
Serving Deep Learning Models from Relational Databases
Lixi Zhou𝑎 , Qi Lin𝑎 , Kanchan Chowdhury𝑎 , Saif Masood𝑎 ,

Alexandre Eichenberger𝑐∗, Hong Min𝑐∗, Alexander Sim𝑒∗, Jie Wang𝑏∗,

Yida Wang𝑏∗, Kesheng Wu𝑒∗, Binhang Yuan𝑑∗, Jia Zou𝑎

𝑎 Arizona State University, 𝑏 Amazon, 𝑐 IBM T. J. Watson Research Center,

𝑑 Hong Kong University of Science and Technology, 𝑒 Lawrence Berkeley National Lab

ABSTRACT
Serving deep learning (DL) models on relational data has become
a critical requirement across diverse commercial and scientific
domains, sparking growing interest recently. In this visionary
paper, we embark on a comprehensive exploration of representa-
tive architectures to address the requirement. We highlight three
pivotal paradigms: The state-of-the-art DL-centric architecture
offloads DL computations to dedicated DL frameworks. The po-
tential UDF-centric architecture encapsulates one or more tensor
computations into User Defined Functions (UDFs) within the
relational database management system (RDBMS). The potential
relation-centric architecture aims to represent a large-scale tensor
computation through relational operators. While each of these
architectures demonstrates promise in specific use scenarios, we
identify urgent requirements for seamless integration of these
architectures and the middle ground in-between these architec-
tures. We delve into the gaps that impede the integration and
explore innovative strategies to close them. We present a path-
way to establish a novel RDBMS for enabling a broad class of
data-intensive DL inference applications.

1 INTRODUCTION
Recently, key applications emerged from the desire to nest SQL
queries with deep learning inferences, including but not limited
to the following categories:
• Commercial applications such as credit card fraud detection,
personalized recommendation, customer service chatbots, and
anti-money laundering (AML). These use cases increasingly rely
on deep learning [13, 17, 27, 38, 51, 53, 75], and are latency-critical.
In these cases, transaction data, order data, and customer profiles
are usually managed by a relational databasemanagement system
(RDBMS), and subject to SQL queries for updates and analytics.
• Scientific applications also benefit from the intriguing capa-
bilities of integrating deep learning and RDBMS for efficient sur-
rogate models and self-driving lab experiments[62]. For example,
real-time control coupled with material modeling requires fast ac-
cess to pre-computed results to trigger model inferences. [49, 62].
• AI-enhanced autonomous RDBMS increasingly uses Deep
Learning (DL) [39, 40, 78, 82, 90]. In order tominimize the runtime
overheads incurred by AI techniques, it is critical to reduce the
latency of DL inferences for these techniques.

* These authors are ordered alphabetically; Jia Zou (jia.zou@asu.edu) is the corre-
sponding author.
© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The DL models in these workloads range from simple mod-
els such as feed-forward neural networks (FFNN) and convolu-
tional neural networks (CNN) to complex models such as Trans-
former [30] and recommendation models [53], as well as the foun-
dation models [12], including large language models (LLMs) [59].

The state-of-the-art architecture for supporting inference queries,
termed the DL-centric architecture, offloads the inference com-
putations to decoupled DL runtimes, as illustrated in Fig. 1a. For
example, Amazon Redshift offloads the inference to SageMaker,
Microsoft Raven [37, 58] offloads the inference from Microsoft
SQLServer to the ONNX runtime [22], Google BigQuery offloads
the inference to TensorFlow [8], PostgresML [6] offloads the in-
ference of language models to HuggingFace [74]. In addition,
the emerging EvaDB [23] also runs the inference computations
nested in SQL queries in decoupled ML systems such as Hugging
Face, OpenAI, YOLO, Stable Diffusion, etc.

In addition, there are two potential architectures as alterna-
tives, which have not gained enough attention yet.
• The potential UDF-centric architecture encapsulates infer-
ence logic as UDFs within RDBMS, as illustrated in Fig. 1b. How-
ever, existing systems such as VerticaML [24] and PostgresML [6]
mostly use UDF-encapsulation for traditional ML such as XG-
Boost and logistic regression. There are few existing implementa-
tions of UDF-centric systems for DL, although DL offers diverse
libraries on CPU/GPU [2, 3, 56] for implementing the UDFs.
• The potential relation-centric architecture, as illustrated in
Fig. 1c, represents a model parameter tensor as a relation, i.e., a
collection of tensor blocks, and breaks down a tensor operator
into multiple relational operators that nest with fine-grained
UDFs. This approach has been advocated by SystemsML [11]
and Tensor Relational Algebra [31, 47, 77] for scaling to massive
tensor operations. However, this architecture hasn’t been widely
adopted for serving state-of-the-art DL models.
Why do we need a new architecture? In this vision paper, we
argue for a new architecture because of the significant shortcom-
ings that we observed in all existing architectures:
• The DL-centric architecture leads to significant cross-system
overheads since features that were prepared by the data process-
ing system need to be transferred to separate ML systems for
inferences, which renders them inappropriate for latency-critical
applications. In addition, the decoupled architecture prevents
the inference computations and the relational query processing
from being fully co-optimized. Moreover, handling large tensors
often incurs out-of-memory (OOM) errors in resource-constraint
environments. Finally, managing multiple systems incurs high
operational costs.
• The UDF-centric architecture highly relies on the efficiency
of the underlying libraries. It lacks the flexibility in optimizing

Vision Paper

 

 

Series ISSN: 2367-2005 717 10.48786/edbt.2024.61

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.61


auto data = makeRowVector({“lat”, ”long”, “features”}, {lat, long, vectors}); //prepare the data
auto dnn = loadModel(“anomaly_detection.model”); //load a fully connected neural network
auto plan = build(“SELECT dnn.predict(“features”) FROM data WHERE lat > 35 AND lat < 45”); //compile the query
auto result = run(plan); //execute the inference query

RDBMS

Out-of-box Query Optimizer

DL Runtime

(a) State-of-the-art Architecture (c) Potential Relation-Centric Architecture(b) Potential UDF-Centric Architecture

inference 
query

Relational processing
WHERE lat > 35 AND 
lat < 45

Deep learning processing
dnn.predict(“features”)

σ
data

⨝
ƛ (matrix_mul UDF)

∑
Linear Algebra 

Library
(e.g.,Eigen, 

cuBlas)

RDBMS

lat > 35 ⋀ lat < 45
weight

ƛ (matrix_add UDF)

ƛ (relu UDF)

σ

data

RDBMS

lat > 35 ⋀ lat < 45
" features

" features

DNN Library
(e.g.,Torch, 

cuDNN)

features

matrix_mul

features weights

bias

matrix_add

relu

⨝
bias

invoke
ƛ (matrix_add UDF)

New RDBMS Design

DNN Library
(e.g.,Torch, 

cuDNN)

DL Runtime
(e.g., Pytorch, 
TensorFlow)

Linear Algebra 
Library

(e.g.,Eigen, 
cuBlas)

(d) A Future System (our vision)

invoke

Unified SQL and DL Co-Optimization
(Sec. 2)

DL
Model 
Serving

Techniques

(Sec.5)

Unified Storage Management
(Sec4)

Unified Resource Management
(Sec 3)UDF

weight bias

Unified Intermediate Representation
(Sec. 2)

Figure 1: Overview of the three pivotal architectures and our vision

and scheduling the operations within the UDF in a fine-grained
style. As a result, it shares many problems with the DL-centric
architecture, such as the difficulty in co-optimizing the relational
processing and UDF processing and in handling large-scale ten-
sors.
• The relation-centric architecture facilitates co-optimization of
inference computations and relational processing by convert-
ing the former to the latter. In addition, it views a tensor as
a collection of tensor blocks, which can resolve the OOM er-
rors in resource-constrained CPU/GPU environments leveraging
RDBMS’s disk spilling and caching capabilities. However, not all
DL operations can benefit from the conversion into relational
processing. It significantly increases latency by converting small
model inference computations that fit into the CPU/GPU caches
from UDF processing into relational processing.

On one hand, each existing architecture has significant limita-
tions to meet the latency and resource requirements of various
applications. On the other hand, it is challenging for users to
identify the optimal architectural design and it is also not ideal to
develop a domain-specific solution for each type of application,
which requires significant systems expertise and expensive de-
velopment costs. Therefore, there exists an urgent requirement
for a new architecture with a user-friendly interface and an effi-
cient and intelligent kernel that is adaptive to a diverse array of
applications.
Our Vision: In this work, we advocate for a novel RDBMS that
seamlessly integrates the DL-centric, UDF-centric, and relation-
centric architectures as well as various middle grounds in be-
tween these architectures. The envisioned system consists of the
following novel components, as illustrated in Fig. 1:
• A novel unified intermediate representation (IR) to enable a
novel query optimizer that not only dynamically selects one of
the DL-centric, UDF-centric, and relation-centric representations
for each operator, but also co-optimizes the SQL processing and
the model inferences by designing novel transformation rules
(Sec. 2).
• A novel unified resource management framework for tuning
the threading and memory allocation for DB operations, DL
runtime operations, DNN library operations, and linear algebra
operations, and dispatching these operations to devices (Sec. 3).
• A novel storage co-optimization framework for tensor blocks
and relational data that facilitates new techniques, such as the
novel accuracy-aware data/model deduplication and the novel
physics database design that considers data/model co-partitioning
(Sec. 4).

•Model serving techniques newly adapted for RDBMS, such as us-
ing RDBMS indexing to cache inference results in an application-
aware style (Sec. 5).
Expected Benefits. The proposed novel RDBMS design has nu-
merous advantages over the state-of-the-art architecture and
other potential architectures. First, it enhances the productivity
of developing applications that desire DB functionalities such as
SQL, transaction management, and access control and shortens
the time to market. Second, it delivers superior performance for
a broad class of inference applications at different scales through
unified optimization for computation, resource management, and
data storage. Third, it effectively avoids the cross-system over-
heads for applications bottlenecked by data transfer.We discussed
more benefits such as extensions to training in Sec. 6. We further
validates some of the ideas in Sec. 7.

2 QUERY COMPILATION AND
OPTIMIZATION

Challenge 1. How to design a query compilation framework to
dynamically generate the DL-centric, UDF-centric, and relation-
centric representations for each operator and facilitate co-optimization
of relational processing and DL inference computations?
(1) Unified intermediate representations(IR).We consider
the following options for designing a unified IR to address the
challenge.
•Multi-level IR.Multi-Level Intermediate Representation (MLIR) [42,
43] is developed by Google and LLVM for integrating multiple
levels of IR dialects for machine learning processing. Recently,
LingoDB [36] and Daphne IR [20] provide an MLIR dialect for
relational processing, which can serve as a nice foundation for
integrating with existing dialects for AI/ML computations devel-
oped by the MLIR community to facilitate cross-optimizations
within the MLIR framework. However, a challenging problem
is how to co-optimize the DB dialect and ML dialects, and how
to glue MLIR and RDBMS runtime for parallel query execution,
caching, and indexing [54, 55]. These are not discussed in existing
works.
•ANovel Adaptive In-database IR. An alternative is to extend
existing relational algebra IR to represent linear algebra compu-
tations as UDFs or relational operators adaptively. This approach
may seamlessly integrate with the RDBMS runtime. For example,
we consider an IR, where each node is a traditional relational
operator or a model UDF operator. The latter corresponds to a DL
model inference computation. Such computation can be lowered

718



to a graph IR, where each node represents a linear algebra opera-
tor such as matrix multiplication, matrix addition, relu, softmax,
conv2d, etc.

Both options can support flexible IR transformations required
by the envisioned system. First, each linear algebra operator can
be flexibly converted into relational operators when a tensor
exceeds available memory. For example, a large-scale matrix mul-
tiplication can be replaced by a join followed by an aggregation
as illustrated in Fig. 1c [77]. Second, one or more operators can
be offloaded to external DL runtimes, e.g., for pipelining across
multiple GPU devices. Third, multiple simple linear algebra op-
erators can be merged into one coarse-grained UDF by invoking
libraries, such as CuDNN [56], and IBM zDNN [3], or using code
generation [15, 60, 71], to reduce data transfer latency.
(2) Co-Optimization.Aunified IRwill open opportunities for co-
optimizing SQL processing and DL models, such as novel query
transformation rules. For example, consider a pipeline that first
joins two separate wide feature datasets 𝐷1 and 𝐷2 to obtain the
entire features and run a FFNNmodel on top of the features. If the
first layer of the model is an embedding layer or a fully connected
layer that will reduce the feature dimensions significantly, we
may decompose the corresponding weight matrix𝑊 into two
submatrices𝑊1 and𝑊2, each of which only processes the features
belonging to 𝐷1 or 𝐷2 respectively, so that𝑊 × (𝐷1 ⊲⊳ 𝐷2) =

(𝑊1 ×𝐷1) ⊲⊳ (𝑊2 ×𝐷2). Then, a novel query transformation rule
is to push down the submatrix multiplication𝑊1×𝐷1 and𝑊2×𝐷2
before we perform the join. It will reduce the intermediate data
size if the number of features in the outputs from𝑊1 × 𝐷1 and
𝑊2×𝐷2 are significantly smaller than the total number of features
in 𝐷1 and 𝐷2.

Considering the tremendous flexibility, optimizing for com-
plicated inference queries could be expensive. In addition to
employing standard techniques such as learning-based optimiza-
tion [39], Bayesian optimization [26], and query graph partition-
ing [31], a promising technique is ahead-of-time (AoT) compila-
tion [44, 80, 81]. For example, when loading a model into RDBMS,
the system will generate multiple execution plans at compilation
time and select the best plan at runtime.

3 UNIFIED RESOURCE MANAGEMENT
Challenge 2.How to unify the resourcemanagement for RDBMS,
DL runtimes, and DL libraries invoked from UDFs?
(1) Hyper-Parameter Tuning. Tuning parameters is important
in coordinating resources between the RDBMS runtime and exter-
nal DL runtimes colocating on the same machine. For example,
while configuring the RDBMS buffer pool sizes, we shall also
consider the memory requirements of the DL runtimes. Similarly,
in the UDF-centric approach, the UDF, e.g., invoking OpenBLAS
libraries, may rely on OpenMP for parallelism. We must carefully
configure the number of threads for the SQL query processing
and OpenMP. Otherwise, significant context switch overheads
may occur. For example, multiple RDBMS threads execute the
same pipeline stage that contains linear algebra operators in data-
parallel style. However, each linear algebra operator may run
with a different number of OpenMP threads.

Existing RDBMS and ML hyper-parameter tuning works [14,
45, 46, 48, 69, 79, 86] did not consider the heterogeneous na-
ture of these threading configurations of UDF-based linear alge-
bra operators. The heterogeneity in the tasks executed by the
RDBMS threads and ML threads made the formulation of the

hyper-parameter co-optimization problem challenging. In addi-
tion, each ML thread may have a different lifetime, which further
complicates the problem. In addition, hyper-parameter search
usually requires either significant search latency at the online
stage or significant offline overheads for training surrogate mod-
els, reinforcement learning, etc. Motivated by these challenges,
it is promising to explore novel data-efficient hyper-parameter
learning techniques, such as meta-learning, zero-shot, and few-
shot learning with generative models [52]. In addition, it may
retrieve heuristic or historical knowledge as contexts through
nearest-neighbor indexing to augment the learning process.
(2) Device Allocation.Whether DL inference computation may
benefit from hardware accelerators such as GPU depends on
many factors. According to our study of decision forest infer-
ence [28], we found that for inference queries that involve simple
models and small datasets, the overheads of moving data from
host memory to GPU memory could outweigh the performance
benefits brought by GPU acceleration. The resource management
of the envisioned system should intelligently allocate devices like
CPU and GPU to different inference queries.

To resolve the problem, one option is to extend the physical
query optimizer to model the running of each UDF that encapsu-
lates DL operator(s) as a producer-transfer-consumer process [67]
and estimate the overall latency accordingly depending on how
the CPU-GPU data transfers are overlapped with CPU/GPU pro-
cessing. Such an approach will be novel because existing UDF
optimization works [19, 57, 90] focus on logical optimization.

4 STORAGE CO-OPTIMIZATION
Challenge 3. How to manage the storage and caching of rela-
tional, tensor, and vector data in a unified way?

The inference queries need to manipulate both relational data
and tensor/vector data and we focus on the following opportuni-
ties.
(1) Accuracy-Aware Deduplication and Compression. Dif-
ferent from relational data that must be stored exactly, some
errors/approximations in the tensor/vector data may not signifi-
cantly affect the downstream application accuracy. In addition,
similar tensor/vector data may be deduplicated approximately to
reduce storage costs and memory footprint [63, 83].

Therefore, in RDBMS, the caching of model data should facili-
tate error-bounded compression and deduplication. For example,
the weights that are approximately shared by multiple tensors
or the embedding vectors that are frequently accessed or are
insignificant to the inference results should be prioritized in the
caching hierarchy.

Moreover, the RDBMS should facilitate accuracy-aware query
optimization. For example, the storage optimizer may automati-
cally employ compression, such as pruning and quantization, to
create multiple versions of the same model with different size,
efficiency, and accuracy trade-offs. Then, the query optimizer
may dynamically select one version of the model for runtime
query processing based on the latency and accuracy require-
ments defined in the Service Level Agreement (SLA). In addition,
managing DL models in RDBMS will facilitate the binding of
each model and its training datasets (e.g., through the catalog
component), which will facilitate model selection based on data
similarity [84].
(2) Novel Physical Database Design. Physical database de-
sign [9, 61] in RDBMS determines the partitioning of data and
selection of indexing and materialized view. In our envisioned

719



system, this component should be refactored to consolidate ex-
isting tensor partitioning, distributing, and offloading in existing
DL libraries [15, 66, 76] with the RDBMS storage management
for tensor relations (i.e., as in the relation-centric approach). For
example, the automatic tiling of the tensors in TVM [15] and
the distribution of the tensor blocks to multiple devices in DIS-
TAL [76] could be merged with the physical database design.

In addition, it is promising to co-partition relational data and
tensor data to facilitate relation-centric processing. For example,
the first linear algebra computation in a feed-forward neural
network is to multiply the feature tensor and the weight tensor,
which can be converted into a join of the feature tensor and the
weight tensor followed by an aggregation [32, 33, 83, 88]. If the
feature tensor is the output of relational processing on relational
data, co-partitioning the relational data and the weight tensor
will avoid the shuffling process to conduct a distributed join, as
we demonstrated in our prior work [90].

5 DL SERVING TECHNIQUES IN RDBMS

Challenge 1.Which techniques are compliant with and should
be incorporated into RDBMS to accelerate the Relation-Centric
and UDF-Centric approaches, and how to incorporate these tech-
niques?

(1) Caching of Inference Results and Contexts. Although
there exist solutions that cache inference results [18, 25, 41], none
of these solutions consider the integration with RDBMS. One
option is to leverage RDBMS indexing to facilitate an inference
result cache. The idea is to create a table that records the fea-
tures or intermediate representations (e.g., embedding vectors)
of frequent inference requests and the corresponding prediction
results or contexts that are auxiliary to the prediction. We then
construct nearest neighbor indexing over the features so that an
inference query may efficiently retrieve results or contexts from
the cache.

It is promising to leverage nearest neighbor indexing widely
used in vector databases [4, 5, 7, 35, 72], such as hierarchical
navigable small world (HNSW) [50], locality sensitive hashing
(LSH) [87], inverted file indexing (IVF) [68], and product quan-
tization [34], within RDBMS to facilitate the fast retrieval of
inference results.

Such integration also triggers many research opportunities.
First, the approximate caching will make a trade-off between the
accuracy and latency, and may not benefit many accuracy-critical
applications. Therefore, the proposed caching mechanism and
the query optimizer should be application-aware, and should
dynamically recommend whether to cache data for a specific ap-
plication and whether to use the cache for a specific query based
on the service level agreements (SLAs) and user configurations.
Second, it is important to derive error bounds for the inference
result caching. One option is considering a probabilistic error
bound based on Monte Carlo sampling [64]. Another option is
to use the exact inference result caching leveraging the hashing
indexing or multi-dimensional indexing. Third, the buffer pool
page replacement policy also needs to be improved to coordinate
the disparate access patterns of the vector data, the relational
data, and various indexes.
(2). Pipelining of DL Computations. In DL serving systems,
if a model exceeds available memory, it will be partitioned into
multiple operators/layers, which will be dispatched to multiple
devices based on the costs of the operators and the available

resources of the devices [10, 16, 65]. Those devices work in paral-
lel, composing a pipeline. A pipeline stage at each device works
in a streaming style. It continuously accepts inputs from its up-
streaming stage, processes the inputs, and passes the output to
the downstream stage.

However, although the "pipelining" concepts in RDBMS also
exist, it mostly refers to operator fusion, and the query processing
in RDBMS mainly relies on data parallelism.

These two approaches represent different trade-offs. The pipelin-
ing in DL frameworks is subject to the operator size limitation,
where an operator or a layer must fit the resource on the corre-
sponding device. The Relation-Centric processing in RDBMS has
no such restriction because a large-scale tensor is represented
as a collection of blocks that can spill to disks or be distributed
to multiple devices. However, the pipelining in DL frameworks
tends to be more efficient than the RDBMS parallel processing.
First, there is no need to shuffle data globally as required by data-
base join and aggregation. Second, computations can be reused
across queries without re-compilation/re-scheduling overheads.

Implementing theDL pipeliningmechanism in the UDF-centric
approach is feasible by breaking themodel UDF intomultiple fine-
grained operator UDFs and deploying those UDFs on different
devices following the stream processing paradigm. However, it is
challenging to accommodate both batch and stream processing in
one system [21]. Another option is to offload large-scale models
to DL frameworks, provided that each operator fits memory and
the data transfer between the RDBMS and the DL framework is
insignificant.

6 FURTHER DISCUSSION
6.1 Extension to Deep Learning Training
DL training also consists of linear algebra operations and may
also benefit from the optimization techniques we proposed.While
we focus on real-time deep learning inference queries, an inter-
esting question is whether it is feasible to extend a deep learning
inference system for the corresponding training job within the
same infrastructure. For the DL-centric architecture, the exten-
sion is straightforward — the underlying DL system (e.g. PyTorch)
is equipped with the automatic differentiation engine that can
construct the backward propagation computation graph automat-
ically, and then the DL system can execute it for the SGD-based
training computation on the hardware runtime. For the UDF-
centric architecture, the extension relies on the implementation
of the UDF that should be able to integrate the functionality of
the corresponding backward computation and the SGD-based
optimizers. For the relational-centric architecture, how the exten-
sion should be designed and implemented is still an open ques-
tion — one potential solution is to implement the corresponding
backward computation as a set of separated fine-grained UDFs
corresponding to each of the fine-grained UDFs representing
the forward/inference computations, and then leverage a rela-
tional view to construct the query execution plan to schedule the
computation over the execution environment [70].

6.2 From A Monolithic System to A Loosely
Coupled Ecosystem

We argue for a system to unify the different types of DL pro-
cessing that lies in-between a monolithic system and a loosely
coupled ecosystem to integrate all representations for diverse

720



workloads. Most processing, including relational-centric, UDF-
centric, and even simple DL-centric processing, could be seam-
lessly integrated with the RDBMS. The system will only offload
complicated ML/DL processing that bottlenecks the pipeline pro-
cessing with a time constraint to existing ML/DL systems. Com-
pared to a loosely coupled ecosystem [23, 58], where an out-of-
box optimizer analyzes user code and dispatches computations
to RDBMS, vector databases, and ML systems, our envisioned
system can achieve better end-to-end performance for a broad
class of workloads by avoiding cross-system overheads and max-
imizing co-optimization capabilities. Compared to a monolithic
system, our envisioned system avoids reinventing the wheels for
DL and tensor computation optimization, reduces the implemen-
tation cost by leveraging existing investments in DL systems, and
achieves better encapsulation and transparency between RDBMS
and ML systems.

6.3 Limitations
Potential drawbacks of the proposed system include the limita-
tion of the size and complexity of the models that can be natively
supported by the RDBMS with a significant performance advan-
tage. More complicated models, such as large language models
(LLMs), may achieve better training and inference latency in
specialized systems. However, RDBMS can reduce memory costs
and provide better security and privacy protections, regardless
of the model size and complexity. Such unique features could be
attractive for many applications, such as those hosted by small
businesses. In addition, although it will be challenging for the
envisioned system to provide native LLM support, it can serve
as a high-performance retrieving engine by allowing efficient
inference queries to retrieve data for augmenting LLM infer-
ences [29, 85].

7 VALIDATION AND EVIDENCE
A path to implement the envisioned problem should involve two
steps. First, we will enhance existing RDBMS to unify the three
representations. Second, we will enhance the unified system to
implement proposed techniques. We validate each step in the
following sections.

7.1 Unified Inference Query Processing
To validate the potential benefits of the proposed unified query
optimization strategy, we developed a naive rule-based infer-
ence query optimizer, which adaptively selects the in-database
representation for each operator based on the required mem-
ory size of the operator. If the operator’s memory requirement
exceeds a configurable memory limit threshold, it will choose
the relation-centric representation, otherwise, it will choose the
UDF-centric representation. An operator’s memory requirement
is estimated as the sum of the operator’s input size and the output
size (e.g., for a matrix multiplication operator, if the input tensors
have shapes𝑚 × 𝑘 and 𝑘 × 𝑛, the memory requirement is simply
estimated as 𝑚 × 𝑘+𝑘 × 𝑛+𝑚 × 𝑛). We prototyped the simple
optimizer on top of netsDB [83] which is our object-oriented
RDBMS implemented in C++ [89–92], to leverage its capability
in representing a model in analyzable UDFs [90]. Such capabil-
ity enables our optimizer to traverse through each operator and
estimate its memory requirement.

We loaded multiple feed-forward neural network (FFNN) mod-
els and convolutional neural network (CNN) models into netsDB,
using the optimizer to select the in-database representation. The

detailed descriptions of these models are listed in Tab. 1 and
Tab. 2.

Table 1: Fully Connected (FC) Models (one hidden layer)
Model Number of Features/Number of Neurons (hidden layer size)/Outputs

Fraud-FC-256 28/256/2
Fraud-FC-512 28/512/2
Encoder-FC 76/3, 072/768

Amazon-14k-FC 597, 540/1, 024/14, 588

Table 2: Convolutional Models (Stride size = 1 and Padding size =
0)

Model Image/Input Shape Kernel Shape

DeepBench-CONV1 112 × 112 × 64 64 × 64 × 1 × 1
LandCover 2500 × 2500 × 3 2048 × 3 × 1 × 1

We compared the in-database processing of these models to
popular ML systems including TensorFlow 2.5 and Pytorch 2.1.0.
All of the systems run in an AWS r4.2xlarge instance, which has
eight CPU cores and 61 gigabytes memory, and 500 GB SSD. For
our prototype, the samples to be inferred are loaded to netsDB
before the testing. For TensorFlow and Pytorch, the samples are
loaded from PostgreSQL using a high-performance connector
called ConnectorX [73]. In the baselines, all hyper-parameters,
such as the batch size, are fine-tuned to be optimal. In all experi-
ments, we set the memory threshold to 2 gigabytes, so that if the
operator’s memory requirements exceed this size, the relation-
centric representation will be used for the operator.
Latency Reduction for Small-Scale Models For small-scale
models that fit into the memory threshold, our optimizer chose
the UDF-centric representation that encapsulates all model in-
ference operations in a single UDF. As illustrated in Fig. 2 and
Fig. 3, the proposed architecture is able to reduce the latency for
inference queries that involve small-scale models.

Because the model inference complexity is low in these work-
loads, the cross-system data transfer becomes the bottleneck of
the DL-centric architecture. However, the proposed in-database
model serving architecture can effectively alleviate such bottle-
necks by running the inference computations directly on top of
the data.

0
1
2
3
4
5

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

Fraud-FC-256
w/ 80000
samples

Fraud-FC-256
w/240000
samples

Fraud-FC-512
w/ 80000
samples

Fraud-FC-512
w/ 240000

samples

Encoder-FC w/
1000 samples

Encoder-FC w/
8000 samples

La
te

nc
y 

(s
ec

on
ds

) data transfer inference

Figure 2: Latency reduction using our rule-based optimizer for
FFNN model inference over data managed by RDBMS.

OOMErrorAvoidance for Large-ScaleModels For large-scale
ML operators in which the memory requirements exceed the
memory limit threshold, our optimizer chose the relation-centric
representation. For example, in the AWS-14K-FC model, the ten-
sor of the input features 𝑋 has a shape of 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 597, 540,
and the weight matrix that connects the input features and the
hidden layer𝑊 has a shape of 1, 024×597, 540. Simply the weight
matrix exceeds the 2 gigabytes threshold, therefore, the operator
of 𝑋 ×𝑊𝑇 would be represented in relation-centric. First, the
weight matrix will be chunked into matrix blocks, and then the

721



0
10
20
30
40
50

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

O
ur

s

Te
ns

or
Fl

ow

Py
to

rc
h

DeepBench-Conv1
w/ 64 samples

DeepBench-Conv1
w/ 128 samples

DeepBench-Conv1
w/ 256 samples

DeepBench-Conv1
w/ 512 samples

DeepBench-Conv1
w/ 1024 samples

La
te

nc
y 

(s
ec

on
ds

) data transfer inference

Figure 3: Latency reduction using our rule-based optimizer for
CNN model inference over data managed by RDBMS.

matrix multiplication will be converted into a join followed by an
aggregation. Similarly, for the convolutional operation in Land-
Cover, the input tensor has a shape of𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒×2500×2500×3,
and the output feature map has a shape of 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 2500 ×
2500 × 2048. The convolution operation will also be converted
into relational operators. First, following the spatial rewriting
algorithm for convolutional computation [1], each image will
be flattened into a matrix 𝐹 of the shape 6, 250, 000 × (3 + 1),
and the kernel will be flattened into a matrix 𝐾 of the shape
2048 × (3 + 1). Second, the convolution computation will be
converted into 𝐹 × 𝐾𝑇 , which will also be represented as a join
followed by an aggregation.

As illustrated in Tab. 3, while the large-scale ML operator
does not fit into the available memory, DL-centric architectures
will throw Out-of-Memory (OOM) errors. However, the relation-
centric inference processing running in the RDBMS will run at
the block level, which effectively reduces the memory footprint
from the scale of the tensors to the scale of the blocks. At the same
time, although the entire collection of blocks cannot fit into the
memory, a portion of the blocks are spilled to disk and loaded into
the buffer pool (set to 20 gigabytes) when needed. Leveraging the
RDBMS buffer pool management capability, the relation-centric
representation can work with resource-constrained devices. In
Tab. 3, we also noticed that when the ML operators of the model
fit into the available memory, the DL-centric implementation
relying on TensorFlow and Pytorch has a performance advantage.
That’s because the inference computation rather than the cross-
system data transfer becomes the bottleneck in such DL-centric
architecture, while our relation-centric implementation involves
the additional overheads of chunking model parameter tensors
into tensor blocks.
Table 3: Latency comparison for large-scale model inferences
over data managed by RDBMS

Model Batch Size Ours UDF centric TensorFlow Pytorch

Amazon-14k-FC 1000 58.6 60.4 34.6 22.6
8000 407.2 OOM OOM OOM

LandCover 1 36.8 OOM 9.9 OOM
2 45.2 OOM OOM OOM

7.2 Other Representative Techniques
7.2.1 Model Decomposition and Push-Down. We vertically

partition the Bosch dataset [28] that has 1.18 millions of tuples
with 968 features into two datasets 𝐷1 and 𝐷2, each having 484
features. We consider an inference pipeline that first joins 𝐷1 and
𝐷2 into an augmented feature dataset, denoted as 𝐷 , through a
similarity join based on the similarity of values in two columns
from 𝐷1 and 𝐷2 respectively. These two columns are selected as
having the highest correlation among pairs of columns from 𝐷1
and 𝐷2. We then run FFNN model over the augmented features.
The model has a hidden layer of 256 neurons and an output layer
of 2 neurons. (Therefore, the weight matrix at the first layer𝑊

has a shape of 256×968.) The results showed that if we decompose
the matrix multiplication of 𝐷 ×𝑊𝑇 into 𝐷1 ×𝑊𝑇

1 ⊲⊳ 𝐷2 ×𝑊𝑇
2

as described in Sec. 2, it will achieve 5.7× speedup.

7.2.2 Caching of Inference Results. In our preliminary experi-
ments, we’ve found using Faiss’ HNSW as indexing to cache the
inference result, we can accelerate the inference latency for a
simple CNN model with two convolutional layers (the first layer
has 32 3×3 kernels, and the second layer has 16 3×3 kernels) and
two fully connected layers with 64 and 10 neurons respectively,
by 10.3× speedup, with a significant accuracy reduction from
98.75% to 93.65%. We also evaluated this method using a simple
FFNN model that has four fully connected layers with 128, 1024,
2048, and 64 neurons respectively, on the MNIST dataset, and
observed a speedup by 7.3× with accuracy dropped from 97.74%
to 95.26%. These results motivate an adaptive inference result
caching strategy which decides whether to cache the inference
results by estimating a probabilistic error bound using techniques
such as Monte Carlo sampling and checking whether the error
bound is acceptable to the application’s SLA.

8 CONCLUSIONS
In this work, we discuss how the RDBMS should be upgraded to
support various model-serving applications that rely on RDBMS
for data management. First, we identify three pivotal architec-
tures: DL-centric, UDF-centric, and relation-centric, and we ar-
gue that these approaches as well as the middle ground among
them should be unified to facilitate the serving of deep learning
models on relational data at different scales. We further iden-
tify challenges and opportunities in existing RDBMS systems for
achieving unified optimization. In summary, we argue for:
•Anovel unified IR and novel adaptive optimizer for co-optimizing
inference computations and relational computations at a fine-
grained style so that any subgraph in the inference query IR
has the flexibility to be scheduled as DL-centric, UDF-centric, or
relation-centric. Such an optimizer will open opportunities for
identifying new query graph transformation rules, such as model
decomposition and push-down.
• Coordination of computational and memory resources for DB,
DL runtimes, and lower-level runtimes that support DL libraries
to unify the resource management for the future RDBMS ecosys-
tem.
• Renovating the storage, caching, and indexing of tensors/vec-
tors to reduce storage costs, considering data placement in GPU,
and facilitating accuracy-aware query optimization.
• Integrating compliantmodel serving techniques such as caching
of inference results into RDBMS and offloading non-compliant
techniques to DL runtimes.

ACKNOWLEDGMENTS
The work is sponsored by the National Science Foundation (NSF)
CAREER Award (Number 2144923), the IBM Academic Research
Award, the Amazon Research Award, and a U.S. Department of
Homeland Security (DHS) Award (Number 17STQAC00001-03-
03). Kanchan Chowdhury’s work is supported by Prof. Mohamed
Sarwat.

REFERENCES
[1] [n. d.]. Optimizing TensorFlow Convolution Performance

on Aarch64. ([n. d.]). https://www.linaro.org/blog/
optimizing-tensorflow-convolution-performance-on-aarch64/

[2] 2020. Eigen. http://eigen.tuxfamily.org/index.php?title=Main_Page

722



[3] 2022. IBM Z Deep Neural Network Library (zDNN). https://github.com/IBM/
zDNN.

[4] 2022. Qdrant. https://qdrant.tech/.
[5] 2023. Pinecone: Vector Database for Vector Search. https://www.pinecone.io/.
[6] 2023. postgresML. https://postgresml.org/docs/guides/transformers/setup.
[7] 2023. Vespa: The big data serving engine. https://vespa.ai/.
[8] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensorflow.org/ Software available
from tensorflow.org.

[9] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R Narasayya. 2000. Auto-
mated selection of materialized views and indexes in SQL databases. In VLDB,
Vol. 2000. 496–505.

[10] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng
Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. DeepSpeed-inference: enabling efficient inference of trans-
former models at unprecedented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–15.

[11] Matthias Boehm, Michael W Dusenberry, Deron Eriksson, Alexandre V Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-
erick R Reiss, Prithviraj Sen, Arvind C Surve, et al. 2016. Systemml: Declarative
machine learning on spark. Proceedings of the VLDB Endowment 9, 13 (2016),
1425–1436.

[12] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut,
Emma Brunskill, et al. 2021. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258 (2021).

[13] Stuart Breslow, Mikael Hagstroem, Daniel Mikkelsen, and Kate Robu. 2017.
The new frontier in anti–money laundering. McKinsey & Company, November
(2017).

[14] Matthew Butrovich, Wan Shen Lim, Lin Ma, John Rollinson, William Zhang,
Yu Xia, and Andrew Pavlo. 2022. Tastes Great! Less Filling! High Performance
and Accurate Training Data Collection for Self-Driving Database Manage-
ment Systems. ACM| Proceedings of the 2022 International Conference on
Management of Data.

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, LeyuanWang, Yuwei Hu, Luis Ceze, et al. 2018.
{TVM}: An automated end-to-end optimizing compiler for deep learning. In
13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18). 578–594.

[16] Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared
Roesch, Elliott Delaye, Vin Sharma, and Yida Wang. 2021. Bring your own
codegen to deep learning compiler. arXiv preprint arXiv:2105.03215 (2021).

[17] Dawei Cheng, Sheng Xiang, Chencheng Shang, Yiyi Zhang, Fangzhou Yang,
and Liqing Zhang. 2020. Spatio-temporal attention-based neural network for
credit card fraud detection. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 34. 362–369.

[18] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E
Gonzalez, and Ion Stoica. 2017. Clipper: A low-latency online prediction
serving system. In 14th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17). 613–627.

[19] AndrewCrotty, Alex Galakatos, KayhanDursun, TimKraska, Ugur Cetintemel,
and Stanley B Zdonik. 2015. Tupleware:" Big" Data, Big Analytics, Small
Clusters.. In CIDR.

[20] Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm,
Philippe Bonnet, Florina Ciorba, Mark Dokter, Pawl Dowgiallo, Ahmed
Eleliemy, Christian Faerber, et al. 2022. DAPHNE: An Open and Extensible
System Infrastructure for Integrated Data Analysis Pipelines. In Conference
on Innovative Data Systems Research.

[21] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive
stream processing using dynamic batch sizing. In Proceedings of the ACM
Symposium on Cloud Computing. 1–13.

[22] ONNX Runtime developers. 2021. Open neural network exchange format
(ONNX). https://github.com/onnx/onnx

[23] EvaDB. 2023. EvaDB: Database system for AI-powered apps. Technical Report.
https://github.com/georgia-tech-db/evadb

[24] Arash Fard, Anh Le, George Larionov, Waqas Dhillon, and Chuck Bear. 2020.
Vertica-ml: Distributed machine learning in vertica database. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data.
755–768.

[25] Alessandro Finamore, James Roberts, Massimo Gallo, and Dario Rossi. 2022.
Accelerating deep learning classification with error-controlled approximate-
key caching. In IEEE INFOCOM 2022-IEEE Conference on Computer Communi-
cations. IEEE, 2118–2127.

[26] Peter I Frazier. 2018. A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811 (2018).

[27] Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neural approaches to
conversational AI. In The 41st international ACM SIGIR conference on research
& development in information retrieval. 1371–1374.

[28] Hong Guan, Mahidhar Reddy Dwarampudi, Venkatesh Gunda, Hong Min, Lei
Yu, and Jia Zou. 2023. A Comparison of Decision Forest Inference Platforms
from A Database Perspective. arXiv preprint arXiv:2302.04430 (2023).

[29] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang.
2020. Retrieval augmented language model pre-training. In International
conference on machine learning. PMLR, 3929–3938.

[30] S. Huang and et al. 2010. The HiBench benchmark suite: Characterization of
the MapReduce-based data analysis. In ICDEW. 41–51.

[31] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris
Jermaine, and Zekai J Gao. 2019. Declarative Recursive Computation on an
RDBMS. Proceedings of the VLDB Endowment 12, 7 (2019).

[32] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris
Jermaine, and Zekai J Gao. 2019. Declarative recursive computation on an
RDBMS: or, why you should use a database for distributed machine learning.
Proceedings of the VLDB Endowment 12, 7 (2019), 822–835.

[33] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris
Jermaine, and Zekai J Gao. 2020. Declarative recursive computation on an
RDBMS: or, why you should use a database for distributed machine learning.
ACM SIGMOD Record 49, 1 (2020), 43–50.

[34] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[35] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[36] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an open
framework for query optimization and compilation. Proceedings of the VLDB
Endowment 15, 11 (2022), 2389–2401.

[37] Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit
Sen, Kwanghyun Park, Ivan Popivanov, Supun Nakandal, Subru Krishnan,
Markus Weimer, et al. 2019. Extending relational query processing with ML
inference. arXiv preprint arXiv:1911.00231 (2019).

[38] Neil Katkov. 2022. OPERATIONALIZING FRAUD PREVENTION ON IBM Z16.
https://www.ibm.com/downloads/cas/DOXY3Q94

[39] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned cardinality estimation: An in-depth study.
In Proceedings of the 2022 International Conference on Management of Data.
1214–1227.

[40] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with
deep learning. arXiv preprint arXiv:1809.00677 (2018).

[41] Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkataraman, and Aditya
Akella. 2019. Accelerating Deep Learning Inference via Freezing.. InHotCloud.

[42] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. 2021. MLIR: Scaling compiler infrastructure for domain
specific computation. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 2–14.

[43] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. 2021. Mlir: Scaling compiler infrastructure for domain
specific computation. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 2–14.

[44] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santam-
brogio, Markus Weimer, and Matteo Interlandi. 2018. {PRETZEL}: Open-
ing the Black Box of Machine Learning Prediction Serving Systems. In
13th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 18). 611–626.

[45] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware
database tuning system with deep reinforcement learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118–2130.

[46] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperpa-
rameter optimization. The journal of machine learning research 18, 1 (2017),
6765–6816.

[47] Shangyu Luo, Zekai J Gao, Michael Gubanov, Luis L Perez, and Christopher
Jermaine. 2018. Scalable linear algebra on a relational database system. IEEE
Transactions on Knowledge and Data Engineering 31, 7 (2018), 1224–1238.

[48] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,
and Geoffrey J Gordon. 2018. Query-based workload forecasting for self-
driving database management systems. In Proceedings of the 2018 International
Conference on Management of Data. 631–645.

[49] Benjamin P MacLeod, Fraser GL Parlane, Thomas D Morrissey, Florian Häse,
Loïc M Roch, Kevan E Dettelbach, Raphaell Moreira, Lars PE Yunker, Michael B
Rooney, Joseph R Deeth, et al. 2020. Self-driving laboratory for accelerated
discovery of thin-film materials. Science Advances 6, 20 (2020), eaaz8867.

[50] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[51] Tim Maxwell and Liz Bingler. 2023. How major credit card networks protect
customers against fraud. https://www.bankrate.com/finance/credit-cards/
major-credit-card-networks-protect-against-fraud/.

723



[52] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji
Lakshminarayanan. 2018. Do deep generative models know what they don’t
know? arXiv preprint arXiv:1810.09136 (2018).

[53] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation
model for personalization and recommendation systems. arXiv preprint
arXiv:1906.00091 (2019).

[54] Thomas Neumann. 2011. Efficiently compiling efficient query plans formodern
hardware. Proceedings of the VLDB Endowment 4, 9 (2011), 539–550.

[55] Thomas Neumann. 2021. Evolution of a compiling query engine. Proceedings
of the VLDB Endowment 14, 12 (2021), 3207–3210.

[56] NVIDIA. 2014. NVIDIA cuDNN. Technical Report. NVIDIA Corporation, Santa
Clara, California, USA. https://developer.nvidia.com/cudnn

[57] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford
InfoLab. 2017. Weld: A common runtime for high performance data analytics.
In Conference on Innovative Data Systems Research (CIDR). 45.

[58] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi,
and Konstantinos Karanasos. 2022. End-to-end Optimization of Machine
Learning Prediction Queries. In Proceedings of the 2022 International Conference
on Management of Data. 587–601.

[59] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao.
2023. Instruction tuning with gpt-4. arXiv preprint arXiv:2304.03277 (2023).

[60] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image processing
pipelines. Acm Sigplan Notices 48, 6 (2013), 519–530.

[61] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Automating
physical database design in a parallel database. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. ACM, 558–569.

[62] Daniel Ratner, Bobby Sumpter, Frank Alexander, Jay Jay Billings, Ryan Coffee,
Sarah Cousineau, Peter Denes, Mathieu Doucet, Ian Foster, Alex Hexemer,
et al. 2019. [Office of Basic Energy Sciences (BES)] Roundtable on Producing
and Managing Large Scientific Data with Artificial Intelligence and Machine
Learning. Technical Report. DOESC Office of Basic Energy Sciences.

[63] Maximilian Schleich, Amir Shaikhha, and Dan Suciu. 2023. Optimizing Tensor
Programs on Flexible Storage. Proceedings of the ACM on Management of Data
1, 1 (2023), 1–27.

[64] Alexander Shapiro. 2003. Monte Carlo sampling methods. Handbooks in
operations research and management science 10 (2003), 353–425.

[65] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU
cluster engine for accelerating DNN-based video analysis. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 322–337.

[66] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Daniel Y Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E Gonzalez,
et al. 2023. High-throughput generative inference of large language models
with a single gpu. arXiv preprint arXiv:2303.06865 (2023).

[67] Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, and Chen Wang. 2014.
MRTuner: a toolkit to enable holistic optimization for mapreduce jobs. Pro-
ceedings of the VLDB Endowment 7, 13 (2014), 1319–1330.

[68] Sivic and Zisserman. 2003. Video Google: A text retrieval approach to object
matching in videos. In Proceedings ninth IEEE international conference on
computer vision. IEEE, 1470–1477.

[69] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. Advances in neural information
processing systems 25 (2012).

[70] Yuxin Tang, Zhimin Ding, Dimitrije Jankov, Binhang Yuan, Daniel Bourgeois,
and Chris Jermaine. 2023. Auto-Differentiation of Relational Computations for
Very Large Scale Machine Learning. arXiv preprint arXiv:2306.00088 (2023).

[71] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and
Albert Cohen. 2018. Tensor comprehensions: Framework-agnostic high-
performance machine learning abstractions. arXiv preprint arXiv:1802.04730
(2018).

[72] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
XiangyuWang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A Purpose-Built Vector Data Management System. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[73] XiaoyingWang,WeiyuanWu, JinzeWu, Yizhou Chen, Nick Zrymiak, Changbo
Qu, Lampros Flokas, George Chow, Jiannan Wang, Tianzheng Wang, et al.
2022. ConnectorX: accelerating data loading from databases to dataframes.
Proceedings of the VLDB Endowment 15, 11 (2022), 2994–3003.

[74] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-
of-the-Art Natural Language Processing. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demon-
strations. Association for Computational Linguistics, Online, 38–45. https:
//www.aclweb.org/anthology/2020.emnlp-demos.6

[75] Sheng Xiang, Mingzhi Zhu, Dawei Cheng, Enxia Li, Ruihui Zhao, Yi Ouyang,
Ling Chen, and Yefeng Zheng. 2023. Semi-supervised Credit Card Fraud
Detection via Attribute-Driven Graph Representation. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 14557–14565.

[76] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: the distributed
tensor algebra compiler. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 286–300.

[77] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and
Chris Jermaine. 2021. Tensor Relational Algebra for Distributed Machine
Learning System Design. Proc. VLDB Endow. 14, 8 (2021), 1338–1350. https:
//doi.org/10.14778/3457390.3457399

[78] Haitao Yuan, Guoliang Li, Ling Feng, Ji Sun, and Yue Han. 2020. Automatic
view generation with deep learning and reinforcement learning. In 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE, 1501–1512.

[79] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceed-
ings of the 2019 International Conference on Management of Data. 415–432.

[80] Wangda Zhang, Junyoung Kim, Kenneth A Ross, Eric Sedlar, and Lukas Stadler.
2021. Adaptive code generation for data-intensive analytics. Proceedings of
the VLDB Endowment 14, 6 (2021), 929–942.

[81] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua Fromm,
Yizhi Liu, YidaWang, Luis Ceze, Tianqi Chen, and Gennady Pekhimenko. 2022.
DietCode: Automatic optimization for dynamic tensor programs. Proceedings
of Machine Learning and Systems 4 (2022), 848–863.

[82] Lixi Zhou, K Selçuk Candan, and Jia Zou. 2023. DeepMapping: The Case for
Learned Data Mapping for Compression and Efficient Query Processing. arXiv
preprint arXiv:2307.05861 (2023).

[83] Lixi Zhou, Jiaqing Chen, Amitabh Das, Hong Min, Lei Yu, Ming Zhao, and Jia
Zou. 2022. Serving Deep Learning Models with Deduplication from Relational
Databases. Proc. VLDB Endow. 15, 10 (2022), 2230–2243. https://www.vldb.
org/pvldb/vol15/p2230-zou.pdf

[84] Lixi Zhou, Arindam Jain, Zijie Wang, Amitabh Das, Yingzhen Yang, and
Jia Zou. 2022. Benchmark of DNN Model Search at Deployment Time. In
Proceedings of the 34th International Conference on Scientific and Statistical
Database Management. 1–12.

[85] Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao Jiang, and Graham Neubig.
2022. Docprompting: Generating code by retrieving the docs. In The Eleventh
International Conference on Learning Representations.

[86] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2020. Database meets
artificial intelligence: A survey. IEEE Transactions on Knowledge and Data
Engineering 34, 3 (2020), 1096–1116.

[87] Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. 2016. LSH en-
semble: Internet-scale domain search. arXiv preprint arXiv:1603.07410 (2016).

[88] Jia Zou. 2021. Using Deep Learning Models to Replace Large Materialized
Views in Relational Database. In 11th Conference on Innovative Data Systems
Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_abstract05.pdf

[89] Jia Zou, R Matthew Barnett, Tania Lorido-Botran, Shangyu Luo, Carlos Mon-
roy, Sourav Sikdar, Kia Teymourian, Binhang Yuan, and Chris Jermaine. 2018.
PlinyCompute: A platform for high-performance, distributed, data-intensive
tool development. In Proceedings of the 2018 International Conference on Man-
agement of Data. 1189–1204.

[90] Jia Zou, Amitabh Das, Pratik Barhate, Arun Iyengar, Binhang Yuan, Dimitrije
Jankov, and Chris Jermaine. 2021. Lachesis: automatic partitioning for UDF-
centric analytics. Proceedings of the VLDB Endowment 14, 8 (2021), 1262–1275.

[91] Jia Zou, Arun Iyengar, and Chris Jermaine. 2019. Pangea: monolithic dis-
tributed storage for data analytics. Proceedings of the VLDB Endowment 12, 6
(2019), 681–694.

[92] Jia Zou, Arun Iyengar, and Chris Jermaine. 2020. Architecture of a distributed
storage that combines file system, memory and computation in a single layer.
The VLDB Journal (2020), 1–25.

724


