), which may e.g., be a label of accep-
t/reject. A counterfactual (CF) for M and I is an instance I’ such
that M(I") # M(I). A CF Generator is an algorithm that, when
given access to a Machine Learning model M and an instance I,
aims to generate CFs for M and I. Many different CF Generators
have been proposed, including solutions [36] that look for CFs
that minimize the L0 or L1 distance from the original instance,
solutions [26] that aim to retrieve diverse sets of CFs, solutions
that allow analysts to impose constraints on the generated CFs
in different ways [3, 9, 17, 27, 29], and others [9, 19]. See Section
6 for an overview.

Our framework treats the ML model as well as the algorithm
that generates CFs as black boxes and they may thus be arbitrarily
complex. For ease of presentation, our running example will be
shown in the context of decision trees.

Example 2.1. Figure 2 depicts two decision trees used for clas-
sifying loan applications, based on two numeric features: the
requested loan amount and the customer’s income, and a boolean

599

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

feature home capturing whether the loan requester is a home-
owner. The classification result is an accept/reject label, color-
coded in the tree as green/red tree leaves resp. Consider an in-
stance I standing for a customer with income = 80, amount = 100
and home = rent. I is classified as “reject” by both trees. For the
tree in Figure 2(a), a CF for I is an instance I’ where income and
home are kept intact and the amount is set to 90 (or less). For the
tree in Figure 2(b), CFs for I may be achieved by either modifying
income to 101 or more, or by modifying home to “own”.

2.2 A Relational Schema for Counterfactuals

We store CFs in a relational database. The schema is flexible but
must include at least the following relations (additional relations
may be introduced if needed, see Figure 1). The Instances re-
lation includes instances fed to the model, their features (which
vary based on the application domain), and optionally the ground
truth of their label (set to NULL if unavailable). The Predictions
relation has a PredictionId attribute serving as the key, and an
Instanceld attribute that is a foreign key referring to the corre-
sponding attribute in the Instances relation. Other attributes,
such as a foreign key to a Classifiers relation identifying
the classifier that performed each prediction, as well as the as-
signed Label, may be included (but are not mandatory for our
model). Additionally, the schema includes a CFs relation that
will store CFs returned by black-box generators. It has a CfId
key attribute and an attribute for each of the instance’s features.
Finally, the Prediction-CFs relation connects predictions with
CFs, including foreign keys to both relations. As we show be-
low, Predictions and CFs have unique and distinct roles in the
semantics of CFQL.

Example 2.2. Figure 1 shows an example of a Counterfactual
Database. The Instances relation includes 4 instances of loan
applicants, for which we store their income, the requested loan
amount, the homeownership status, and the ground truth (i.e.,
whether the loan application should be accepted/rejected) where
available. The Predictions relation includes predictions for each
instance, outputted by the two decision trees of Figure 2, iden-
tified by Classifierld 1 and 2. Geared towards storing CFs, the
schema of the CFs relation includes a CF identifier as well as
the instances’ attributes (Income, Amount, Home). Disregard for
now the current contents of the CFs and the Predictions-CFs
relations, which will be discussed later.

2.3 Conditional Tables

We next recall the notion of c-tables. In the following, let Vars
be a set of variables and let Const be a set of constants.

Definition 2.3 (Boolean condition). A boolean condition is de-
fined recursively: it is either (1) an expression of the form x60y or
x0c for 6 € {=#,<,<, >, >}, where x,y € Vars and ¢ € Const

or (2) an expression of the form cond1 A cond2 or cond1 V cond?2
or =cond1 where cond1 and cond2 are conditions.

We are now ready to recall a simplified variant of the notion
of c-tables ! from [14].

Definition 2.4 (conditional table). A conditional table (c-table
for short) is a pair (T, ¢), where:

e Tisatable in which each cell may include either a constant
from Const or a variable from Vars;

The simplification is that c-tables in their full generality also allow placing global
conditions over the variables, which we do not need here.

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

A. Ben Arie, D. Deutch, N. Frost, Y. Horesh, and I. Meyuhas

Predictions
Predictionld Classifierld Instanceld Label
Instances 1 1 1 rejected
Instanceld Income Amount Home GroundTruth 2 1 2 accepted
1 20 5 rent rejected 3 1 3 rejected
2 60 20 rent accepted 4 1 4 rejected
3 20 15 rent rejected 5 2 1 rejected
4 80 100 own accepted 6 2 2 rejected
7 2 3 rejected
Prediction_CFs 8 2 4 accepted
Classifiers Predictionld CfId
Classifierld ClassifierType 4 1 CFs
1 Decision Tree 6 2 Cfld Income Amount Home
2 Decision Tree 4 3 1 81 90 own
6 4 2 101 20 rent
3 80 90 own
4 101 19 rent

Figure 1: Database

income < 50

[amount <10 H amount < 20]

ok e
i

(a) Tree 1

amount < 10

[income < 60 H income < 100]

3
3
2

Oy | =
5y

(b) Tree 2

Figure 2: Decision Tree Models

e ¢ maps each tuple ¢ in T to a local condition ¢;.

C-tables form a compact representation of a set of possible
worlds, obtained by assigning values to variables and then dis-
carding all tuples ¢ for which ¢ is assigned to false. An important
property of c-tables, that will be useful in our context, is that
they are closed under query evaluation. Namely, given an SPJUD
(Select-Project-Join-Union-Difference) query and a database D
of c-tables, one may compute in polynomial time a database D’
of c-tables whose possible worlds are precisely the query results
over all possible worlds of D. Examples appear in the following
sections.

3 THE FRAMEWORK

We detail the syntax of CFQL, and introduce a first evaluation
algorithm for CFQL queries, thereby defining operational seman-
tics. Optimizations are introduced in the next section. For ease
of presentation, we will focus on binary classification, yet our
framework can be generalized to multi-class problems, as well as
to other types of ML models beyond classification (see Section
4.4).

3.1 CFQL syntax

We next introduce CFQL and illustrate it via an example. Queries
have the following syntax:

FOREACH pred in Qpeg GENERATE Qcr

® Op,eq is an SQL query used to select identifiers of pre-
dictions of interest. It may use any relation as an auxil-
iary, except for CFs and Prediction-CFs, and its output

600

SELECT P.PredictionId
FROM Instances AS I,
Predictions AS P
WHERE I.Instanceld = P.Instanceld
AND I.GroundTruth = 'accepted'’
AND P.Label ='rejected'

(a) Opred FN

SELECT C.CfId, C.Income, C.Amount, C.Home
FROM CFs AS C, Prediction_CFs AS PC,
Instances AS I
WHERE C.CfId = PC.CfId
AND PC.PredictionId = pred.PredictionId
AND I.Instanceld = pred.Instanceld
AND C.Home = I.Home AND C.Income > I.Income

(b) QCF(Home,Income)

Figure 3: Example Queries

is required to be a relation with a single column, named
PredictionId, whose contents is a subset of the identi-
fiers appearing in Predictions.PredictionId.

® Qcr is a query over the CFs relation and possibly other
relations. QcF projects only over attributes of CFs. Its se-
lection predicate is a boolean combination of terms of the
formR1.x 6 R2.y,R1.x 6 Q’ or (R1.x,R2.y,...) IN
Q’ where R1, R2 are relation names, x, y are attributes, 0 is
a comparison operator as in Def. 2.3, and Q’ is a query not
involving CFs or Prediction-CFs and having the correct
arity for its use as a sub-query according to the standard
SQL semantics. No self-joins are allowed, and in particular
in a term of the form R1.x 6 R2.y, R1 and R2 should be
distinct (a self-join that is created through multiple such
conditions is also disallowed). Qcr may not include any
other construct and is intuitively a self-join-free SPJ query
with respect to CFs, possibly with some nested queries
referring only to the other relations. Last, Qcr may use

Counterfactual-based Analysis Through Databases

the keyword pred as part of its specification. It will be
replaced, in each iteration, by a tuple from Predictions
corresponding to each of the selected identifiers.

Example 3.1. Figure 3a includes an example of a Qp,..q query.
It selects (the identifiers of) false negative predictions, namely
cases where the classifier has assigned a “rejected” label whereas
the ground truth for the classified instance is “accepted”. Figure
3b is an example of a QcFr query. Note its use of pred: for each
prediction identifier selected by Qp,..4, the Qcr query will be
evaluated with each occurrence of pred being replaced by the
corresponding tuple from Predictions. This query (called in
the sequel Qcr, Homeylnwme)) specifies interest in CFs where the
home status stays intact, and the applicant’s Income increases.
Similarly, one may introduce a different query (called in the
sequel QCF 11ome amount)) Where we replace the last row by “AND
C.Amount < LAmount”. Both queries will be shown useful in the
examples that follow.

As demonstrated, CFQL provides a novel uniform and declar-
ative interface for the specification of CFs of interest: the user
writes queries as if the CFs were already stored in the database.
We next explain how to compile this specification into a sequence
of invocations of a CF generator, prompted to retrieve the re-
quested CFs. In Section 4, the compilation process will further
be optimized to reduce the number of invocations.

3.2 Basic Evaluation Framework

Given a query Q = (Qpyeq, Qcr) and a partial CF database where
the CFs and Prediction-CFs relations are not instantiated, the
basic algorithm partially evaluates the query, as follows. It first
evaluates Qp, .4 to identify predictions that the analyst is inter-
ested in. Then, to account for the unique treatment of CFs by
CFQL (namely that it is used to specify constraints over them
prior to generation, rather than querying existing data), our al-
gorithm uses c-tables in a unique way: it starts by generating
tuples with placeholders (variables) for the relevant CFs in the
CFs table, and then evaluates QcF using the algorithm of [14],
originally designed for querying incomplete information. This al-
gorithm computes the conditions over the placed variables which
are necessary and sufficient for the CFs to quality according to
the criteria imposed by Qcr. We uniquely treat these conditions
as constraints, passing them as input to a CF generator. The
retrieved CFs are then used to replace the variables in CFs.

We next detail the computation, using the following example:

FOREACH pred in Opredpy GENERATE QCF omermeomer
Where Qpredpy a0d QCF (o me rncome) 7€ as in Figure 3.

Step 1. Evaluate Qp,.4 over D in the standard manner, and let
Pred, ..., Predy. be the selected prediction identifiers. For each
Pred;, create a fresh identifier and call it CF;. Create an instance
of Prediction-CFs including the tuples {(Pred;, CF;)} for i =
0, ..., k. Create an instance of the CFs relation which is a c-table
including the tuples {(CF;, ycr, attry» - YCF; ater,) }» Where each
YCF,attr; is a fresh variable. All tuples are associated with the
condition True.

Example 3.2. Qpred,, selects all identifiers of false negative
predictions. For the database in Figure 1, these predictions are
identified by 4 and 6. For each of these two tuples, we gener-
ate a fresh CF identifier and introduce corresponding tuples to
Prediction-CFs,i.e. (4,1) and (6, 2). For each of these two an-
ticipated CFs, we generate abstract tuples in CFs with variables

601

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

serving as placeholders for attribute values that will be deter-
mined by the CF generator. For instance, for the first CF we
have (1, y1,Incomes Y1,Amount> Y1,Home)> Where 1 is the CF identi-
fier and the variable y; 4 is a placeholder for the value of attribute
a. The condition accompanying the two tuples in the c-tables is
set to True. We follow similarly for the second CF. The resulting
relations are shown at the top of Figure 4.

Step 2. Let D’ be the database including all relations from D as
well as the CFs and Predictions-CFs relations obtained in step
1. Evaluate Q¢ over D’ using the algorithm of [14] for c-tables.

Example 3.3. QCF (Home.meome) 1S evaluated over the database
consisting of the Instances, Classifiers and Predictions re-
lations from Figure 1, and the Prediction-CFs and CFs relations
appearing in Figure 4. The result is shown in the bottom part
of Figure 4. Note that the selection criteria in Qcp (HomeIncome)
require that the home status does not change, and that the in-
come increases. For our example database, this translates into the
condition (Y1, Home = 0Wn) A (Y1,Income > 80) for the first tuple
and (Y2, Home = rent) A (Y2,Income > 60) for the second tuple.

We next show another example of a query serving as Qcr,
which will be useful in the sequel.

Example 3.4. The query OCF,;ome Amounr) TESEMbles the query
QCF(Home.income) » €cept for the last condition which is replaced
by C.Amount < I.amount. Its result resembles the result in Ex-
ample 3.3, except for the conditions that which are: (y3 gome =

own) A (y3,Amount < 100) and (y4,Hame =rent) A (y4,Amaunt <
20).

Step 3. Let T, 4 be the c-table obtained as the result of Step
2. For each tuple t; in Ty, 4, let cond; be the boolean condition
annotating it. Replace, in cond;, each variable y; ¢+ by attr.
Further retrieve the model C; and instance x; that t; refers to
by joining with Prediction-CFs, Predictions and Instances.
Invoke the counterfactual generator with C; as the model, x; as
the instance, and cond; as the constraint.

Example 3.5. Reconsider the T, 4 relation shown in Figure 4,
which consists of two tuples. The first refers to Cfld 1, which in
turn corresponds to the instance 4 and the classifier 1. We invoke
the CF generator for this input, with the condition annotating
the tuple used as a constraint. Namely, the CF generator is asked
to generate a CF with home status “own” and income greater
than 80. We repeat for the second tuple in the relation.

Step 4. Replace each variable occurring in T, 4 by the corre-
sponding value from the generated CFs.

Example 3.6. Two CFs that qualify according to the specifica-
tion in QCF 1 me.rncome) AT€ [Income=81, Amount=90, Home=own]
and [Income=101, Amount=20, Home=rent]. Indeed, these instances
satisfy the constraint and are classified as “accept” by the two
trees of Figure 2. The CFs are stored in CFs and identified by Cfld
1 and 2. The analyst may choose to store CFs yielded by multiple
CFQL queries for further processing. For example, the relation
CFs in Figure 1 stores the two CFs mentioned above, as well as
CFs yielded for OCF,;ome Amouns) from Example 3.4 (identified by
Cfld 3 and 4).

4 EFFICIENT EVALUATION

So far, we have introduced a declarative language for specifying
CF-based analysis and an evaluation algorithm that compiles
the specification into a sequence of CF generator calls. We next

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy A. Ben Arie, D. Deutch, N. Frost, Y. Horesh, and I. Meyuhas

Prediction-CFs CFs
Predictionld CfId Cfld Income Amount Home Cond
4 1 1 Yi,Income Y1,Amount Y1,Home True
6 2 2 Yo,Income Y2, Amount Y2,Home Irue

Teona: Query result over the c-tables (after steps 1 and 2)

Cfld Income Amount Home Cond
1 Y1,Income Y1,Amount Y1,Home (yl,Home =own) A (yl,Income > 80)
2 Y2,Income Y2,Amount Y2,Home (yZ,Home =rent) A (yZ,Income > 60)

Figure 4: Part of the database, and the result after steps 1 and 2.

propose optimizations that enable the re-use of CFs, thereby
allowing the reduction of the number of CF generator calls and
consequently the overall analysis time. Revisiting the evaluation
framework presented in Section 3, steps (1) and (2) thus stay
intact. The optimization takes place after step (2), where, for
a set of queries {(Qli?red’ QEF)}?ZI, we have already obtained a
database of c-tables containing conditions {C; j }, [n],jeQb, ,(D)-
For convenience, we assume that prediction identifiers are serial
and define: (1) Condition(i, j) = C; j is the condition obtained for
the i’th query and the j’th instance, and (2) Instance(i, j) = x; j
is the instance for which prediction was made. In the rest of this
section, we will assume that the model as well as the target labels
are the same across all conditions that we handle; cross-label
optimizations are deferred for future work.

4.1 Implication Graph

The main idea of the optimization is to identify implications
among the computed conditions. Intuitively, implications guaran-
tee that we can reuse an already obtained CF without re-invoking
the CF generator. Note that the conditions C; j are in fact boolean
expressions over variables that correspond to attributes of the
CFs relation. Each attribute is associated (in the schema) with an
active domain, dictating the set of values that the corresponding
variable may take. We then define implication (denoted using
“ = ”) over these boolean expressions in the standard logical
sense, accounting also for the active domain (if, e.g., the domain
of Yggome is {rent,own} then ygome # rent = YHome = OWN
and vice versa).

We then introduce an implication graph, where nodes intu-
itively correspond to tuples in the c-table yielded by steps (1) and
(2) of our evaluation framework and edges correspond to logical
implication between the conditions annotating these tuples.

Definition 4.1 (Implication graph). Given a set of CFQL queries
{(Q;’red’ Qrp)ti- anda data.base D, let {p; j };':1 be the predic-
tion identifiers selected by Q}, . and let {C; ; };’:1 be the condi-
tions annotating their respective tuples in the c-table CFs.

The implication graph G = (V, E) is a directed graph where:

V ={(,) }ie[n],je[r]
E={((i1, j1), (i, j2)) | Cir.jy = Cip)y}

Example 4.2. Consider the following 3 queries over the data-
base in Fig. 1. First, Q1 = (Qpyeq,» QCF(Home,Income))’ where the
qQuery QCF 1ome.rmcome) 15 @5 it Figure 3b, and Opyq, selects the
predictions of instances 1 and 3. Second, Q2 = (Qpred,: OCF,)-
where QcF, resembles QCF (Home.imeome) EXCEPL for the conditions

in lines 8-9. These are replaced in Qcf, by
“(C. Home # rent) OR (C.Income > I.Income)”.

QOpred, selects the prediction of instance 4. Last, O3 = (Qpred;» OCF;)>
where Qcr, again resembles QCF (Home.tneome) €XCEPL for lines 8-
9, replaced by “(C. Home = own) OR (C.Income > I.Income)”,
and Qpyg4, selects the predictions of instances 3 and 4. The fol-
lowing conditions are obtained (C; ; is obtained for the query Q;
and the prediction j):

C1,1 = (YHome = rent) A (Yrncome > 20)

C1,3 = (YHome = rent) A (Yrncome > 20)

C2,4 = (yHome * rent) \ (yIncome > 80)

C33 = (YHome = 0wWn) V (Yrncome > 20)

C34 = (YHome = 0wWn) V (YIncome > 80)

Figure 5a depicts the implication graph G = (V, E) for these three
queries. For example, ((1,1), (3,3)) € E since C1; = C33.

(2,4) (1,3)
g CE) g
(3,4) (1,1)
(a) Implication graph

([[a vl ={@ .13}

S
 (Ie31= (63}

([[e9]={24.69})

(b) Its condensation

Figure 5: Example of Implication Graphs

Naive graph generation. For two boolean expressions C; and
Co, itholds that (C; = (C3) &= (C1 A =C2) is unsatisfiable.
Hence, a naive approach for generating the implication graph is
to iterate over all condition pairs (Cj, j,, Cj,,j,) and to use a SAT
solver to test the satisfiability of C;, j, A ~Cj, j,. If this expression
is unsatisfiable, we add an edge from (iy, j1) to (iz, j2).

Atom-based graph generation. As we experimentally show be-
low, the naive graph generation algorithm does not scale. We
next propose multiple optimizations that significantly speed up
graph generation.

Algorithm 1 is an efficient atom-based solution for construct-
ing the implication graph. It starts with the initialization of two
empty maps. Then (in line 4), it iterates over all queries and their

Counterfactual-based Analysis Through Databases

Algorithm 1: Atom-based graph construction

Input :Queries Qg;en, o Qen
Predictions pj,, . .. pi,, for each query QGen
Output:Implication graph G
1 /* Preprocessing */
2 M =emptymap; // Map atomic propositions to
their conditions
3 B=emptymap; // Map variables to query and
prediction indices
4 foreachi € [n],j € [ri] do
5 C = Condition(i, j) ;

6 foreach a € atoms(C) do
7 B|variable(a)] = B[variable(a)] U {a};
8 Mla] = M[a] U{(i,)};

9 /* Graph construction */
10 G = ({(i, N}ieln)je[r) 9)s
11 eval =0 ; // Set of evaluated expression pairs
12 foreach bucket € buckets(B) do
foreach (ay, az) € bucket X bucket do
if a; = ay then
foreach (i1, j1), (iz, j2) € M[a1] X M[as]
do
if iy # iy or j1 # jo then

if ((i1, j1), (i2, j2)) € eval then

continue;

13
14
15

16
17
18
Ci,,j; = Condition(iy, j1) ;
20 Ci,,j, = Condition(iz, jz) ;
if solver(C;, j, A —Ci, j,) == unsat
then
E[G]
E[G] U {(i1, 1), (i2, j2)) }
eval = eval U {((i1, j1), (iz, j2)) };

21

22

23

24 return G

predictions. For each (query,prediction) pair, the algorithm re-
trieves its corresponding condition C in line 5, and in line 6, it
iterates over the atomic propositions of C (denoted as atoms(C)).
In lines 7 and 8 it updates both maps: B buckets each atomic
proposition a according to the variable occurring in it (denoted
by variable(a)) and M maps each atomic proposition to the set
of indices of the representing conditions containing it. Then, the
algorithm constructs an implication graph. To do so, lines 10
and 11 initialize the graph and a set of condition pairs that were
already evaluated. Lines 12 and 13 iterate over pairs of atomic
propositions that were bucketed together in B. If an implication is
found amongst these atomic propositions, the algorithm iterates
over all pairs of conditions containing them. For each pair that
has not been evaluated yet (Lines 17 - 18) the algorithm retrieves
the representing conditions in lines 19 and 20, and in line 21 it
tests for implication. If it holds, then in line 22, the algorithm
adds a corresponding edge to the graph. Once the pair evaluation
has completed, it is added to the set of evaluated pairs in line 23.
When the iteration over all atomic proposition pairs sharing a
bucket is over, the algorithm returns the graph and terminates.

603

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

Example 4.3. Recall the five conditions in Example 4.2. Con-
structing the implication graph (figure 5a) using the naive ap-
proach requires 5 - 4 = 20 calls to the SAT solver. Using Algo-
rithm 1, we e.g. observe that implication from Condition(1, 1) to
Condition(2, 4) does not need to be checked. In total, we make
only 16 calls to the SAT solver.

4.2 Equivalence de-duplication

Our second optimization identifies and merges nodes in the im-
plication graph that capture equivalent conditions. This allows
to avoid redundant CF generator invocations. We say that two
conditions Cj, j,, Ci,,j, are equivalent, denoted Cj, j, ~ Cj, j,, if
Ci,,jy = GCi,j, and Cy, j, = Cy, j,. This yields equivalence

classes: [(i, /)] < {(ir, j1) | Ci,j ~ Cij}

Then, we introduce a condensation of the implication graph.
This is a graph G’ = (V’, E’) where nodes are associated with
equivalence classes, and there is an edge from v} € V' to o, € V’
if Gj,,j; = Ci,j, for some (i, j1), (i, j2) in the equivalence
classes of v] and v}, respectively (this is uniquely defined due to
the equivalence relation).

Some conditions are equivalent simply because they are iden-
tical; these may be identified via hashing and then merged, even
before generating the implication graph. We refer to this as pre-
construction de-duplication.

Example 4.4. Recall the conditions from Example 4.2. By hash-
ing the conditions we may identify that Cy,; and Cy 3 are identical,
and thus their corresponding nodes can be merged ((1, 1) and
(1,3)). Thus, we remain with 4 (query, prediction) pairs. Combin-
ing pre-construction deduplication with naive graph generation
yields 4 - 3 = 12 calls to the SAT solver; combining it with the
optimized atom-based approach (Algorithm 1) yields 10 calls to
the SAT solver.

After the implication graph is constructed, we are able to
identify further intricate equivalences, namely conditions that
are not identical as strings but are logically equivalent. These are
strongly connected components in the graph.

Example 4.5. Continuing our running example, we further
identify, after the graph is constructed, that (2,4) and (3,4)
form a strongly connected component in the graph (Home is a
binary feature, thus yrome # rent < ygome = own and thus
C2,4 & (3 4). Figure 5b shows the condensation of G, where
each equivalence class is contracted to a single node. For example,
([[(2, 4)]], [[(3, S)H) € E' since C24 = Cszand C34 = C33.

4.3 Batch Evaluation

We will next leverage (the condensation of) the implication graph
to sequentially invoke the CF generator in a way that facilitates
reuse. In what follows, a valid CF for a given condition C is a
CF that satisfies C and leads to the desired label (recall that for
this optimization, we assume the label to be the same across all
(query, prediction) pairs).

Algorithm 2 balances between the desiderata of re-use and
short distance, as follows. It is given the condensed implication
graph and a re-use threshold. Intuitively, if a CF was generated
for an instance I and its distance (for a given metric) from some
I’ is below the threshold, we can re-use it for I’. The algorithm
iterates (line 3) over the equivalence classes according to the topo-
logical sort defined by G’. For each equivalence class, it iterates
over all (query, prediction) pairs, retrieving for each pair its cor-
responding condition C (line 5) and original instance x (line 6). If

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

there exists a qualifying CF in the pool whose distance is smaller
than the threshold (lines 8, 11 and 12), then we use it, otherwise
we invoke the CF generator to obtain valid CFs (lines 9 and 13).
To allow further control over the quality/execution time tradeoff
in case of very large pools, we also allow the option of restricting
the search to a randomly selected subset (of configurable size)
of the pool. In lines 18 - 20 we propagate the computed CFs to
neighboring nodes, and in line 21 the obtained CFs are returned.

Complexity Analysis. The condensation graph is builtin O(|V |+
|E|); then, the algorithm makes O(|V|?) calls to the distance com-
putation function d.

Algorithm 2: Batch CFs Generation

Input :Condensed implication graph G’, Distance
metric d, Threshold t, CF Generator Gen
Output: CF for each (query, prediction) pair in G’
// Stores all valid CFs
// Stores closest CFs
3 foreach v € topological_sort(G’) do

1 CFs = empty map ;
2 Ans = empty map ;

4 foreach (i, j) € v do

5 Ci,j = Condition(i, j) ;

6 xi,j = Instance(i, j) ;

7 /* Collect valid CFs */
8 if CFs[v].size = 0 then

9 ‘ CFs[v] = Gen(x; j,Ci j);

10 else

1 cf = arg min, fecrsfo] d(xij,cf);

12 if d(x;j,cf) >t then

13 ‘ CFs[v] = CFs[v] U Gen(xi,j,Ci j);

14 foreach (i, j) € v do

15 /* Select closest CF */
16 if CFs[v].size > 0 then

17 ‘ Ans[(i, j)] = argmin, rc o[o] d(xij,cf);
18 /* Update valid CFs */
19 foreach u s.t. (v,u) € G’ do

20 ‘ CFs|u] = CFs[u] U CFs[ov] ;

21 return Ans;

Example 4.6. Consider the condensation in Figure 5b. The
order [[(1, D], [(2,4)], [(3,3)]] is a valid topological order. Al-
gorithm 2 loops over the nodes in this order. It first iterates over
the equivalence class of [(1,1)], i.e., [(1, 1), (1,3)]. It calls the CF
generator for Instance(1, 1) with the condition Cy,; and obtains
a CF (denote it as cfi). The algorithm updates the valid CFs of its
equivalence class, i.e., CFs[[(1,1)]] = {cfi}. If ¢fi qualifies for
(1,3) in terms of distance, then we re-use it instead of invoking
the CF generator for Instance(1, 3) with the condition ¢y 3. Next,
cfi will be propagated to the neighbors of [(1,1)], i.e. [(3,3)]-
The algorithm proceeds to treat the equivalence classes [(2,4)]
and [(3,3)].

4.4 Going Beyond Classifiers

Our technical development and examples have so far focused on
counterfactual-based analysis of classifiers. While indeed clas-
sifiers have been the main focus of attention in the context of
CFs, some works have studied CFs for other models, including
regression [32]. For classification, CFs are perturbations to the
instance that lead to a change of label. A generalized notion of

604

A. Ben Arie, D. Deutch, N. Frost, Y. Horesh, and I. Meyuhas

CFs can be defined as perturbations that lead to a change in the
model output, which may be numeric, e.g. for regression. In the
latter case, one may further introduce a threshold and aim for CFs
that lead to a change whose magnitude is above the threshold.
Our solution may be easily integrated with a CF generator for
such models as well, as follows.

Note that the database schema (see Section 2.2 and the example
in Figure 1) we have introduced for CFs is flexible, and the only
relations that play a unique role in CFQL evaluation are CFs and
Prediction-CFs. Other relations can be removed/replaced by
others without changing the semantics (naturally, queries should
be designed by the analyst according to the actual schema). For in-
stance, for regression, the analyst may replace the Classifiers
relation from Figure 1 by a Models relation, whose attributes
are named accordingly; in the Predictions relation, they may
replace the label attribute by a result attribute whose type is
numeric.

In terms of our algorithmic solution, there are multiple ways
in which it could be applied to regression models. It may be
used as is, in which case constraints are formulated in CFQL
and other desiderata such as the magnitude of change are coded
as part of the CF generator. All of our optimizations still apply.
Alternatively, if a CF generator for regressors further exposes
an interface through which the magnitude of change could be
set, then the framework can easily allow analysts to control it
through CFQL as well, as follows. We may introduce a dedicated
"result" attribute to CFs, that would capture the numeric model
result over a CF instance; CFQL queries can then refer to this
attribute, expressing e.g. the distance between the result of the
model over the instance (stored in the Instance relation).

5 EXPERIMENTAL STUDY

We next present an experimental study, examining the usability
and efficiency of our solutions. The source code is available in
[10].

5.1 Experimental Setup

To our knowledge, there is no standard benchmark for CF analy-
sis. We have thus created such a benchmark, based on datasets
typically used as benchmarks in Machine Learning research.

Datasets: We have used (1) the Bank Marketing dataset of
[25] containing 45K instances of clients and 16 features. The
task is to predict whether the client will subscribe. (2) The Adult
Income dataset from the UCI Machine Learning repository [5],
pre-processed as in [26] and [13] to yield 26K instances and 8
features. The task is to predict whether the income of a given
individual exceeds $50K. (3) The COMPAS dataset [1] contains
records about defendants and their estimated likelihood of re-
offending. This dataset is commonly used in context of fairness
analysis. We preprocess the dataset in the same way as done in
previous works [1, 11, 26]. It includes five key features: age, gen-
der, race, prior offense count, and the degree of criminal charge,
pertaining to bail applicants. The objective is to decide which of
the applicants are likely to re-offense within the next two years.
Each dataset is randomly divided to train (70%) and test (30%)
sets. We use a target encoding for the categorical columns.

Models: We used (1) Logistic Regression with L2 regular-
ization; (2) A Random Forest with 10 trees and a maximal depth
of 5 and (3) A Neural Network with the architecture used in [26],
including two hidden layers of 64 neurons each and using ReLU

Counterfactual-based Analysis Through Databases

as the activation function. All models achieved 88-90%, 81-83%,
and 64-68% accuracy for the Bank Marketing, Adult Income, and
COMPAS datasets respectively.

CF Generators: We have used the following implementations
as CF generators: (1) Cec, the implementation described in [3];
its input is a distance function to optimize. We have used the
“tabular distance” proposed in [30] (Section 3.1 there); (2) Growing
Spheres implemented in [34] and described in [17]. We adapted
the code (originally designed for numeric data) to fit tabular
formats by introducing dedicated encoders, and added support
for constraints through a component that filters out all (sampled)
points that do not satisfy them. Other parameters of the generator
need to be set. As default, we have set the initial sphere radius,
reduction factor and sample size to 2, 0.5 and 200 respectively; (3)
DiCE (Diverse Explanations): the CF generator proposed in [26],
aims to generate a diverse set of CFs. The implementation of DiCE
only supports constraints in the form of a conjunction of atomic
conditions, and so we have only used it where applicable. We
have used their Random mode, setting the number of requested
CFs to 3.

CFQL Queries: We have designed CFQL queries of various fla-
vors, representing multiple usage scenarios. For lack of space, the
formal queries are given in [10] and we only informally describe
them in Table 1. For Qcfr we write queries of 10 structures, with
two different instantiations of each of them, corresponding to
loosely and densely interconnected graphs. The loosely
(densely) interconnected graph includes 13 (resp. 22) per-
cent of all potential edges. For Qp, .4, We write 4 queries that
select True Positives/Negatives and False Positives/Negatives.

Query Description

01 Impose no constraints

Q2 Modify at least one feature in a given set

Q3 Modify all features in a given set

Q4 Keep intact at least one feature from a given set

Q5 Do not modify any feature from a given set

06 Either keep a given feature f; intact, or modify both f;
and f;

Q7 Either increase fi or keep f, intact

08 Modify f; in some way; modify f, to one of its k smallest
values in the dataset

09 Modify f;i to be larger than the average observed value
and smaller than half of the maximum value

010 Modify fi to the least frequent observed value in the
dataset

Table 1: Queries Benchmark

Baselines: We compare our solution to a baseline that invokes
a CF generator (the same one used as Oracle for CFQL in the
experiment) for every instance, without re-use of resulting CFs.
This allows us to examine the effect of our optimizations that
facilitate CF re-use on the quality of obtained CFs and on the
number of oracle invocations and overall execution time. We also
compare our optimized generation of the implication graph to
approaches that do not incorporate some or all of our proposed
optimizations.

Implementation and Measurements: We have implemented our
optimizations in Python 3.8, with z3 as a SAT solver engine and
SQLite3 as the database. To our knowledge, there is no public

605

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

general-purpose implementation of c-tables; this is orthogonal
to our effort, and we have thus manually crafted the c-tables
corresponding to our queries. The computational challenge here
stems from the hardness of CF generation, and by contrast, the
databases that we examine are very small. We therefore only
measure execution times for the optimizations in Section 4 and
for CF generation (with and without the optimizations). The
time incurred by the basic evaluation steps from Section 3.2
(not included in our experiments) is expected to be negligible in
comparison. We also measure the tradeoff between CF quality
and the number of CF Generator invocations (the bottleneck of a
CF-based analysis). All experiments were run on an ASUS laptop
with 8GB of RAM and an Intel(R) Core(TM) i5 CPU 2.5Ghz.

5.2 Usability

We start with a discussion on the usability of the approach: do
the engines succeed in generating qualifying CFs? How much
time does the CF generation take?

Random Forest Random Forest

5]
2
5]
s

g g
3 7 ™
= &2
& &
w Bl w 50
I n
@ w
9 5 [
= =
w (%]
0 0
Logistic Regression Logistic Regression
— 100 — 100
£ £
@ a
2 &z
m m
[:4 -4
w w
o in
@ [
9 5 v s
= =
w (%]
0 0
Neural Network Neural Network
— 100 — 100
& g
@ 75 w 75
2 &z
& &
w 50 W 50
I in
@ [
-]]
= =
(%3] 5]
0 0
a1 Qz-Q3 ®-Q10 oL Qz-Q3 -010
- CeC s Growing Spheres . DICE - CeC = Growing Spheres . DiCE

(a) COMPAS dataset (b) Bank Marketing dataset

Figure 6: CF generation success rate

Figures 6 and 7 show the success rate and the distribution of
execution times (in log scale), for 3 groups of queries, and for
the COMPAS and Bank datasets (similar trends are observed for
the Adult dataset; results are omitted for lack of space). Queries
are grouped according to how constraining they are: (1) a query
imposing no constraints (Q1), (2) queries that only impose dise-
quality constraints over features (Q2 and Q3) and (3) queries that
impose at least one equality/range constraint (Q4-Q10). Since the
second group includes types of constraints that DiCE does not
support, the Figures do not include numbers for DiCE and this
group. In this experiment, we run the basic evaluation framework
(Section 3); the effect of optimizations is extensively investigated
in the subsequent experiments.

All algorithms exhibit a decline in success rates and increased
execution times, as the queries become more complex. A par-
ticular performance drop is noticed for Q4-Q10 in context of
Neural Networks. This drop is more significant (and the overall
average success rate is lower) in the context of the Bank dataset
which has more categorical features rendering constraints that
are more difficult to satisfy. The CeC algorithm achieves good

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

Random Forest Random Forest

plg
w0 '
+
g1 I 4 W i
£ c
- &
& ..I._ 2 8 1w ‘ '
. +
1072
Logistic Regression Logistic Regression
102 10°
v 10! I
g IL $
S
o
i 100 i i i é 3w .
wiil * LY
107! 4
Neural Network Neural Network
107 plog
5w LT
5 5
g §
107!
—— o= = =
o Q2-03 04-010 oL 2-Q3 4-Q10
B CeC @ Growing Spheres @ DiCE B CeC mmm Growing Spheres @l DiCE

(a) COMPAS dataset (b) Bank Marketing dataset

Figure 7: CF generation execution time

performance for Random Forest and Logistic Regression, but fails
more often (and is relatively slow when it succeeds) for Neural
Networks. This may be attributed to the approach implemented
in CeC, aiming to differentiate the gradients of instances and
subsequently project them onto feasible instances with valid en-
codings; this approach is more challenging for Neural Networks
than for Random Forests.

The main conclusion that we draw from this experiment is that
in the presence of constraints, CF generation may be quite costly
and/or fail, calling for optimizations across multiple invocations.

5.3 Use Case: Accelerating Fairness
Computation

We use our framework to reproduce and extend the fairness
experiment of [30]. The authors of [30] partitioned the instances
based on their values in a pre-specified feature set (e.g. race and
gender). The burden of an instance is then defined as the (tabular)
distance from its closest counterfactual. Intuitively, the burden
reflects the magnitude of needed change for the individual. The
burden of a group is the average burden over all its instances.
Intuitively, if the burden for a particular group is significantly
larger than for another, then it may indicate the unfairness of
the classifier with respect to this group.

To cast this experiment in our framework, we formulate CFQL
queries to compute the burden with respect to the two attributes
of race and gender and with respect to instances with unfavorable
outcomes, from the UCI Adult dataset. The queries (whose formal
form is deferred to [10] for lack of space) sample 503 instances
from each group (503 is the size of the smallest group) to account
for data imbalance, and use the Tabular distance function [30],
restricting the search to randomly chosen 100 CFs from the pool
for each instance. Our queries further ask for CFs that do not
change the race and gender attributes.

Optimizing the analysis. Figure 8 compares the execution time
and analysis quality of our solution, to the baseline approach
of directly computing the CFs for all instances used for burden
estimation (via invocations of the CeC CF generator). Note that
since CF generators are not guaranteed to find the closest CF
for a given instance (this is an NP-hard problem, see e.g. [3]),

606

A. Ben Arie, D. Deutch, N. Frost, Y. Horesh, and I. Meyuhas

x

Group

— (Female, Other)
(Female, White)

— (Male, Other)
— (Male, White)

Type
® ours
X Baseline

1 2 3 9 1 2 3 4
Reuse Threshold (Tabular) Reuse Threshold (Tabular)

(a) Execution time (b) Burden upper bound
Figure 8: Burden calculation time and obtained burden val-
ues for the Adult Income dataset and two sensitive features
Gender and Race, using CeC as the CF generator

loosely interconnected densely interconnected

1%
g g

Minutes
w
[=]

_ -
—— ;t_++4

100 200 300 400 500
#Expressions

- — &
pl—F——8—%—>

0 100 200 300 400 500 0
#Expressions

® Naive Baseline
Atom-based Algorithm

@ Naive Baseline+pre-deduplication
@ Our fully optimized version

Figure 9: Implication graph construction time for varying
number of expressions

the burden computed in the analysis (via our framework as well
as via [30]) is in fact an upper bound for the actual burden. Our
main motivation for CF reuse was reducing the number of CF
Generator invocations. Yet, the hardness of finding optimal CFs
means that CF reuse also has the potential of improving CF
quality: a CF computed for some instance I may in fact be even
closer to I’ than the CF computed for I’ itself.

Figure 8(a) shows the execution time of the baseline (approx.
25 minutes) compared to the execution time of our solution,
for different values of the reuse threshold. Recall that the reuse
threshold allows to control the tradeoff between execution time
and obtained CF quality (see below an explanation for how to
set the threshold.) Note that for a threshold value of 2 or more,
the execution time using our framework is significantly faster
than the baseline. In terms of quality, Figure 8(b) shows the
computed burden for our approach (for different reuse thresholds)
and the baseline. Recall that the computed burden value serves
as an upper bound to the actual burden, and here we observe
that for threshold value of 1, the upper bounds computed by
our solution for every group are even better than the upper
bounds computed by the baseline; when the threshold is set to 2
the bounds are similar to those computed by the baseline. The
relative order of groups is further preserved, allowing to draw
the same conclusions with respect to fairness, namely that the
burden for the class (female, other) is the highest among the
classes. Combining the experimental results, we conclude that
for a reuse threshold of 1, we achieve results of better quality
than the baseline, with similar execution time; for a threshold of
2 we improve the execution time and achieve similar quality; and

Counterfactual-based Analysis Through Databases

for a threshold of 3 or 4 we further improve in terms of execution
time, albeit with some degradation in the analysis quality.

Choosing the threshold. We have observed in hindsight that
a threshold of 2 is a good choice. We will next illustrate how
the threshold for CF re-use can be determined in advance. In
our use case, we sample 100 data points (20% of the data points)
from each combination of sensitive attributes. We then search
for the closest data point with a favorable label that satisfies the
constraints. The average distance from the closest data point
thereby obtained for each group can serve as an upper bound
for the true burden, for the sampled predictions. These distances
yield an estimation of the proximity of available CFs which can
guide the choice of threshold. Here, we obtain average distances
of 1.66-2.24 for the different groups, implying that a reasonable
choice for the threshold is 2.

5.4 Performance and Effect of Optimizations

We now study the performance and effect of our optimizations
presented in Section 4. We use the full pool of available CFs for
search. For lack of space, we show results for the Bank Marketing
dataset, the Random Forest model, the CeC algorithm, and False
Negative predictions. Some of the graphs are also shown for
the COMPAS dataset, while others (exhibiting similar trends to
another graph that is presented) are deferred to [10] for lack
of space. Throughout the analysis, we distinguish between the
loosely and densely interconnected instantiations of queries (see
Section 5.1). In all plots, except for that of the implication graph
construction, we compare against the baseline of invoking the
CF generator (CeC) to find CFs for each instance, without re-use.
The implication graph construction has no counterparts in prior
work (to our knowledge), and so we compare to variants that
do not include (subsets of) our optimizations, to examine their
effect.

Implication Graph Construction. Figure 9 shows the construc-
tion time of the implication graph, given the boolean conditions
from the corresponding c-tables, using the different algorithms
presented above. The naive baseline that checks implications for
all pairs of expressions requires over an hour for 500 expressions.
In contrast, our optimizations reduce the graph generation time
to 1 minute for the loosely connected graph and 2.5 minutes for
the densely interconnected graph.

loosely interconnected

densely interconnected

#CF Generator Calls

1 3 5 7 9 1 13 1 3 5 7 11 13
Reuse Thresheld (LO) Reuse Threshold (LO)

#Expressions
—— 300

Type
X Baseline

— 100 200 —— 400 500 ® OCurs

Figure 10: Number of CF Generator calls

CF Generator calls. Figure 10 compares the number of calls to
the CF Generator using the batch evaluation algorithm (Algo-
rithm 2) across multiple L0 reuse thresholds.

607

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

loosely interconnected

densely interconnected

Minutes

1 3 5 7 9 113 1 3 5 7 9 1
Reuse Threshold (LO) Reuse Threshold (LO)

#Expressions Type
— 300 X Baseline

— 100 200 — 400 500 ® Ours

Figure 11: CF generation time

loosely interconnected densely interconnected

Average LO
5] w = v o ~ @

Xe ’ X
1 3 5 7 9 11 13 1 3 5 7 9 11 13
Reuse Threshold (LO) Reuse Threshold (L0O)

#Expressions Type
—— 300 X Baseline

— 100 200 — 400 500 ® Ours

Figure 12: CF Quality (batch evaluation algorithm)

7 X #Expressions #Expressions
100 400 1.5 100 400
6 200 500§ 200 500 /A
300 /
w5 . Type a2l 300
] @ Ours E Type
‘g‘ 4 X Baseline w13 ® Ours
= o ™ X Baseline
=3 [N§ ® g
- . T~ L > 1.2
2 . A e, S .
-—
1 LR

1 2 3 1 2 3
Reuse Threshold (Tabular) Reuse Threshold (Tabular)

(a) CF generation time (b) CF Quality
Figure 13: CF generation time and obtained distance (tabu-
lar) for the COMPAS Dataset

The baseline invokes the CF generator for every instance, and
thus its number of invocations equals the number of expressions.
Our framework allows to significantly reduce this number by
increasing the threshold (see the discussion above on use cases,
for how the threshold may be set in practice). For instance, when
the threshold is set to 11, we reduce the number of CF genera-
tor calls from 500 to 180 for the loosely connected graph and to
44 for the densely interconnected graph. If we are interested in
CFs of better quality (see below for the observed effect of the
threshold on the CFs quality), we can , e.g., set the threshold to 7
and further reduce the number of CF generator calls from 500 to
365 for the loosely connected settings and to 244 for the densely
interconnected graph. The reduction in the number of CF Gen-
erator calls is reflected by a similar reduction in the overall CF
generation time (see Figure 11): for example, for 500 expressions
and the densely interconnected graph, we reduce the generation
time from 11 minutes to 5 minutes (to which one should add 2.5
minutes of constructing the implication graph). If we allow a

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

threshold of 11, then the CF generation time is down to around
1 minute. For the loosely interconnected graph, the gain is sig-
nificant but less so. For example, we can reduce the generation
time from 11 minutes to a total of 9 (5.5) minutes by setting the
threshold to 7 (11 resp.).

CF Quality. Figure 12 shows the obtained average distance
between the CFs and their corresponding instance, for different
thresholds. Observe that the CFs obtained in practice are often
significantly closer to the original instance than the threshold
allows. Up to a threshold of 5, the average distance is very similar
to that of the baseline that does not apply reuse, and then it
grows. In both settings, there is a very small difference in the
average obtained L0 for different expression numbers. For 500
expressions, the L0 metric, and a threshold of 7, we obtain an
average distance of approximately 2.5 for both graphs. For a
threshold of 11, we obtain an average distance of approximately
6 (7.2) for the loosely (densely) interconnected graph.

Results for the COMPAS Dataset. Figure 13 presents the CF
generation time and obtained CF quality, again as functions of
the reuse threshold, for the COMPAS dataset. The dataset has less
features than the Bank dataset, and so only reuse thresholds of up
to 3 are of interest. The results reaffirm the conclusions we have
derived above on the effectiveness of optimizations: we obtain
faster execution times with a moderate decrease in quality.

6 RELATED WORK

Our work is the first, to our knowledge, to propose a generic
optimization technique for counterfactual-based analysis that
spans across multiple instances and constraints. In contrast, pre-
vious work has mostly focused on algorithms for finding CFs.
These may be integrated into our framework as CF generators,
and benefit from our optimizations. Other works have focused
on efficient data structures and representations for the CFs them-
selves; these are orthogonal to our efforts, and potentially may
be combined with our solution. We next provide details on some
of these works.

Approaches and Algorithms for finding CFs. CFs, which have
been discussed in fields other than ML for decades [18], have
been shown to be intuitive for comprehension by humans [4] and
useful as explanations [6]. Hundreds of different approaches have
been proposed to generate CFs that explain ML predictions (see
[11, 15, 35] for surveys). For a given prediction, different types of
CFs with different merits are of interest. [36] aims at generating
minimal-distance CFs, i.e., minimal changes to the input instance
that lead to a modified prediction. DiCE [26] generates diverse
CF sets, i.e., CFs involving perturbations to different features.
Intuitively, diversification leads to more insights and a better
chance of finding a useful, actionable recourse. The work of [21]
uses a modified variational auto-encoder tuned to optimize for
the feasibility of CFs. The work of [19] uses class prototypes,
that guide CF generation towards the average encoding of the
opposite class via an additional component introduced in the loss
function. FACE [27] employs a graph-based approach, looking
for feasible CFs, intuitively meaning that they are achievable
via actions that “make sense". MACE [37] is a model-agnostic
RL-based method for finding counterfactuals. There further exist
many model-specific algorithms, leveraging characteristics of
the model type to improve generation speed or quality [2, 31].
These and other solutions focus on counterfactual generation for
a given instance. In contrast, in this work we focus on facilitating

608

A. Ben Arie, D. Deutch, N. Frost, Y. Horesh, and I. Meyuhas

and optimizing CF-based analysis that involves looking for CFs
for multiple instances. These works are thus complementary to
our framework and optimizations, in the sense that they may be
integrated into our framework as CF Generator oracles.

Relational Frameworks for Counterfactuals. In a recent work
[29], the authors propose a relational framework called GeCo that
supports generating, storing and analyzing CFs for ML models.
They also allow the specification of constraints using a dedicated
language. Unlike our framework, GeCo focuses on data structures
that allow to optimize CF generation, storage and analysis for
every given instance (and constraints, where available), whereas
our focus is on optimization across instances and constraints, to
avoid re-generation of CFs and to allow for their re-use. We thus
view the work on GeCo as complementary to ours, and it may be
integrated with our framework in two possible ways: (1) using
GeCo as a black-box CF generator in our framework and (2) using
the efficient representation of CFs in GeCo as our underlying data
model. Another relational framework [7] focuses on the use of
CFs for actionable recommendations for individuals. In contrast,
our work focuses on leveraging CFs for general insights on the
model, often involving multiple CFs generated over multiple
instances. Last, we note that in the relational context, CFs have
also been studied as a means of explaining query results [22, 23].
This is orthogonal to our work, where the CFs are defined with
respect to ML predictions. A preliminary version of CFDB, that
did not include optimizations, was demonstrated in a conference
[24].

Other approaches for ML model analysis. Different approaches
for analyzing and explaining ML models and their predictions,
beyond counterfactuals, have been proposed. See e.g. [8, 12]
for surveys. Notably, model agnostic attribution-based feature
importance tools such as [20, 28] assign a score to the model
features according to their contribution to the prediction. These
are complementary to the CF approach (see e.g. [16]).

7 CONCLUSIONS

We have presented a novel relational framework for managing
counterfactual explanations for Machine Learning model predic-
tions. Analysts using the framework write queries that specify
CFs of interest, which are compiled to an optimized sequence
of invocations of black-box Counterfactual Generators. We have
demonstrated the usefulness of the solution for multiple analysis
tasks, including the evaluation of model fairness based on the
properties of its CFs. Our framework is generic, allowing integra-
tion with any CF generator which in turn may be applied to any
model. Given the significant interest in CF generation in the ML
community, new solutions will likely be developed; these may
be easily integrated in our framework.

Acknowledgments. This research has been partially funded
by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant
agreement No. 804302) and was (partially) supported by the Intuit
University Collaboration Program grant.

Counterfactual-based Analysis Through Databases

REFERENCES

(1]

=

&

[9

=

[10]
[11]

[12

[13]

[14

[15]

(16

[17]

[18

[19

[20

[21

[22

[23]

[24

[25

[26]

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine
bias: There’s software used across the country to predict future criminals. And
it’s biased against blacks. ProPublica (May 2016). www.propublica.org/article/
machine-bias-risk-assessments- in- criminal- sentencing

André Artelt and Barbara Hammer. 2019. On the computation of counterfac-
tual explanations — A survey. https://doi.org/10.48550/ARXIV.1911.07749
Daniel Deutch and Nave Frost. 2019. Constraints-Based Explanations of
Classifications. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). 530-541. https://doi.org/10.1109/ICDE.2019.00054

Jonathan Dodge, Q Vera Liao, Yunfeng Zhang, Rachel KE Bellamy, and Casey
Dugan. 2019. Explaining models: an empirical study of how explanations
impact fairness judgment. In Proceedings of the 24th international conference
on intelligent user interfaces. 275-285.

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive ics.uci.edu/ml

Carlos Fernandez, Foster J. Provost, and Xintian Han. 2020. Explaining Data-
Driven Decisions made by Al Systems: The Counterfactual Approach. CoRR
abs/2001.07417 (2020). arXiv:2001.07417 https://arxiv.org/abs/2001.07417
Nave Frost, Naama Boer, Daniel Deutch, and Tova Milo. 2020. Personal Insights
for Altering Decisions of Tree-based Ensembles over Time. Proc. VLDB Endow.
13, 6 (2020), 798-811.

Krishna Gade, Sahin Geyik, Krishnaram Kenthapadi, Varun Mithal, and Ankur
Taly. 2020. Explainable Al in Industry: Practical Challenges and Lessons
Learned. In Companion Proceedings of the Web Conference 2020 (Taipei, Taiwan)
(WWW °20). Association for Computing Machinery, New York, NY, USA,
303-304. https://doi.org/10.1145/3366424.3383110

Sainyam Galhotra, Romila Pradhan, and Babak Salimi. 2021. Explaining
Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD °21). Association for Computing Machinery, New York,
NY, USA, 577-590. https://doi.org/10.1145/3448016.3458455

Project github. 2023. https://github.com/idanme45/CFDB.

Riccardo Guidotti. 2022. Counterfactual explanations and how to find them:
literature review and benchmarking. Data Min. Knowl. Disc. (2022).
Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. 2018. A survey of methods for explaining
black box models. ACM computing surveys (CSUR) 51, 5 (2018), 1-42.

Zhu Haojun. 2016. Predicting Earning Potential using the Adult Dataset.
https://rpubs.com/H_Zhu/235617.

Tomasz Imielinski and Witold Lipski. 1984. Incomplete Information in Rela-
tional Databases. J. ACM 31, 4 (sep 1984), 761-791. https://doi.org/10.1145/
1634.1886

Mark T Keane, Eoin M Kenny, Eoin Delaney, and Barry Smyth. 2021. If Only
We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in
the Evaluation of Counterfactual XAI Techniques.

Ramaravind Kommiya Mothilal, Divyat Mahajan, Chenhao Tan, and Amit
Sharma. 2021. Towards Unifying Feature Attribution and Counterfactual
Explanations: Different Means to the Same End. Proceedings of the 2021
AAAI/ACM Conference on AL Ethics, and Society (Jul 2021). https://doi.org/10.
1145/3461702.3462597

Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and
Marcin Detyniecki. 2018. Comparison-Based Inverse Classification for Inter-
pretability in Machine Learning. In Information Processing and Management
of Uncertainty in Knowledge-Based Systems. Theory and Foundations, Jests
Medina, Manuel Ojeda-Aciego, José Luis Verdegay, David A. Pelta, Inma P.
Cabrera, Bernadette Bouchon-Meunier, and Ronald R. Yager (Eds.). Springer
International Publishing, Cham, 100-111.

David Lewis. 1973. Counterfactuals and comparative possibility. In Ifs.
Springer, 57-85.

Arnaud Van Looveren and Janis Klaise. 2021. Interpretable Counterfactual
Explanations Guided by Prototypes. In ECML PKDD (Lecture Notes in Computer
Science, Vol. 12976). Springer, 650-665.

Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In NIPS. 4768-4777.

Divyat Mahajan, Chenhao Tan, and Amit Sharma. 2019. Preserving Causal
Constraints in Counterfactual Explanations for Machine Learning Classifiers.
CoRR abs/1912.03277 (2019). arXiv:1912.03277 http://arxiv.org/abs/1912.03277
Alexandra Meliou, Wolfgang Gatterbauer, Katherine F Moore, and Dan Suciu.
2010. The complexity of causality and responsibility for query answers and
non-answers. arXiv preprint arXiv:1009.2021 (2010).

Peter Menzies and Helen Beebee. 2001. Counterfactual theories of causation.
(2001).

Idan Meyuhas, Aviv Ben Arie, Yair Horesh, and Daniel Deutch. 2022. CFDB:
Machine Learning Model Analysis via Databases of CounterFactuals. In Pro-
ceedings of the 2022 International Conference on Management of Data (Philadel-
phia, PA, USA) (SIGMOD °22). Association for Computing Machinery, New
York, NY, USA, 2401-2404. https://doi.org/10.1145/3514221.3520162

Sérgio Moro, Paulo Cortez, and Paulo Rita. 2014. A data-driven approach to
predict the success of bank telemarketing. Decision Support Systems 62 (2014),
22-31. https://doi.org/10.1016/j.dss.2014.03.001

Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining
Machine Learning Classifiers through Diverse Counterfactual Explanations. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency

609

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]
[35]

[36]

(371

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

(FAT* °20). New York, NY, USA, 607-617.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter
Flach. 2020. FACE: Feasible and actionable counterfactual explanations. In
Proceedings of the AAAI/ACM Conference on Al Ethics, and Society. 344-350.
Marco Ttlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should
I Trust You?": Explaining the Predictions of Any Classifier. In KDD, Balaji
Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou
Shen, and Rajeev Rastogi (Eds.). ACM, 1135-1144.

Maximilian Schleich, Zixuan Geng, Yihong Zhang, and Dan Suciu. 2021. GeCo:
Quality Counterfactual Explanations in Real Time. Proc. VLDB Endow. 14, 9
(2021), 1681-1693.

Shubham Sharma, Jette Henderson, and Joydeep Ghosh. 2020. CERTIFAL:
A Common Framework to Provide Explanations and Analyse the Fairness and
Robustness of Black-Box Models. Association for Computing Machinery, New
York, NY, USA, 166-172. https://doi.org/10.1145/3375627.3375812

Kacper Sokol and Peter Flach. 2019. Desiderata for Interpretability: Explaining
Decision Tree Predictions with Counterfactuals. Proceedings of the AAAI
Conference on Artificial Intelligence 33, 01 (Jul. 2019), 10035-10036. https:
//doi.org/10.1609/aaai.v33i01.330110035

Thomas Spooner, Danial Dervovic, Jason Long, Jon Shepard, Jiahao Chen,
and Daniele Magazzeni. 2021. Counterfactual Explanations for Arbitrary
Regression Models. arXiv:2106.15212 [cs.LG]

Ilia Stepin, Jose M. Alonso, Alejandro Catala, and Martin Pereira-Farina. 2021.
A Survey of Contrastive and Counterfactual Explanation Generation Methods
for Explainable Artificial Intelligence. IEEE Access 9 (2021), 11974-12001.
https://doi.org/10.1109/ACCESS.2021.3051315

Laugel Thibault. 2018. https://github.com/thibaultlaugel/growingspheres.
Sahil Verma, Varich Boonsanong, Minh Hoang, Keegan E. Hines, John P. Dick-
erson, and Chirag Shah. 2022. Counterfactual Explanations and Algorithmic
Recourses for Machine Learning: A Review. arXiv:2010.10596 [cs.LG]
Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual
explanations without opening the black box: Automated decisions and the
GDPR. Harv. JL & Tech. 31 (2017), 841.

Wenzhuo Yang, Jia Li, Caiming Xiong, and Steven C. H. Hoi. 2022. MACE:
An Efficient Model-Agnostic Framework for Counterfactual Explanation.
arXiv:2205.15540 [cs.Al]

