
Community Similarity based on User Profile Joins
Konstantinos Theocharidis

Singapore Management University
Singapore

Hady W. Lauw
Singapore Management University

Singapore

ABSTRACT
Similarity joins on multidimensional data are crucial operators
for recommendation purposes. The classic 𝜖-join problem finds
all pairs of points within 𝜖 distance to each other among two
𝑑-dimensional datasets. In this paper, we consider a novel and
alternative version of 𝜖-join named community similarity based
on user profile joins (CSJ). The aim of CSJ problem is, given two
communities having a set of 𝑑-dimensional users, to find how
similar are the communities by matching every single pair of
users (a user can be matched with at most one other user) having
an absolute difference of at most 𝜖 per dimension. Each dimension
in each user vector stores a counter that measures the number
of user preferences to a concrete general topic. CSJ uses low 𝜖

and applies the strict condition per dimension so as to really find
similar user profiles among two communities. CSJ applies to a
number of cases in which the popular community detection and
community search problems do not suit. This happens since CSJ
treats existing communities as brands of a specific commercial
value and does not search to form general communities as prior
works do; these two community types semantically differ. Also,
CSJ does not rely its execution on social or/and physical links
among community users, instead, it only focus on the similarity
of user profiles. We deploy a suite of 6 methods to solve CSJ; 3
approximate and 3 exact algorithms. We evaluate our solutions to
meaningful case studies of real and synthetic datasets having dif-
ferent characteristics. Our experimental results show interesting
and diverse conclusions of CSJ applicability to realistic scenarios.

1 INTRODUCTION
Nowadays, social networks and e-commerce (online systems)
have been established as the main platforms of user interactions.
Users in such systems form communities (densely connected
user subgraphs) via which they exchange opinions about various
topics. Much research has been deployed the last years for the
community detection [55] and community search [20] problems.
The former finds a number of communities in a network while
the latter finds a specific community that contains a given user.

The common point on finding a community is the structural de-
pendency, namely the dense social links among community users.
In addition to that, some other criteria on forming a community
can be further considered, such as the spatial dependency [17]
(users to be physically close), the attribute dependency [16] (each
user has specific interests mentioned as topics, keywords, or at-
tributes), and the topic-aware social influence dependency [1] (a
user influences another with a specific weight for a certain topic).

Themain goal of mentioned works is to find a community so as
to exploit its members for advertising purposes; e.g., a conference
organizer finds suitable members to invite in regards to the topic
of the conference. Nevertheless, in this paper, our interest is to
exploit the communities as entities themselves (namely, as brands

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

having a specific commercial value). That is inherently feasible
since such kind of communities naturally exist in online systems
corresponding to pagesmaintained by brand advertisers for social
user engagement. In particular, users in online systems opt to
subscribe to (follow) the online page of a brand in case they want
to keep informed about the latest posts (products, ideas, etc.)
of brand. The commercial value of a brand is the number of its
subscribers, so we claim that every page can be treated as a brand
since every page has some subscribers. Prior works completely
overlook the fact that such kind of brand-communities already
exist, and they find a kind of topic-communities that are general
enough and so cannot be treated as brands. For example, finding
a general community of people that like yoga does not depict
the specific different brands that provide equipment and services
about and around yoga. Also, a less general search is useless since
specific yoga communities already exist as explained.

1.1 Problem
By contrast, the type of communities we consider in this paper,
induce a very basic operation that cannot be addressed neither
by community detection nor by community search. The requested
operation is the community similarity that we define it as fol-
lows: Given two communities (brands) having a set of users
(subscribers) where each user is modeled as a 𝑑-dimensional
vector (each dimension captures an aggregate number of user
preferences to a specific category such as Entertainment, Ani-
mals, etc.), find how similar are the communities based on how
similar are their users; each user from one community can be
matched with only one user from the other community (a pair
can have the same user). Two users are similar (matched) if their
absolute difference per dimension is at most 𝜖 (given threshold);
the 𝜖 used in practice is usually as minimum as possible to really
find similar users. The strict condition of absolute difference per
dimension enhances further that and justifies our intention of
actually seeking for similar user profiles among users.

The problem of community similarity based on user profile joins
(CSJ) is essentially a novel similarity join operator we propose
in this work. The closest counterpart to the CSJ problem is the
𝜖-join [4, 30] that finds all pairs of points within 𝜖 distance to
each other among two 𝑑-dimensional datasets. Yet, CSJ has three
distinct characteristics compared to classic 𝜖-join. First, CSJ de-
pends on finding one-to-one user pairs instead of all user pairs
among datasets. Second, the 𝜖 condition is applied per dimen-
sion and not over all dimensions in an aggregated way as e.g.,
Euclidean distance. Third, CSJ uses a meaningful value for 𝜖 and
so avoids the issues of finding a good value for 𝜖 in regards to
the selectivity of the join. Nevertheless, in this paper, we adapt
the state-of-the-art work [30] of classic 𝜖-join problem in order
to show how it performs for the CSJ problem.

We emphasize that in CSJ, the strict condition of same thresh-
old (𝜖) per dimension, exclusively relates with aggregate counters
per dimension as each dimension represents a category. Such
category-dimensions are present to a variety of cases in real life.
For instance, in social networks, each dimension maps to a cate-
gory (e.g., Hobbies) that has a plethora of pages within it; counter

Series ISSN: 2367-2005 572 10.48786/edbt.2024.49

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.49

for Hobbies is the total number of posts liked by a respective user
where each such post published in any page belonging to Hobbies.
Likewise, category-dimensions can be found in e-commerce (e.g.,
Amazon1), movie platforms (e.g., Netflix2), or song databases
(e.g., Spotify3). In all these cases, a user constantly consumes
products, movies, or songs (respectively) that relate with specific
categories, and so the associated counters to those categories are
increased. For example, when a user views a movie that belongs
to categories comedy and romance, the counters in dimensions
that map to comedy and romance increase by one.

1.2 Applicability
The applicability of CSJ is evident in several real-world scenarios
that cannot be adequately treated by existing works (link-based
joins (LBJ), and community detection or search (CDS)) since the
latter depend on user connections (e.g., social, physical links), and
that restricts their applicability, as we analytically explain below:
(i) Friend Recommendation. LBJ works [47, 56], which are
utilizing SimRank [28] and PageRank [29] similarity measures,
join two users based on their social links. Namely, two users are
similar (joined and recommended to each other) if they have
several common friends. Yet, such a recommendation has two
crucial deficiencies. First, it is finite, as there is a point that after
that, all the important connections among users will have been
explored and so no more friends will be recommended to the
respective users. Second, several of the recommended friends
may present no interest to the notified users; e.g., the best friend
(recommended) of the mother of a user’s best friend may have no
interest to that user. Instead, nowadays, friend recommendation
mostly relies on similar preferences among users and not so much
on structural connections among them. For instance, the social
network LinkedIn4 notifies a user 𝑥 to follow another user 𝑦 by
directly sending to 𝑥 the message “people with similar interests
(with you) follow user 𝑦”. Another similar message to 𝑥 used in
the social network VK5 is “you have 𝑝% similar taste in Music
with 𝑦”; which implicitly recommends 𝑥 to follow 𝑦.

Similarity of user preferences can be captured by the user
subscriptions to communities of the online system; each com-
mon subscription found among two users increases further the
similarity of such users. However, besides the same subscriptions,
there is a number of similar subscriptions among users that can be
found by CSJ and significantly improve friend recommendation.

Also, note that CDS works can find an attributed community
for many users or a given user based on a subset of user’s in-
terests (attributes). Still, the recommended friends (community
members) to the relative user should be connected via a small
number of hops to that user, and that yields only a small portion
of total results that can be found in the whole online system. Yet,
CSJ finds holistic solutions as is not based on user connections.
(ii) Brand Recommendation. As mentioned, each brand de-
picts a specific social network page having a certain number of
subscribers. Brand recommendation exclusively depends on user
preferences and so LBJ works are not applicable to this kind of
recommendation since LBJ utilize only structural connections;
their usage is restricted to friend (user account) recommendation
as previously discussed. Still, CDS works can apply but they do
it having severe limitations.
1https://amazon.com/
2https://netflix.com/
3https://spotify.com/
4https://linkedin.com/
5https://vk.com/

(ii.a) Business Partner Recommendation. A brand can find
promising business partners to cooperate with by solving the CSJ
problem. E.g., Dior has a contract with Charlize Theron for many
years; Kate Winslet is one of the brand ambassadors of Longines.
As both celebrities have success on advertising their products,
Dior and Longines could search for similar celebrities to them
respectively to form new lucrative collaborations.

To solve that problem, CDS works should first find all or a
subset of communities with a main preference on e.g., Char-
lize Theron. Then, they could select the second most popular
preference to each one of formed communities. Last, they could
compare the results over all communities, and with a majority-
rule way to find the final answer (next business partner). This
process is not only prohibitively time-consuming but it is also
result-limited due to the inherent constraint of structural connec-
tivity in CDS works. In CSJ, two users can be similar based on
their preferences without being connected at all, and that yields
unrestricted results. Also, this fact enables the brands (partners)
selection for comparison to be much more flexible and the final
execution time to be much faster.
(ii.b) Broadcast Recommendation. The online system applies
CSJ to a variety of community pairs and guided by the results
it organizes a prioritized broadcast recommendation process to
users. E.g., in case CSJ finds that Nike and Adidas pages are
more similar than Nike and Puma pages, then the online system
recommends to all platform users that follow Nike but not Adidas
and Puma, the latter two pages but in different hours; e.g., at the
highest peak hour of user engagement in the platform, Adidas is
recommended, at the second highest hour Puma is recommended.

In that scenario, CDS works can hardly apply since there is no
a specific preference for the attributed communities to be formed
on. This means that for every page (preference) belonging to the
variety of communities for comparison, communities should be
formed and CDS works to follow a process similar to the afore-
mentioned (ii.a)-case of finding partners. Yet, such a solution
is not practical due to the much higher computational cost in
regards to prior (ii.a)-case.
(ii.c) Content Recommendation. Each community can be
treated as a content feature of a post published in online system.
For example, content-aware influence maximizationworks [27, 32]
utilize such kind of features to tune the content of a post so as to
be viral in the online system. The CSJ results can help a brand in
such works to influence a non-subscriber user on different (but
similar) features, and repetitively doing that, they could gain the
subscription of user [48]. Further, CSJ results can help brands to
form diverse posts (not having the same concept) and coherent
posts (each feature within a post to naturally coexist with others).

That scenario is a middle case among (ii.a) and (ii.b) for CDS
works. Namely, the kind of features in current post along with
recent past posts may request ad-hoc feature comparisons ((ii.a)-
case) or several feature comparisons ((ii.b)-case). The CDS defi-
ciencies are the same and worsen as moving from (ii.a) to (ii.b).

1.3 Contributions
The main contributions of this paper are the following:
Problem.We propose and study the CSJ problem that constitutes
a new and alternative variant of classic 𝜖-join operator. Given
two communities (brands), CSJ finds their similarity by applying
a strict 𝜖 absolute difference condition per dimension over single
pairs of users; a user can be matched with at most one other user.
Methods. We present a suite of 6 methods to solve CSJ along
with an insightful discussion over them. Specifically, we deploy

573

three approximate and three exact solutions that are both useful
under different settings. The best CSJ methods employ a novel
encoding scheme that has a general applicability besides CSJ.
Experiments. We present analytic experiments for different
case studies on real and synthetic datasets. Results show the
importance of CSJ and its interesting technical challenges.

2 RELATEDWORK
Similarity Joins. Similarity joins are important operators find-
ing applicability in fields such as data mining, data cleaning,
recommendation, clustering, outlier detection, association rule
mining, etc. [6, 9, 14, 23, 31, 33, 34, 42]. They were first uti-
lized as spatial joins [39, 43] but through the years they un-
dergo several variations; they have been modified to operate
as set joins [2, 3, 45, 50, 51, 54], string joins [22], spatio-textual
joins [5, 49], link-based joins [47, 56], and 𝜖-joins [4, 30, 37]. Other
works relative to similarity joins such as similarity search and
top-𝑘 retrieval can be found in [7, 10, 13, 36].

Spatial joins find pairs of points (entities), one from each
dataset, such that they satisfy a specific spatial constraint (e.g.,
distance, intersection). A special category of them are the 𝜖-joins
where all pairs of points should be within 𝜖 distance to each
other. Usually, 𝜖-joins apply on 𝑑-dimensional data [4, 30] where
𝑑 mostly takes values ranging from 2 to 32. Set joins receive a
collection of set-valued data and find pairs of sets in that collec-
tion such that their similarity to be no less than a given threshold.
Set joins can also be utilized for string matching (find how sim-
ilar are two strings) that is the problem studied by string joins.
Spatio-textual joins are a combination of spatial and set (or string)
joins. Namely, given a collection of spatio-textual objects, such
a join identifies pairs of objects in that collection that are both
spatially close and textually similar. Last, link-based joins take
two sets of nodes in a graph and find 𝑘 pairs of nodes which are
ranked the highest depending on linked-based similarity scores
like SimRank [28] or PageRank [29].

The CSJ problem we study in this paper is related with the
𝜖-joins literature. In particular, the popular EGO-join approach
is initially proposed in [4]. According to that, the two datasets of
points being joined are first sorted based on the EGO (Epsilon
Grid Order). The EGO-join procedure pertains to a recursive
process and a strategy is utilized for pruning dataset segments
that is guaranteed to be non-joinable. Afterwards, several other
works tried to improve the performance of EGO-join and the best
of them is the work in [30] that also constitutes the state-of-the-
art for the classic 𝜖-join problem. To enable a comparison with
that work [30], we adapt its 𝜖-join distance condition to correctly
apply for CSJ purposes.
Community Detection. The problem of community detection
discovers all the communities in a graph such as social networks
or bibliographic networks. Communities found in graphs can
be attributed [38, 40, 44, 52, 53, 57] or non-attributed [21, 41],
spatial [8, 15, 24] or non-spatial [21, 41]. Yet, community detection
is a NP-hard problem [55] and so not suitable for online purposes.
Community Search. The problem of community search obtains
communities based on a specific query request; a given user who
is the member that searched community should include. Due to
the single community found, community search is much faster
than community detection and so more appropriate for online
executions. Still, there are works on attributed [16, 19] and non-
attributed [11, 12, 25, 26, 35, 46], as also spatial [17] and non-
spatial [18] communities. Some works also consider social in-
fluences among users based on certain topics [1]. Community

search is a more popular problem than community detection due
to its practical and online applicability; [20] shows a survey.

3 PROBLEM STATEMENT
The problem of community similarity based on user profile joins
(CSJ) computes the similarity of two communities by examining
the similarity of their subscribers (each user represented as a 𝑑-
dimensional vector) where one user from one community can be
matched with only one user from the other community (including
the same user in pair); the matched users share similar user profile.
A user profile is similar to another when the absolute difference per
dimension is at most 𝜖 ; 𝜖 is a given threshold and is asminimum as
possible to abide by the strict condition per dimension. Formally:

CSJ Definition. Given two communities 𝐵 and 𝐴 having |𝐵 | and
|𝐴| number of subscribers respectively, and

⌈
|𝐴 |
2

⌉
≤ |𝐵 | ≤ |𝐴|,

the CSJ join operator finds the matched 𝑑-dimensional user pairs
≺ 𝑏, 𝑎 ≻ with 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴 having |𝑏𝑖 − 𝑎𝑖 | ≤ 𝜖 for each
𝑖 ∈ [1, 𝑑], where each 𝑏 can be matched with at most one 𝑎 and
vice versa; 𝑏𝑖 and 𝑎𝑖 depict the aggregate counters of 𝑏 and 𝑎 in
dimension 𝑖 . The exact method of CSJ finds all the matched user
pairs ≺ 𝑏, 𝑎 ≻ among 𝐵 and 𝐴 (depicted as matched_user_pairs(𝐵,
𝐴)), while the approximate method of CSJ finds a percentage 𝑝
of total matched user pairs ≺ 𝑏, 𝑎 ≻, 𝑝 ·|matched_user_pairs(𝐵,
𝐴)| where 𝑝 ∈ (0, 1]. In both cases, CSJ computes the similarity
among 𝐵 and 𝐴 as follows:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐵,𝐴) = 𝑝 · |𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) ||𝐵 |
, where 𝑝 = 1 for exact and 𝑝 ∈ (0, 1] for approximate

(1)

Throughout the paper, we depict the less-followed community
by 𝐵 and the more-followed community by 𝐴, while to keep
things concise, we refer to similarity(𝐵, 𝐴) just by using the
word similarity. We stress that 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 is meaningful to be
computed only when the size of 𝐵 is at least the half of the size of
𝐴 (as dictated in aforementioned CSJ definition), since otherwise,
chances are that 𝐵 will be a significant subset of 𝐴 and that does
not capture the CSJ similarity semantics. Moreover, the logic
behind one-to-one matches among 𝐵 and 𝐴 is that CSJ treats the
subscribers of compared communities as a different audience in
which it aims to find the maximum number of common users.
So, if a user in 𝐵 matched with a user in 𝐴 (and vice versa), CSJ
interprets the matched users as being the same person belonging
to a different kind of audience.

To clarify how exact and approximate methods solve the CSJ
problem, we provide the following indicative example:
Example. Assume 𝜖 = 1 and three categories (𝑑 = 3) named Mu-
sic, Sport, and Education. Suppose also two users in 𝐵 depicted as
𝑏1 = {Music: 3, Sport: 4, Education: 2} and 𝑏2 = {Music: 2, Sport:
2, Education: 3}, and three users in 𝐴 depicted as 𝑎1 = {Music: 2,
Sport: 3, Education: 5}, 𝑎2 = {Music: 2, Sport: 3, Education: 1},
and 𝑎3 = {Music: 3, Sport: 3, Education: 3}. Numbers in previ-
ous sets denote the number of posts that users liked where such
posts published in pages belonging to respective categories. Since
|𝐵 | = 2 is at least the ceiling half of |𝐴| = 3, we proceed to the
computation of 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦. We see that 𝑏1 can be matched with
𝑎2 and 𝑎3 while 𝑏2 can be matched only with 𝑎3. An exact method
finds the matched user pairs ≺ 𝑏1, 𝑎2 ≻ and ≺ 𝑏2, 𝑎3 ≻ and so
it yields a 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 100%. On the contrary, an approximate
method may assign 𝑏1 with 𝑎3, so 𝑏2 is left unmatched, yielding
a less accurate 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 50%.

574

This example shows that approximate method can be easily
less accurate than exact method. However, this does not affect
its value and importance as a method. The usage of approxi-
mate method is to fast find a group of similar-enough community
pairs for impending precise similarity computation. When such a
group is found, the exact method applies to improve the similarity
of community pairs belonging to that group. The online system
executes the respective recommendation case exclusively based
on the precise results derived from the exact method. Namely, the
time-consuming exact method uses the results of fast approxi-
mate method as input to alleviate its total execution overhead.
So, both methods are useful in CSJ for different reasons.

4 MINMAX METHOD
In this section we present the MinMax method including its ap-
proximate and exact versions for the CSJ problem. The competitor
CSJ methods to MinMax are discussed in the next section. We also
highlight that MinMax uses a novel encoding scheme (outlined in
Figure 1) that can find a broader applicability besides CSJ.

In Figure 1, a user vector of 𝑑-size is segmented to 4 𝑝𝑎𝑟𝑡𝑠
marked by red, green, blue, and purple colors for illustration clarity.
The selection of a 4-𝑝𝑎𝑟𝑡𝑠-segmentation achieves the best tradeoff
since a lower number of 𝑝𝑎𝑟𝑡𝑠 is more time-costly (due to less
effective pruning) and a higher number of 𝑝𝑎𝑟𝑡𝑠 is more space-
consuming (due to more memory required over all 𝑝𝑎𝑟𝑡𝑠). The
sum of values over 𝑑 dimensions gives the 𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝐼𝐷 of user.
Also, since 𝜖 = 1, the 𝑟𝑎𝑛𝑔𝑒𝑠 [2,11], [8,20], [5,16], and [13,26] cap-
ture all the possible values6 per 𝑝𝑎𝑟𝑡 that may satisfy an absolute
difference of at most 𝜖 per dimension. So, the sum of minimum
andmaximum values in these 𝑟𝑎𝑛𝑔𝑒𝑠 yields the 𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝑀𝑖𝑛 and
𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝑀𝑎𝑥 of user. Note that such a user with 𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝐼𝐷 =

46 may be matched for CSJ purposes only with users where
their 𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝐼𝐷 falls within the range [𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝑀𝑖𝑛 = 28,
𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝑀𝑎𝑥 = 73] associated with 𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝐼𝐷 = 46.

MinMax algorithms (approximate and exact) presented in the
following, take as input the communities 𝐵 and 𝐴, the number of
dimensions 𝑑 , and the absolute-difference-per-dimension thresh-
old 𝜖 , and they compute as output the 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 among 𝐵 and 𝐴.
Further, in the discussion of algorithms, the word 𝑝𝑎𝑟𝑡𝑠 mentions
to the sums of each part, e.g., numbers 5, 13, 9, and 19 in Figure 1,
while the word 𝑟𝑎𝑛𝑔𝑒𝑠 mentions to the final ranges associated
with those parts, e.g., [2,11], [8,20], [5,16], and [13,26] in Figure 1.

Moreover, during the pairing execution process of currently
examined users 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴, both MinMax algorithms yield 5
kind of events, i.e., MIN PRUNE, MAX PRUNE, NO OVERLAP,
NO MATCH, and MATCH. An event MIN PRUNE means that
current user 𝑏 ∈ 𝐵 cannot be further matched with any user
𝑎′ ∈ 𝐴 where 𝑎′ .𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝑀𝑖𝑛 ≥ 𝑎.𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝑀𝑖𝑛. Instead, an
event MAX PRUNE denotes that current user 𝑎 ∈ 𝐴 cannot be
further matched with any user 𝑏′ ∈ 𝐵 where 𝑏′ .𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝐼𝐷 ≥
𝑏.𝑒𝑛𝑐𝑜𝑑𝑒𝑑_𝐼𝐷 . An event NO OVERLAP means that there is no
complete overlap among 𝑝𝑎𝑟𝑡𝑠 of current user 𝑏 ∈ 𝐵 and 𝑟𝑎𝑛𝑔𝑒𝑠
of current user 𝑎 ∈ 𝐴, and so there is no need to proceed to
an 𝜖-comparison on their 𝑑-dimensional vectors, since it is sure
that they do not match. An event NO MATCH denotes that an
𝜖-comparison on prior 𝑑-dimensional vectors is executed but no

6For instance, the value 2 of range [2,11] relative to 1st-part of user in Figure 1 (let
call that user 𝑥) can be related to a user 𝑦 with 1st-part arrangement 0|0|0|0|1|1
and to another user 𝑧 with 1st-part arrangement 0|2|0|0|0|0. Among 𝑦 and 𝑧, only
𝑦 has an absolute difference ≤ 𝜖 with 𝑥 in regards to their 1st-part. Yet, MinMax
algorithms should consider both users for examination based on the encoding scheme
to avoid possible false misses.

match is found among current users (i.e., there is at least one
dimension 𝑖 ∈ [1, 𝑑] in which the absolute difference of user
counters is higher than 𝜖). Finally, an event MATCH means that
prior 𝑑-dimensional comparison matches the examined users.

4.1 Approximate MinMax
Algorithm Ap-MinMax presents the approximate execution of
MinMax method. It first forms two buffers (structures) named
𝐸𝑛𝑐𝑑_𝐵 and 𝐸𝑛𝑐𝑑_𝐴 (Lines 1–4). 𝐸𝑛𝑐𝑑_𝐵 contains a triple-entry
for each user 𝑏 ∈ 𝐵, i.e., the encoded ID of user, the 4 parts of that
ID, and the real ID of user. 𝐸𝑛𝑐𝑑_𝐴 includes a quadruple-entry
for every user 𝑎 ∈ 𝐴, i.e., the encoded Min and Max of user,
the ranges of user encoded ID, and the user real ID. 𝐸𝑛𝑐𝑑_𝐵 and
𝐸𝑛𝑐𝑑_𝐴 are sorted in ascending order of encoded ID and encoded
Min so as to enable the occurrence of MIN PRUNE and MAX
PRUNE events. The terms parts, ranges, encoded ID, Min, and
Max have been explained in the beginning of this section and are
also illustrated in Figure 1.

Algorithm Ap-MinMax (Approximate MinMax)
Input :𝐵, 𝐴, 𝑑 , 𝜖
Output :𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 // 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐵,𝐴) depicted in Eq. (1)

1 Compute the 𝑒𝑛𝑐𝑑_𝐼𝐷 and its 𝑝𝑎𝑟𝑡𝑠 for each user 𝑏 ∈ 𝐵;
2 Store all results (𝑒𝑛𝑐𝑑_𝐼𝐷 , 𝑝𝑎𝑟𝑡𝑠 , 𝑟𝑒𝑎𝑙_𝐼𝐷) to a buffer 𝐸𝑛𝑐𝑑_𝐵
that is ASC-sorted on 𝑒𝑛𝑐𝑑_𝐼𝐷 ;

3 Compute the 𝑒𝑛𝑐𝑑_𝑀𝑖𝑛, 𝑒𝑛𝑐𝑑_𝑀𝑎𝑥 , and the 𝑟𝑎𝑛𝑔𝑒𝑠 of
𝑒𝑛𝑐𝑑_𝐼𝐷 for each user 𝑎 ∈ 𝐴;

4 Store all results (𝑒𝑛𝑐𝑑_𝑀𝑖𝑛, 𝑒𝑛𝑐𝑑_𝑀𝑎𝑥 , 𝑟𝑎𝑛𝑔𝑒𝑠 , 𝑟𝑒𝑎𝑙_𝐼𝐷) to a
buffer 𝐸𝑛𝑐𝑑_𝐴 that is ASC-sorted on 𝑒𝑛𝑐𝑑_𝑀𝑖𝑛;

5 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0;
6 for each eB ∈ Encd_B do
7 𝑠𝑘𝑖𝑝 = 1;
8 for each eA using offset ∈ Encd_A do
9 if 𝑒𝐵.𝑒𝑛𝑐𝑑_𝐼𝐷 < 𝑒𝐴.𝑒𝑛𝑐𝑑_𝑀𝑖𝑛 then break; // MIN

PRUNE (go to next 𝑒𝐵)
10 else if 𝑒𝐵.𝑒𝑛𝑐𝑑_𝐼𝐷 ≥ 𝑒𝐴.𝑒𝑛𝑐𝑑_𝑀𝑖𝑛 and

𝑒𝐵.𝑒𝑛𝑐𝑑_𝐼𝐷 ≤ 𝑒𝐴.𝑒𝑛𝑐𝑑_𝑀𝑎𝑥 then
11 if 𝑒𝐵.𝑝𝑎𝑟𝑡𝑠 do not overlap with 𝑒𝐴.𝑟𝑎𝑛𝑔𝑒𝑠 then

continue; // NO OVERLAP (go to next 𝑒𝐴)
12 else Compare 𝑒𝐵 with 𝑒𝐴 based on 𝜖 using their

𝑟𝑒𝑎𝑙_𝐼𝐷 to access their 𝑑-dimensional vectors;
// MATCH (go to next 𝑒𝐵) or NO MATCH

13 else 𝑜 𝑓 𝑓 𝑠𝑒𝑡++ when 𝑠𝑘𝑖𝑝 = 1; // MAX PRUNE

14 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = |𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) | ÷ |𝐵 | ;
15 return 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦;

The pairing process unfolds in a double-loop fashion over an
entry 𝑒𝐵 of 𝐸𝑛𝑐𝑑_𝐵 and an entry 𝑒𝐴 of 𝐸𝑛𝑐𝑑_𝐴. There are three
main cases. First, in case that the encoded ID of 𝑒𝐵 is smaller
than the encoded Min of 𝑒𝐴 then 𝑒𝐵 is min pruned as it is sure
that there is no a match for it (Line 9). Second, in case that the
encoded ID of 𝑒𝐵 falls within the encoded Min and Max range of
𝑒𝐴 then there is a chance of possible matching (Line 10). If any
of the 𝑝𝑎𝑟𝑡𝑠 of 𝑒𝐵 does not fall within the respective 𝑟𝑎𝑛𝑔𝑒 of 𝑒𝐴
then there is no complete overlap among them, and so it is sure
that 𝑒𝐵 and 𝑒𝐴 do not match (Line 11). Yet, if there is a complete
overlap among respective 𝑝𝑎𝑟𝑡𝑠 and 𝑟𝑎𝑛𝑔𝑒𝑠 , the 𝑑-dimensional
comparison takes place (Line 12). In case of match, the execution
continues with the processing of next 𝑒𝐵 and that justifies its
approximate nature. Third, if the previous two main cases are not
met, it means that the encoded ID of 𝑒𝐵 is bigger than the encoded
Max of 𝑒𝐴 (Line 13), and so 𝑒𝐴 can bemax pruned in some settings.

575

user vector = 1|0|0|0|2|2|0|0|2|1|1|5|4|0|3|0|0|1|4|1|0|3|5|4|1|2|4 ε = 1 , d = 27

1st-Part: 1|0|0|0|2|2 = 5 1st-Part: 1|0|0|0|2|2 => [0,2]|[0,1]|[0,1]|[0,1]|[1,3]|[1,3] => [2,11]
2nd-Part: 0|0|2|1|1|5|4 = 13 2nd-Part: 0|0|2|1|1|5|4 => [0,1]|[0,1]|[1,3]|[0,2]|[0,2]|[4,6]|[3,5] => [8,20]
3rd-Part: 0|3|0|0|1|4|1 = 9 3rd-Part: 0|3|0|0|1|4|1 => [0,1]|[2,4]|[0,1]|[0,1]|[0,2]|[3,5]|[0,2] => [5,16]
4th-Part: 0|3|5|4|1|2|4 = 19 4th-Part: 0|3|5|4|1|2|4 => [0,1]|[2,4]|[4,6]|[3,5]|[0,2]|[1,3]|[3,5] => [13,26]

encoded_ID = 5 + 13 + 9 + 19 encoded_Min = 2 + 8 + 5 + 13 => encoded_Min = 28
encoded_ID = 46 encoded_Max = 11 + 20 + 16 + 26 => encoded_Max = 73

Figure 1: An example of the encoding scheme used in CSJ.

These settings are related with the variables 𝑠𝑘𝑖𝑝 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 that
we also use in other parts of code but we omitted their overall
reference for simplicity. In short, 𝑠𝑘𝑖𝑝 is a flag activated per 𝑒𝐵
and denotes consecutive entries to 𝑒𝐴 that can be safely skipped
for next 𝑒𝐵, operated by the respective movement of 𝑜 𝑓 𝑓 𝑠𝑒𝑡 . The
deactivation of 𝑠𝑘𝑖𝑝 is done when a comparison takes place, even
a 𝑝𝑎𝑟𝑡-𝑟𝑎𝑛𝑔𝑒 comparison. Finally, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 is computed based
on the total number of matched pairs (Line 14). Details about
gradually forming and using a buffer of matches (depicted as
matched_user_pairs(𝐵, 𝐴); see Eq. (1)) are also omitted.

To further illustrate the execution of Ap-MinMax, we provide a
running example in Figure 2 consisting of 8 sequential instances.
Numbers in parenthesis are the 𝑒𝑐𝑛𝑑_𝑀𝑖𝑛 and 𝑒𝑐𝑛𝑑_𝑀𝑎𝑥 of each
user 𝑎 ∈ 𝐴 while the number associated with each user 𝑏 ∈ 𝐵
is their 𝑒𝑐𝑛𝑑_𝐼𝐷 . Actually, in each instance, the left column of
𝐴 users maps to a more compact version of 𝐸𝑛𝑐𝑑_𝐴 while the
right column of 𝐵 users maps to a less verbose version of 𝐸𝑛𝑐𝑑_𝐵.
All numbers are intentionally selected to be different for clarity.
Ap-MinMax finds twomatched pairs, ≺ 𝑏2, 𝑎3 ≻ and ≺ 𝑏5, 𝑎5 ≻, so
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 40%. During execution we observe all the possible
events (MIN PRUNE, MAX PRUNE, NO OVERLAP, NO MATCH,
and MATCH) that can take place in Ap-MinMax. For example, in
instance ≪ 1 ≫, 𝑏1 is eventually min pruned by 𝑎3 after two
no overlap comparisons with 𝑎1 and 𝑎2. However, in instances
≪ 3≫ and≪ 4≫, 𝑎1 and 𝑎2 aremax pruned by 𝑏3, respectively.
Further, note that in instance ≪ 6 ≫, 𝑏4 starts comparing with
𝑎4 by using the 𝑜 𝑓 𝑓 𝑠𝑒𝑡 changed by 𝑏3 in instances ≪ 3 ≫ and
≪ 4 ≫ where 𝑠𝑘𝑖𝑝 was activated.

4.2 Exact MinMax
Algorithm Ex-MinMax shows the exact execution of MinMaxmeth-
od that computes the maximum possible 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 among com-
munities 𝐵 and𝐴. To avoid false misses of Ap-MinMax, Ex-MinMax
considers all the possible matches among currently examined
user 𝑏 ∈ 𝐵 and its relative matches in 𝐴. This consideration is
done during the pairing process of each 𝑏, and derives from a
MIN PRUNE on 𝑏 along with a MAX PRUNE over all the matches
of 𝑏 to 𝐴. To apply such a MAX PRUNE to a set of users in 𝐴,
Ex-MinMax uses a variable𝑚𝑎𝑥𝑉 (Line 6) to store the maximum
encoded Max value over users (matches of 𝑏) in that set of 𝐴.

Ex-MinMax forms 𝐸𝑛𝑐𝑑_𝐵 and 𝐸𝑛𝑐𝑑_𝐴 in Line 5 as Ap-MinMax
does it but also uses 4 new structures denoted in Lines 1–4. E.g.,
𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵 is a map that stores for each user 𝑏 all its matches
in 𝐴 and 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵 is a map that is ascending sorted on the
cardinality of those matches to all the users in 𝐵 who have such
a cardinality. Further, besides 𝑠𝑘𝑖𝑝 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 , Ex-MinMax also
uses the variable𝑚𝑎𝑥𝑉 to enable, as earlier discussed, a MAX
PRUNE event over all the matches in 𝐴 of currently examined
user 𝑏. The pairing process among 𝑒𝐵 and 𝑒𝐴 entries is similar
to the one of Ap-MinMax and the new code added is related with
the management of𝑚𝑎𝑥𝑉 .

In particular, when a new match arises (Line 20),𝑚𝑎𝑥𝑉 may
update its value with the encoded Max value of current matched
user 𝑎 (Lines 22–23). In case of a MIN PRUNE event (Line 10), if
the encoded ID of next-to-current-user 𝑏 is greater than𝑚𝑎𝑥𝑉 ,
this safely (no false misses) enables a MAX PRUNE application to
all the matches of 𝑏 in 𝐴. So, due to MIN PRUNE, current user 𝑏
cannot be further matched with 𝐴, and due to MAX PRUNE, all
the matched users of 𝑏 in 𝐴 cannot be further matched with 𝐵.

Algorithm Ex-MinMax (Exact MinMax)
Input :𝐵, 𝐴, 𝑑 , 𝜖
Output :𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 // 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐵,𝐴) depicted in Eq. (1)

1 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵 = ∅; // map : a user 𝑏 TO matches in 𝐴

2 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴 = ∅; // map : a user 𝑎 TO matches in 𝐵

3 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵 = ∅; // map : |matches in 𝐴| TO relative users 𝑏
4 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴 = ∅; // map : |matches in 𝐵| TO relative users 𝑎
5 Form 𝐸𝑛𝑐𝑑_𝐵 and 𝐸𝑛𝑐𝑑_𝐴 as Ap-MinMax in its Lines 1–4;
6 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0; 𝑚𝑎𝑥𝑉 = 0; // the maximum encoded Max value
over matches in 𝐴 found for every examined user in 𝐵

7 for each eB ∈ Encd_B do
8 𝑠𝑘𝑖𝑝 = 1;
9 for each eA using offset ∈ Encd_A do
10 if 𝑒𝐵.𝑒𝑛𝑐𝑑_𝐼𝐷 < 𝑒𝐴.𝑒𝑛𝑐𝑑_𝑀𝑖𝑛 then // MIN PRUNE
11 Let the next entry of 𝑒𝐵 in 𝐸𝑛𝑐𝑑_𝐵 be 𝑛𝑒𝑥𝑡_𝑒𝐵;
12 if 𝑛𝑒𝑥𝑡_𝑒𝐵.𝑒𝑛𝑐𝑑_𝐼𝐷 >𝑚𝑎𝑥𝑉 then

// MAX PRUNE applies to a set of users in 𝐴

13 Use𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵 and𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴 to fill
𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵 and 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴, respectively;

14 Update𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) by calling
the function CSF(𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵,𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴,
𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵, 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴);

15 Set𝑚𝑎𝑥𝑉 = 0 and Empty𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵,
𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴, 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵, and 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴;

16 break; // go to next 𝑒𝐵

17 else if 𝑒𝐵.𝑒𝑛𝑐𝑑_𝐼𝐷 ≥ 𝑒𝐴.𝑒𝑛𝑐𝑑_𝑀𝑖𝑛 and
𝑒𝐵.𝑒𝑛𝑐𝑑_𝐼𝐷 ≤ 𝑒𝐴.𝑒𝑛𝑐𝑑_𝑀𝑎𝑥 then

18 if 𝑒𝐵.𝑝𝑎𝑟𝑡𝑠 do not overlap with 𝑒𝐴.𝑟𝑎𝑛𝑔𝑒𝑠 then
continue; // NO OVERLAP (go to next 𝑒𝐴)

19 else Compare 𝑒𝐵 with 𝑒𝐴 based on 𝜖 using their
𝑟𝑒𝑎𝑙_𝐼𝐷 to access their 𝑑-dimensional vectors;
// MATCH or NO MATCH

20 if MATCH then
21 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵[𝑒𝐵.𝑟𝑒𝑎𝑙_𝐼𝐷].insert(𝑒𝐴.𝑟𝑒𝑎𝑙_𝐼𝐷);

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴[𝑒𝐴.𝑟𝑒𝑎𝑙_𝐼𝐷].insert(𝑒𝐵.𝑟𝑒𝑎𝑙_𝐼𝐷);
22 if 𝑒𝐴.𝑒𝑛𝑐𝑑_𝑀𝑎𝑥 >𝑚𝑎𝑥𝑉 then
23 𝑚𝑎𝑥𝑉 = 𝑒𝐴.𝑒𝑛𝑐𝑑_𝑀𝑎𝑥 ;

24 else 𝑜 𝑓 𝑓 𝑠𝑒𝑡++ when 𝑠𝑘𝑖𝑝 = 1; // MAX PRUNE

25 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = |𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) | ÷ |𝐵 | ;
26 return 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦;

Hence, the set of𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) get safely updated
via the function CSF (discussed later) in Line 14. CSF finds the

576

<< 1 >>
a1:(30, 55) b1:40
a2:(33, 60) b2:48
a3:(42, 72) b3:67
a4:(45, 73) b4:71
a5:(50, 80) b5:74
=====
* b1:40 IN a1:(30, 55) ⇒ NO OVERLAP
* b1:40 IN a2:(33, 60) ⇒ NO OVERLAP
* b1:40 < a3:(42, 72) ⇒ MIN PRUNE

<< 2 >>
a1:(30, 55) b2:48
a2:(33, 60) b3:67
a3:(42, 72) b4:71
a4:(45, 73) b5:74
a5:(50, 80)
=====
* b2:48 IN a1:(30, 55) ⇒ NO MATCH
* b2:48 IN a2:(33, 60) ⇒ NO MATCH
* b2:48 IN a3:(42, 72) ⇒ MATCH

<< 3 >>
a1:(30, 55) b3:67
a2:(33, 60) b4:71
a4:(45, 73) b5:74
a5:(50, 80)
=====
* b3:67 > a1:(30, 55) ⇒ MAX PRUNE

<< 4 >>
a2:(33, 60) b3:67
a4:(45, 73) b4:71
a5:(50, 80) b5:74
=====
* b3:67 > a2:(33, 60) ⇒ MAX PRUNE

<< 5 >>
a4:(45, 73) b3:67
a5:(50, 80) b4:71
 b5:74
=====
* b3:67 IN a4:(45, 73) ⇒ NO MATCH
* b3:67 IN a5:(50, 80) ⇒ NO OVERLAP

<< 6 >>
a4:(45, 73) b4:71
a5:(50, 80) b5:74
=====
* b4:71 IN a4:(45, 73) ⇒ NO OVERLAP
* b4:71 IN a5:(50, 80) ⇒ NO MATCH

<< 7 >>
a4:(45, 73) b5:74
a5:(50, 80)
=====
* b5:74 > a4:(45, 73) ⇒ MAX PRUNE

<< 8 >>
a5:(50, 80) b5:74
=====
* b5:74 IN a5:(50, 80) ⇒ MATCH

MATCHES = {<b2, a3>, <b5, a5>}

Figure 2: An example showing the execution of Approximate MinMax.

<< 1 >>
a1:(30, 55) b1:40
a2:(33, 60) b2:58
a3:(38, 57) b3:67
a4:(45, 73) b4:74
a5:(50, 80) b5:81
=====
* maxV = 0
* b1:40 IN a1:(30, 55) ⇒ MATCH (maxV = 55)
* b1:40 IN a2:(33, 60) ⇒ NO OVERLAP
* b1:40 IN a3:(38, 57) ⇒ MATCH (maxV = 57)
* b1:40 < a4:(45, 73) ⇒ MIN PRUNE (b2 > maxV)

 ⇒ CSF(<b1, a1>, <b1, a3>)

<< 2 >>
a2:(33, 60) b2:58
a4:(45, 73) b3:67
a5:(50, 80) b4:74

 b5:81
=====
* maxV = 0
* b2:58 IN a2:(33, 60) ⇒ MATCH (maxV = 60)
* b2:58 IN a4:(45, 73) ⇒ MATCH (maxV = 73)
* b2:58 IN a5:(50, 80) ⇒ NO MATCH (b3 < maxV)

<< 3 >>
a2:(33, 60) b3:67
a4:(45, 73) b4:74
a5:(50, 80) b5:81
=====
* maxV = 73
* b3:67 > a2:(33, 60) ⇒ MAX PRUNE

<< 4 >>
a4:(45, 73) b3:67
a5:(50, 80) b4:74

 b5:81
=====
* maxV = 73
* b3:67 IN a4:(45, 73) ⇒ MATCH (maxV = 73)
* b3:67 IN a5:(50, 80) ⇒ NO MATCH (b4 > maxV)
 ⇒ CSF(<b2, a2>, <b2, a4>, <b3, a4>)

<< 5 >>
a5:(50, 80) b4:74
 b5:81
=====
* maxV = 0
* b4:74 IN a5:(50, 80) ⇒ NO OVERLAP

<< 6 >>
a5:(50, 80) b5:81
=====
* maxV = 0
* b5:81 > a5:(50, 80) ⇒ MAX PRUNE

MATCHES = {Results of CSF}

Figure 3: An example showing the execution of Exact MinMax.

maximum number of one-to-one matches in given set of matched
user pairs ≺ 𝑏, 𝑎 ≻. Note that generally that set may also include
users 𝑏′ who examined after the examination of current 𝑏 but
we omitted such edge cases from Ex-MinMax code to keep things
simple. Yet, the running example we present later for Ex-MinMax
demonstrates such edge cases. After CSF call, 𝑚𝑎𝑥𝑉 is set to 0
and the 4 new structures get empty to initiate the process of next
segment of 𝐵 matching with 𝐴 (Line 15).

Figure 3 presents a running example pertaining to the ex-
ecution of Ex-MinMax that comprises 6 consecutive instances.
For clarity, all numbers are selected to be different and the pre-
sentation setting relative to 𝐸𝑛𝑐𝑑_𝐴 and 𝐸𝑛𝑐𝑑_𝐵 is the same
as in Figure 2. The variation in execution depends on the us-
age of𝑚𝑎𝑥𝑉 . In instance ≪ 1 ≫, 𝑏1 updates two times𝑚𝑎𝑥𝑉
and {𝑎1, 𝑎3} are the matches of 𝑏1 in 𝐴. The MIN PRUNE event
on 𝑏1 by 𝑎4 along with MAX PRUNE event on {𝑎1, 𝑎3} due to
𝑏2 > 𝑚𝑎𝑥𝑉 , denote that 𝑏1 is min pruned (no other match exists
for 𝑏1 in 𝐴) and {𝑎1, 𝑎3} are max pruned (no other match exists
for them in 𝐵), so CSF can be safely called without losing any
other matches relative to 𝑏1, 𝑎1, or 𝑎3. In this case, CSF updates

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) with either ≺ 𝑏1, 𝑎1 ≻ or ≺ 𝑏1, 𝑎3 ≻.
Execution flows similar to Ap-MinMax in other instances except
for instance ≪ 4 ≫ where CSF is called again. Note that while
prior instance ≪ 1 ≫ depicts a normal case for the given input
to CSF, instance ≪ 4 ≫ captures an edge case as the input to CSF
contains more than one examined users in 𝐵 (𝑏2 and𝑏3). Instances
≪ 2≫–≪ 4≫ show that edge cases also use𝑚𝑎𝑥𝑉 till reaching a
safe point where all matches are found between current segments
𝐵 and 𝐴 before calling CSF. The set𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴)
has the final matches of Ex-MinMax gradually formed by CSF.

Last, we discuss the run of function CSF (CoverSmallestFirst)
that finds the maximum number of matches to the current set of
matched user pairs ≺ 𝑏, 𝑎 ≻. CSF assigns a match to the smallest
users (having the smallest number of matches) so as to find a
pair for them (cover them). Covering smaller users, and so ex-
cluding them from the pairing process, leaves a bigger portion
of available pairs in order more matches overall to be found.

Specifically, CSF utilizes 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵 and 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴 in a loop
(Line 1) to first find the smallest user𝑏 (Line 4) or the smallest user
𝑎 (Line 7). Then, it pairs prior user 𝑏 with the smallest user 𝑎 (Line

577

5) or pairing prior user 𝑎 with the smallest user 𝑏 (Line 8). In case
of a tie (Line 9), the previous two steps are combined asmentioned
(Line 10). When a pair ≺ 𝑏, 𝑎 ≻ having minimum connections
in 𝐵 and 𝐴 is found, it updates𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) by its
insertion and the input of CSF by its deletion (Lines 11–12). The
loop terminates when all the input of CSF is processed (Line 13).

Function CSF : Cover Smallest First
Input :𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵,𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴, 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵, 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴
Output :𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴)

1 while true do
2 𝑠𝐵 = 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵.first(); 𝑠𝐴 = 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴.first(); // get the

first entries of respective sorted maps
3 if 𝑠𝐵.|matches in 𝐴| < 𝑠𝐴.|matches in 𝐵| then
4 for each user 𝑏 ∈ 𝑠𝐵 do
5 Find the user 𝑎 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵[𝑏] having the

smallest matches to 𝐵; // break if single match

6 else if 𝑠𝐵.|matches in 𝐴| > 𝑠𝐴.|matches in 𝐵| then
7 for each user 𝑎 ∈ 𝑠𝐴 do
8 Find the user 𝑏 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴[𝑎] having the

smallest matches to 𝐴; // break if single match

9 else
10 Repeat Lines 4–5; Repeat Lines 7–8 in case no a user

𝑎 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵[𝑏] found having a single match to 𝐵;

11 Insert to𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) the found pair
≺ 𝑏, 𝑎 ≻ having minimum connections in 𝐵 and 𝐴;

12 Update𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵,𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴, 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵, and
𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴 by removing ≺ 𝑏, 𝑎 ≻ related information;

13 Exit from loop if 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵 or 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴 gets empty;

14 return𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴) ;

5 COMPETITOR METHODS
In this section we present two competitor methods to Ap-MinMax
and Ex-MinMax. The first is a Baselinemethod while the second
is an adaptation of SuperEGO method used in [30].

5.1 BaselineMethod
Approximate Baseline.Approximate Baseline (Ap-Baseline)
uses a nested loop; outer for 𝑏 ∈ 𝐵 and inner for 𝑎 ∈ 𝐴. When a
match is found among current users 𝑏 and 𝑎, execution proceeds
with the next user 𝑏. Yet, 𝑠𝑘𝑖𝑝 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 are used similarly to
Ap-MinMax for the faster processing of nested loop join.
Exact Baseline. Exact Baseline (Ex-Baseline) uses a nested
loop to first find all matches among 𝐵 and 𝐴. Then, it forms the 4
structures𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵,𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴, 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵, and 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴
(same as in Ex-MinMax) and calls once the CSF function.

5.2 SuperEGOMethod
The SuperEGO method [30] is the state-of-the-art algorithm for
the classic similarity 𝜖-join problem that finds all pairs of points
within 𝜖 distance to each other among two𝑑-dimensional datasets.
Algorithm SuperEGO presents the general framework of SuperEGO.

The logic of SuperEGO is to apply a divide-and-conquer recur-
sive approach on the input community pair ≺ 𝐵,𝐴 ≻. Specifically,
SuperEGO gradually reduces 𝐵 and 𝐴 to increase the chances to
prune user pairs ≺ 𝑏, 𝑎 ≻ in them that it is sure that cannot be
matched. This pruning is done by the EGO-Strategy function
of SuperEGO (Line 1) that is its core component for efficiency.
As 𝐵 and 𝐴 get smaller but not pruned by EGO-Strategy then
SuperEGOmeets one of the four casesmentioned (Lines 2–3, Lines

4–6, Lines 7–9, Lines 10–12). In all such cases we have a split of
segments having a size no less than 𝑡 (predefined parameter of
SuperEGO) and then the recursive process continues. The only
exception is the base case of recursion in Lines 2–3 where denotes
the worst-case scenario of SuperEGO. It means that pruning was
not possible in previous recursive steps and it is also not mean-
ingful the segments 𝐵 and𝐴 to be further divided; as a result, the
classic nested loop join applies on respective segments 𝐵 and 𝐴.

Algorithm SuperEGO

Input :𝐵, 𝐴, 𝑑 , 𝜖
Output :𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑢𝑠𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 (𝐵,𝐴)
Param. :𝑡

1 if EGO-Strategy(𝐵, 𝐴, 𝑑 , 𝜖) = 1 then return ∅;
2 if |𝐵| < 𝑡 and |𝐴| < 𝑡 then
3 return NestedLoopJoin(𝐵, 𝐴, 𝑑 , 𝜖);

4 if |𝐵| < 𝑡 and |𝐴| ≥ 𝑡 then
5 {𝐴1, 𝐴2} = Split(𝐴);
6 return SuperEGO(𝐵, 𝐴1, 𝑑 , 𝜖)

⋃
SuperEGO(𝐵, 𝐴2, 𝑑 , 𝜖);

7 if |𝐵| ≥ 𝑡 and |𝐴| < 𝑡 then
8 {𝐵1, 𝐵2} = Split(𝐵);
9 return SuperEGO(𝐵1, 𝐴, 𝑑 , 𝜖)

⋃
SuperEGO(𝐵2, 𝐴, 𝑑 , 𝜖);

10 if |𝐵| ≥ 𝑡 and |𝐴| ≥ 𝑡 then
11 {𝐵1, 𝐵2} = Split(𝐵); {𝐴1, 𝐴2} = Split(𝐴);
12 return SuperEGO(𝐵1, 𝐴1, 𝑑 , 𝜖)

⋃
SuperEGO(𝐵1, 𝐴2, 𝑑 , 𝜖)

⋃
SuperEGO(𝐵2, 𝐴1, 𝑑 , 𝜖)

⋃
SuperEGO(𝐵2, 𝐴2, 𝑑 , 𝜖);

SuperEGO can solve CSJ by properly adapting the 𝜖 parameter.
E.g., if 𝜖 = 1 and 𝑑 = 27 then the relative 𝜖 for SuperEGO should
be 27 (marking the minimum distance derived from an absolute
difference of at most 1 per dimension) since SuperEGO applies an
aggregate distance over 𝑑 dimensions in its operation.
Approximate SuperEGO. The Approximate SuperEGO method
(Ap-SuperEGO) executes SuperEGO with only difference the re-
placement of NestedLoopJoinwith the one used in Ap-Baseline.
Exact SuperEGO. Exact SuperEGO (Ex-SuperEGO) replaces the
NestedLoopJoin of SuperEGO with that of Ex-Baseline to find
all matches among current 𝐵 and 𝐴. When the recursion of
SuperEGO ends, it forms 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐵, 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝐴, 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐵,
and 𝑠𝑜𝑟𝑡𝑒𝑑𝑀_𝐴 (same as in Ex-MinMax) and calls once the CSF.

6 EXPERIMENTAL EVALUATION
Our code is in C++ and ran experiments on an Intel CPU i7-11700
machine at 2.5 GHz with 24GB RAM and Windows 10 64-bit.

6.1 Setup
Datasets. We used one real and one synthetic dataset for the
CSJ problem, mentioned as VK and Synthetic in the paper. In
particular, we sampled 7.8M users from the VK7 social network
and for their preferences we selected the 20 most popular pages
from the 27 categories of VK; so, 540 pages in total. Each user
vector is formed based on the real likes of that user to all VK posts
published in any of the 540 pages over the 2010-2019 years of VK.
Actually, each user vector has 27 dimensions (𝑑 = 27) mapping
to the 27 categories of VK, and the value in each dimension
depicts the aggregate number of likes of user over all the posts
7VK (https://vk.com/) represents the Russian version of Facebook in terms of scale,
functionalities, variety of topics, user accounts, brand pages, etc. It has a much more
flexible and unrestricted API (https://dev.vk.com/en/reference) than rest social
networks. Further, according to Wikipedia, VK had been the 16th most visited
website in the world and at the moment it has more than 800M users. All these
factors make it very suitable as a social network data source for research purposes.

578

associated with the respective 20 pages of category. Regarding
the Synthetic dataset, we used the same number of users with
VK (7.8M) but each user vector (also 𝑑 = 27) is filled with values
derived from a uniform generatorwe created. Table 1 shows the
distribution (notably different among datasets) over the number
of total likes per dimension (category).

Themaximum number of likes per dimension over all users in
VK is 152532while in Synthetic is 500000.We created Synthetic
to be semi-realistic. On one hand, platforms have many features
and so the aggregation per category can be high enough, that is
why we selected the value of 500000. On the other hand, the user
reactions are often not so uniform since users tend to like some
things much more than others (as our real VK dataset depicts). Yet,
Synthetic plays the role of a not so common but simultaneously
possible case of real-world. We contend that by following such
an approach for forming VK and Synthetic datasets, we provide
broad and general results for our CSJ methods.
Methods. We evaluate the CSJ performance of 3 approximate
and 3 exact methods. The former are Ap-Baseline, Ap-MinMax,
and Ap-SuperEGO, while the latter are Ex-Baseline, Ex-MinMax,
and Ex-SuperEGO. For SuperEGOmethods all data are normalized
to fit in [0, 1]𝑑 domain since else the algorithm does not work.
Parameters. In all experiments,𝑑 = 27 and 𝜖 = 1 for VKwhile 𝜖 =
15000 for Synthetic. For SuperEGO methods, 𝜖 is 27(1/152532)
and 27(15000/500000) for VK and Synthetic, respectively. We
remind that we adapted the 𝜖 of SuperEGO for CSJ to denote a
right aggregate absolute distance over all 𝑑 dimensions. Also, as
SuperEGO can run in parallel, we used 1 thread for serial execu-
tion and fair comparison. For the encoding scheme used in MinMax
methods we selected 4 parts for reasons explained in Section 4.
Case Studies.We evaluate our CSJ solutions to two types of case
studies. The former mentions to different categories where each
≺ 𝐵,𝐴 ≻ community pair (of totally 10 pairs) has a 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥
15%, whereas the latter mentions to same categories where each
≺ 𝐵,𝐴 ≻ community pair (of totally 10 pairs) has a 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥
30%. Each community pair is denoted by a unique 𝑐𝐼𝐷 (couple ID)
in all results. Detailed information about the community pairs we
compare is shown in Table 2. The same 20 couples are compared
in both VK and Synthetic. Yet, we stress that the selection of
those 20 couples done in an exploration way under the realistic
settings of VK. Namely, we tested various couples belonging to
different or same categories till finding 10 couples in total that
really have a 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 at least 15% or 30% in each case.
Tables. Tables 1 and 2 already explained. Tables 3–10 show the
evaluation results of all CSJ methods. In each such table, size_B
is |𝐵 |, size_A is |𝐴|, all percentage values mention to respective
computed 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (Eq. (1)), and each number in parenthesis is
the respective execution time in seconds. Finally, Table 11 shows
the scalability results relative only to Ex-MinMax method that
generally is the most accurate and practical method to solve the
CSJ problem; execution time is also in seconds.

6.2 Results
Experiments on VK Dataset. Table 3 shows the CSJ results
of approximate methods on VK dataset for different categories.
Compared to Ap-Baseline, in most cases Ap-MinMax achieves a
slightly higher 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (accuracy) and amuch higher efficiency
(less execution time). Compared to Ap-SuperEGO, Ap-MinMax
achieves significantly higher 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 due to accuracy loss
derived from normalized data conversion in Ap-SuperEGO, yet
Ap-SuperEGO is notably more efficient than Ap-MinMax due to its

divide-and-conquer recursive approach along with its efficient
EGO-Strategy. Yet, we stress that for the CSJ purposes, accuracy
is of higher priority than efficiency, so Ap-MinMax has an edge
over the competitor methods.

Table 4 presents the CSJ results of exact methods on VK dataset
for different categories. Ex-Baseline and Ex-MinMax yield the
same 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, while Ex-SuperEGO is crucially less accurate for
normalized data conversion reasons but it remains faster than oth-
ers. Yet, Ex-MinMax is now emphatically faster than Ex-Baseline
and that makes it a clear winner over compared methods as it
has the best accuracy-efficiency performance over others.

Tables 5 and 6 present the CSJ results of approximate and
exact methods on VK dataset for same categories. The general
trend is similar to the one discussed before for Tables 3 and 4
respectively, although the execution time of all methods is now
generally higher due to the double 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 effect (15% to 30%).
Experiments on Synthetic Dataset. Table 78 presents the CSJ
results of approximate methods on Synthetic dataset for dif-
ferent categories. Now, Ap-Baseline has similar accuracy and
running times as Ap-MinMax. Further, Ap-SuperEGO is now emi-
nently more competitive on accuracy to others but it no longer
has a commanding lead on running time. The improvement in
accuracy for Ap-SuperEGO relates with the much higher 𝜖 that
is used for Synthetic as also with Synthetic uniform nature;
these factors restrict accuracy loss during normalized data con-
version. Yet, the higher value of 𝜖 limits the efficient pruning of
EGO-Strategy leading to more recursive calls that cost.

Table 8 shows the CSJ results of exact methods on Synthetic
dataset for different categories. Here, Ex-SuperEGO does not have
any accuracy loss and so all methods achieve the same similarity.
Still, Ex-MinMax is obviously faster than Ex-Baseline and com-
petitive on running time to Ex-SuperEGO. The exact operation
of CSF may address the risky conversion needed to SuperEGO.

Tables 9 and 10 show the CSJ results of approximate and exact
methods on Synthetic for same categories. Besides the general
increase in execution time due to the higher 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, results
are similar to the ones in Tables 7 and 8, correspondingly. Some
worthy differences are that Ap-SuperEGO is notably less competi-
tive on accuracy in Table 9 than in Table 7 and Ex-MinMax is less
competitive on running time in Table 10 than in Table 8.
Experimental Conclusion. Overall, the MinMax methods are
the best choice to solve the CSJ problemwith a few exceptions tak-
ing place in Tables 8 and 10 where Ex-SuperEGO has an edge. Yet,
we stress that these exceptions occur in the Synthetic dataset
that as earlier mentioned it is not so common (although possible)
in real-world due to its uniform formation. In more realistic sce-
narios, such as the ones captured by VK dataset, the non-uniform
preference distribution of users will incur inaccurate normal-
ized data conversions that will crucially limit (as experimentally
shown) the accuracy of SuperEGO methods. Since accuracy is
the most important metric for CSJ problem, the MinMax methods
represent the most practical way to solve it, without having too
significant efficiency penalty compared to SuperEGO methods.

Moreover, we stress that even if there was a way SuperEGO
to work for numeric (non-normalized) data, a combined algo-
rithm MinMax-SuperEGO would be faster than SuperEGO itself.
Specifically, as we observed, both SuperEGO methods essentially
replace the NestedLoopJoin part of original SuperEGO frame-
work with that used in Baseline to solve the CSJ problem. Yet,
that replaced NestedLoopJoin part is notably slower than the

8The 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 results for 𝑐𝐼𝐷 = 10 constitute an edge case in Tables 7 and 8.

579

Table 1: The 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 per category based on 𝑡𝑜𝑡𝑎𝑙_𝑙𝑖𝑘𝑒𝑠 in descending order for 𝑉𝐾 and 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 datasets.

rank Dataset Category total_likes Dataset Category total_likes
1 VK Entertainment 2,111,519,450 Synthetic Hobbies 4,030,521,210
2 VK Hobbies 602,445,614 Synthetic Social_public 3,899,674,411
3 VK Relationship_family 384,993,747 Synthetic Job_search 3,894,770,484
4 VK Beauty_health 318,695,199 Synthetic Medicine 3,879,329,978
5 VK Media 296,466,970 Synthetic Home_renovation 3,840,633,803
6 VK Social_public 255,007,945 Synthetic Celebrity 3,784,173,891
7 VK Sport 245,830,867 Synthetic Education 3,783,409,580
8 VK Internet 206,085,821 Synthetic Entertainment 3,763,167,129
9 VK Education 197,289,902 Synthetic Sport 3,718,424,135
10 VK Celebrity 167,468,242 Synthetic Tourism_leisure 3,702,498,557
11 VK Animals 159,569,729 Synthetic Transportation_Services 3,685,969,155
12 VK Music 153,686,427 Synthetic Finance_insurance 3,680,184,922
13 VK Culture_art 141,107,189 Synthetic Culture_art 3,680,041,975
14 VK Food_recipes 140,212,548 Synthetic Consumer_Services 3,668,738,029
15 VK Tourism_leisure 140,054,637 Synthetic Professional_Services 3,623,780,227
16 VK Auto_motor 136,991,765 Synthetic Products_stores 3,565,053,769
17 VK Products_stores 131,752,523 Synthetic Relationship_family 3,560,196,074
18 VK Home_renovation 120,091,854 Synthetic Cities_countries 3,552,381,297
19 VK Cities_countries 74,006,530 Synthetic Food_recipes 3,550,668,794
20 VK Professional_Services 33,024,545 Synthetic Internet 3,521,866,267
21 VK Medicine 32,135,820 Synthetic Animals 3,517,540,727
22 VK Finance_insurance 30,961,892 Synthetic Media 3,514,872,848
23 VK Restaurants 6,473,240 Synthetic Auto_motor 3,469,592,249
24 VK Job_search 1,853,720 Synthetic Communication_Services 3,446,086,841
25 VK Transportation_Services 1,385,538 Synthetic Restaurants 3,415,910,481
26 VK Consumer_Services 810,889 Synthetic Music 3,297,277,125
27 VK Communication_Services 474,492 Synthetic Beauty_health 3,292,929,613

Table 2: The 𝑛𝑎𝑚𝑒𝑠 and 𝑉𝐾-𝑖𝑑𝑠 of compared community pairs. Each id (id_B, id_A) maps to a specific VK social network
page that is accessible just by typing in a browser the id of page (after public) as follows: https://vk.com/publicID. In case of
visit, we recommend using the Google Chrome browser for translation since most pages are written in Russian language.

cID name_B id_B name_A id_A
1 Quick Recipes 165062392 Salads | Best Recipes 94216909
2 Happiness 23337480 Sportshacker 128350290
3 Moment of history 143826157 This is a fact | Science and Facts 45688121
4 Health secrets. What is said by doctors? 55122354 Fashionable girl 36085261
5 First channel 25380626 Nice line ... 26669118
6 About women’s... 33382046 Successful girl 24036559
7 The best of Saint Petersburg 31516466 Vandrouki | Travel almost free 63731512
8 Housing problem 42541008 Business quote book 28556858
9 Jah Khalib 26211015 My audios 105999460
10 Job in Moscow 31154183 VK Pay 166850908
11 Cooking: delicious recipes 42092461 Cooking at home: delicious and easy 40020627
12 Simple recipes 83935640 Best Chef’s Recipes 18464856
13 FC Barcelona 22746750 Football Europe 23693281
14 World Russian Premier League 51812607 Football Europe 23693281
15 World of beauty 34981365 Fashionable girl 36085261
16 Beauty | Fashion | Show Business 32922940 Fashionable girl 36085261
17 More than just lines 32651025 Just love 28293246
18 Modern mom 55074079 MAMA 20249656
19 Business quote book 28556858 Business Strategy | Success in life 30559917
20 Smart Money | Business Magazine 34483558 Business Strategy | Success in life 30559917

encoded nested loop join used in MinMax methods since it is
shown that Ap-MinMax and Ex-MinMax are emphatically faster
than Ap-Baseline and Ex-Baseline. So, we claim that MinMax
contributes to better CSJ results even in that theoretic case of
non-normalized data for SuperEGO.
Scalability Study on VK Dataset. To highlight the practical
applicability of Ex-MinMax, we present scalability results on VK
dataset in Table 11. Each row maps to a different category and
has four points of reference related to the average size of four
different and realistic couples within category. The difference

in sizes depends on the difference in popularity (number of sub-
scribers) of the communities of each category. This enables us
to have various sizes to compare. Generally, as size increases,
the associated execution time increases in a logical pace. The
highest running time is noted for the 𝑠𝑖𝑧𝑒_4 of Entertainment
category, where for a couple with average size equals to 1110846
subscribers, Ex-MinMax needs almost 18 hours to solve the CSJ
problem. However, this is a rare case since most communities in
VK have a number of subscribers ranging around 150000 - 200000.
That is why we solved CSJ for such kind of communities.

580

Table 3: Approximate methods on 𝑉𝐾 dataset for 𝜖 = 1 and different categories where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 15%.

cID Categories (B | A) / Methods Ap-Baseline Ap-MinMax Ap-SuperEGO size_B | size_A
1 Restaurants | Food_recipes 20.56% (442 s) 20.58% (116 s) 19.68% (18 s) 109,176 | 116,016
2 Hobbies | Sport 15.40% (1826 s) 15.42% (590 s) 15.16% (19 s) 156,213 | 230,017
3 Culture_art | Education 24.82% (761 s) 24.82% (177 s) 24.26% (19 s) 134,961 | 138,199
4 Medicine | Beauty_health 16.30% (1011 s) 16.26% (232 s) 16.06% (15 s) 120,783 | 185,393
5 Media | Entertainment 17.32% (3640 s) 17.34% (1501 s) 16.70% (60 s) 197,415 | 330,944
6 Social_public | Relationship_family 24.31% (600 s) 24.31% (154 s) 24.10% (8 s) 118,993 | 131,297
7 Cities_countries | Tourism_leisure 22.18% (1733 s) 22.19% (838 s) 21.83% (35 s) 140,114 | 257,419
8 Home_renovation | Products_stores 15.45% (1457 s) 15.46% (359 s) 15.15% (33 s) 167,585 | 182,815
9 Celebrity | Music 17.36% (1183 s) 17.36% (272 s) 16.86% (16 s) 125,248 | 189,937
10 Job_search | Finance_insurance 20.95% (219 s) 20.72% (51 s) 19.40% (12 s) 55,918 | 109,622

Table 4: Exact methods on 𝑉𝐾 dataset for 𝜖 = 1 and different categories where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 15%.

cID Categories (B | A) / Methods Ex-Baseline Ex-MinMax Ex-SuperEGO size_B | size_A
1 Restaurants | Food_recipes 20.81% (1198 s) 20.81% (133 s) 20.15% (27 s) 109,176 | 116,016
2 Hobbies | Sport 15.46% (4254 s) 15.46% (597 s) 15.22% (30 s) 156,213 | 230,017
3 Culture_art | Education 24.95% (1985 s) 24.95% (226 s) 24.58% (51 s) 134,961 | 138,199
4 Medicine | Beauty_health 16.42% (2466 s) 16.42% (239 s) 16.20% (21 s) 120,783 | 185,393
5 Media | Entertainment 17.52% (8220 s) 17.52% (1552 s) 16.92% (75 s) 197,415 | 330,944
6 Social_public | Relationship_family 24.38% (1603 s) 24.38% (186 s) 24.20% (37 s) 118,993 | 131,297
7 Cities_countries | Tourism_leisure 22.22% (4192 s) 22.22% (863 s) 21.91% (57 s) 140,114 | 257,419
8 Home_renovation | Products_stores 15.53% (3539 s) 15.53% (392 s) 15.29% (41 s) 167,585 | 182,815
9 Celebrity | Music 17.52% (2790 s) 17.52% (288 s) 17.06% (32 s) 125,248 | 189,937
10 Job_search | Finance_insurance 21.57% (679 s) 21.56% (147 s) 20.09% (114 s) 55,918 | 109,622

Table 5: Approximate methods on 𝑉𝐾 dataset for 𝜖 = 1 and same categories where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 30%.

cID Categories (B | A) / Methods Ap-Baseline Ap-MinMax Ap-SuperEGO size_B | size_A
11 Food_recipes | Food_recipes 31.42% (1610 s) 31.44% (472 s) 30.94% (29 s) 180,158 | 196,135
12 Food_recipes | Food_recipes 32.01% (2329 s) 32.05% (1049 s) 31.30% (45 s) 180,351 | 272,320
13 Sport | Sport 39.24% (2070 s) 39.33% (763 s) 37.53% (45 s) 179,412 | 234,508
14 Sport | Sport 36.66% (2234 s) 36.48% (745 s) 34.85% (54 s) 184,663 | 234,508
15 Beauty_health | Beauty_health 36.83% (1330 s) 36.85% (393 s) 36.47% (14 s) 163,176 | 185,393
16 Beauty_health | Beauty_health 30.46% (1534 s) 30.45% (404 s) 30.11% (15 s) 178,138 | 185,393
17 Relationship_family | Relationship_family 35.25% (1427 s) 35.26% (369 s) 34.97% (14 s) 165,509 | 190,027
18 Relationship_family | Relationship_family 32.21% (1125 s) 32.23% (326 s) 31.76% (20 s) 147,140 | 175,929
19 Products_stores | Products_stores 31.79% (1700 s) 31.82% (479 s) 31.36% (37 s) 182,815 | 201,038
20 Products_stores | Products_stores 33.40% (1475 s) 33.42% (466 s) 33.07% (30 s) 161,991 | 201,038

Table 6: Exact methods on 𝑉𝐾 dataset for 𝜖 = 1 and same categories where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 30%.

cID Categories (B | A) / Methods Ex-Baseline Ex-MinMax Ex-SuperEGO size_B | size_A
11 Food_recipes | Food_recipes 31.52% (4168 s) 31.52% (600 s) 31.20% (143 s) 180,158 | 196,135
12 Food_recipes | Food_recipes 32.10% (5945 s) 32.10% (1194 s) 31.63% (150 s) 180,351 | 272,320
13 Sport | Sport 39.54% (5314 s) 39.54% (997 s) 38.62% (227 s) 179,412 | 234,508
14 Sport | Sport 37.10% (5527 s) 37.10% (1037 s) 35.81% (419 s) 184,663 | 234,508
15 Beauty_health | Beauty_health 36.93% (3765 s) 36.93% (508 s) 36.67% (159 s) 163,176 | 185,393
16 Beauty_health | Beauty_health 30.57% (3952 s) 30.58% (515 s) 30.28% (133 s) 178,138 | 185,393
17 Relationship_family | Relationship_family 35.35% (3835 s) 35.35% (520 s) 35.11% (154 s) 165,509 | 190,027
18 Relationship_family | Relationship_family 32.26% (3063 s) 32.26% (413 s) 31.93% (103 s) 147,140 | 175,929
19 Products_stores | Products_stores 31.88% (4389 s) 31.88% (600 s) 31.59% (159 s) 182,815 | 201,038
20 Products_stores | Products_stores 33.50% (3932 s) 33.50% (545 s) 33.23% (135 s) 161,991 | 201,038

Table 7: Approximate methods on 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 dataset for 𝜖 = 15000 and different categories where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 15%.

cID Categories (B | A) / Methods Ap-Baseline Ap-MinMax Ap-SuperEGO size_B | size_A
1 Restaurants | Food_recipes 17.57% (389 s) 17.56% (307 s) 17.53% (285 s) 109,176 | 116,016
2 Hobbies | Sport 15.87% (1494 s) 15.86% (1610 s) 15.79% (766 s) 156,213 | 230,017
3 Culture_art | Education 24.00% (603 s) 23.96% (516 s) 23.88% (390 s) 134,961 | 138,199
4 Medicine | Beauty_health 16.46% (872 s) 16.46% (816 s) 16.40% (459 s) 120,783 | 185,393
5 Media | Entertainment 15.37% (3035 s) 15.36% (3240 s) 15.29% (1384 s) 197,415 | 330,944
6 Social_public | Relationship_family 24.42% (499 s) 24.39% (417 s) 24.30% (330 s) 118,993 | 131,297
7 Cities_countries | Tourism_leisure 22.04% (1501 s) 22.02% (1602 s) 21.97% (734 s) 140,114 | 257,419
8 Home_renovation | Products_stores 15.38% (1203 s) 15.36% (1090 s) 15.31% (632 s) 167,585 | 182,815
9 Celebrity | Music 15.79% (931 s) 15.77% (883 s) 15.73% (500 s) 125,248 | 189,937
10 Job_search | Finance_insurance 7.76% (171 s) 7.76% (134 s) 7.73% (130 s) 55,918 | 109,622

581

Table 8: Exact methods on 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 dataset for 𝜖 = 15000 and different categories where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 15%.

cID Categories (B | A) / Methods Ex-Baseline Ex-MinMax Ex-SuperEGO size_B | size_A
1 Restaurants | Food_recipes 17.74% (1151 s) 17.74% (252 s) 17.74% (206 s) 109,176 | 116,016
2 Hobbies | Sport 16.00% (3880 s) 16.00% (1382 s) 16.00% (549 s) 156,213 | 230,017
3 Culture_art | Education 24.15% (1806 s) 24.15% (460 s) 24.15% (314 s) 134,961 | 138,199
4 Medicine | Beauty_health 16.57% (2396 s) 16.57% (713 s) 16.57% (337 s) 120,783 | 185,393
5 Media | Entertainment 15.49% (7308 s) 15.49% (3093 s) 15.49% (974 s) 197,415 | 330,944
6 Social_public | Relationship_family 24.56% (1556 s) 24.56% (364 s) 24.56% (264 s) 118,993 | 131,297
7 Cities_countries | Tourism_leisure 22.13% (3950 s) 22.13% (1516 s) 22.13% (554 s) 140,114 | 257,419
8 Home_renovation | Products_stores 15.57% (3279 s) 15.57% (982 s) 15.57% (457 s) 167,585 | 182,815
9 Celebrity | Music 15.90% (2550 s) 15.90% (783 s) 15.90% (359 s) 125,248 | 189,937
10 Job_search | Finance_insurance 7.85% (544 s) 7.85% (113 s) 7.85% (91 s) 55,918 | 109,622

Table 9: Approximate methods on 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 dataset for 𝜖 = 15000 and same categories where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 30%.

cID Categories (B | A) / Methods Ap-Baseline Ap-MinMax Ap-SuperEGO size_B | size_A
11 Food_recipes | Food_recipes 30.46% (1339 s) 30.42% (1311 s) 30.30% (717 s) 180,158 | 196,135
12 Food_recipes | Food_recipes 30.44% (2017 s) 30.43% (2211 s) 30.34% (952 s) 180,351 | 272,320
13 Sport | Sport 33.58% (1642 s) 33.56% (1763 s) 33.43% (829 s) 179,412 | 234,508
14 Sport | Sport 30.70% (1722 s) 30.68% (1812 s) 30.56% (860 s) 184,663 | 234,508
15 Beauty_health | Beauty_health 36.48% (1094 s) 36.46% (1066 s) 36.30% (586 s) 163,176 | 185,393
16 Beauty_health | Beauty_health 30.21% (1244 s) 30.19% (1180 s) 30.09% (650 s) 178,138 | 185,393
17 Relationship_family | Relationship_family 35.16% (1157 s) 35.14% (1133 s) 34.97% (610 s) 165,509 | 190,027
18 Relationship_family | Relationship_family 31.58% (940 s) 31.55% (869 s) 31.42% (509 s) 147,140 | 175,929
19 Products_stores | Products_stores 31.31% (1404 s) 31.28% (1385 s) 31.14% (737 s) 182,815 | 201,038
20 Products_stores | Products_stores 33.11% (1226 s) 33.10% (1225 s) 32.97% (638 s) 161,991 | 201,038

Table 10: Exact methods on 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 dataset for 𝜖 = 15000 and same categories where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ 30%.

cID Categories (B | A) / Methods Ex-Baseline Ex-MinMax Ex-SuperEGO size_B | size_A
11 Food_recipes | Food_recipes 30.63% (3914 s) 30.63% (1301 s) 30.63% (636 s) 180,158 | 196,135
12 Food_recipes | Food_recipes 30.57% (5471 s) 30.57% (2207 s) 30.57% (827 s) 180,351 | 272,320
13 Sport | Sport 33.73% (4701 s) 33.73% (1780 s) 33.73% (757 s) 179,412 | 234,508
14 Sport | Sport 30.85% (4827 s) 30.85% (1806 s) 30.85% (756 s) 184,663 | 234,508
15 Beauty_health | Beauty_health 36.64% (3372 s) 36.64% (1107 s) 36.64% (577 s) 163,176 | 185,393
16 Beauty_health | Beauty_health 30.41% (3636 s) 30.41% (1167 s) 30.41% (583 s) 178,138 | 185,393
17 Relationship_family | Relationship_family 35.31% (3562 s) 35.31% (1157 s) 35.31% (591 s) 165,509 | 190,027
18 Relationship_family | Relationship_family 31.72% (2823 s) 31.72% (861 s) 31.72% (453 s) 147,140 | 175,929
19 Products_stores | Products_stores 31.48% (4052 s) 31.48% (1384 s) 31.48% (667 s) 182,815 | 201,038
20 Products_stores | Products_stores 33.27% (3594 s) 33.27% (1226 s) 33.27% (589 s) 161,991 | 201,038

Table 11: Scalability results for Exact MinMax on 𝑉𝐾 . Size is the 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 of a different couple for each category.

Category size_1 Ex-MinMax size_2 Ex-MinMax size_3 Ex-MinMax size_4 Ex-MinMax
Food_recipes 124,453 165 s 200,966 670 s 332,977 3,676 s 417,492 7,020 s
Restaurants 27,733 5 s 50,802 26 s 71,114 34 s 111,713 93 s
Hobbies 212,071 807 s 326,951 3,387 s 432,853 7,900 s 538,492 12,979 s
Sport 107,770 140 s 156,762 278 s 199,233 590 s 248,901 1,381 s

Education 128,905 173 s 200,466 517 s 317,041 2,663 s 414,692 6,891 s
Culture_art 54,381 25 s 106,885 125 s 157,236 360 s 228,763 997 s

Beauty_health 149,171 204 s 211,701 710 s 256,387 1,660 s 318,470 3,218 s
Medicine 21,290 4 s 41,438 16 s 62,333 38 s 84,311 66 s

Entertainment 445,364 8,371 s 651,230 22,328 s 841,407 35,648 s 1,110,846 63,873 s
Media 117,231 130 s 220,804 1,057 s 335,845 2,920 s 406,973 7,444 s

Relationship_family 121,910 167 s 169,862 324 s 212,582 840 s 283,532 2,304 s
Social_public 80,552 65 s 135,060 194 s 182,865 426 s 269,604 1,797 s

Tourism_leisure 104,403 105 s 147,984 245 s 204,376 605 s 248,205 1,510 s
Cities_countries 53,271 30 s 94,130 86 s 133,765 214 s 163,201 292 s
Products_stores 112,425 127 s 157,593 335 s 219,171 735 s 265,760 2,181 s
Home_renovation 101,381 107 s 149,484 275 s 188,986 527 s 274,326 1,889 s

Celebrity 105,339 112 s 160,277 340 s 206,374 907 s 255,239 1,096 s
Music 110,695 119 s 158,516 264 s 201,757 714 s 251,919 1,118 s

Finance_insurance 24,620 5 s 49,505 10 s 70,196 48 s 108,028 162 s
Job_search 16,728 1 s 30,787 6 s 45,597 14 s 62,418 28 s

582

7 CONCLUSION
In this paper we proposed and studied the community similarity
based on user profile joins (CSJ) problem. We deployed 3 approxi-
mate and 3 exact methods to solve it. The best CSJ method utilizes
a novel encoding scheme we developed that can find a general ap-
plicability besides CSJ. We thoroughly evaluated our solutions on
real and synthetic datasets having distinct characteristics. To do
that, we formed a number of case studies pertaining to different
and same categories. Experimental results verify the applicability
of CSJ to real-world scenarios and the challenges that it sets.

ACKNOWLEDGMENTS
This research/project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme (AISG
Award No: AISG2-RP-2021-020).

REFERENCES
[1] Ahmed Al-Baghdadi and Xiang Lian. 2020. Topic-Based Community Search

over Spatial-Social Networks. PVLDB 13, 12 (2020), 2104–2117.
[2] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient Exact

Set-Similarity Joins. In VLDB. 918–929.
[3] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up

All Pairs Similarity Search. In WWW. 131–140.
[4] Christian Böhm, Bernhard Braunmüller, Florian Krebs, and Hans-Peter Kriegel.

2001. Epsilon Grid Order: An Algorithm for the Similarity Join on Massive
High-Dimensional Data. SIGMOD Rec. 30, 2 (2001), 379–388.

[5] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. 2012. Spatio-Textual Simi-
larity Joins. PVLDB 6, 1 (2012), 1–12.

[6] S. Chaudhuri, V. Ganti, and R. Kaushik. 2006. A Primitive Operator for Simi-
larity Joins in Data Cleaning. In ICDE. 5–5.

[7] Muhammad Aamir Cheema, Xuemin Lin, Haixun Wang, Jianmin Wang, and
Wenjie Zhang. 2011. A unified approach for computing top-k pairs in multidi-
mensional space. In ICDE. 1031–1042.

[8] Yu Chen, Jun Xu, and Minzheng Xu. 2015. Finding community structure in
spatially constrained complex networks. IJGIS 29, 6 (2015), 889–911.

[9] Zhaoqi Chen, Dmitri V. Kalashnikov, and Sharad Mehrotra. 2009. Exploit-
ing Context Analysis for Combining Multiple Entity Resolution Systems. In
SIGMOD. 207–218.

[10] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vas-
silakopoulos. 2000. Closest Pair Queries in Spatial Databases. SIGMOD Rec.
29, 2 (2000), 189–200.

[11] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013.
Online Search of Overlapping Communities. In SIGMOD. 277–288.

[12] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local Search
of Communities in Large Graphs. In SIGMOD. 991–1002.

[13] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New
Trends in High-D Vector Similarity Search: Al-Driven, Progressive, and Dis-
tributed. PVLDB 14, 12 (2021), 3198–3201.

[14] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.
Duplicate Record Detection: A Survey. TKDE 19, 1 (2007), 1–16.

[15] Paul Expert, Tim S Evans, Vincent D Blondel, and Renaud Lambiotte. 2011.
Uncovering space-independent communities in spatial networks. Proceedings
of the National Academy of Sciences 108, 19 (2011), 7663–7668.

[16] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Jiafeng Hu.
2017. Effective and efficient attributed community search. VLDBJ 26, 6 (2017),
803–828.

[17] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017.
Effective Community Search over Large Spatial Graphs. PVLDB 10, 6 (2017),
709–720.

[18] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effec-
tive Community Search for Large Attributed Graphs. PVLDB 9, 12 (2016),
1233–1244.

[19] Yixiang Fang, Reynold Cheng, Siqiang Luo, Jiafeng Hu, and Kai Huang. 2017.
C-Explorer: Browsing Communities in Large Graphs. PVLDB 10, 12 (2017),
1885–1888.

[20] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2020. A survey of community search over big graphs. VLDBJ
29, 1 (2020), 353–392.

[21] Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3
(2010), 75–174.

[22] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukr-
ishnan, and Divesh Srivastava. 2001. Approximate String Joins in a Database
(Almost) for Free. In VLDB. 491–500.

[23] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. 1998. CURE: An Efficient
Clustering Algorithm for Large Databases. SIGMOD Rec. 27, 2 (1998), 73–84.

[24] D. Guo. 2008. Regionalization with dynamically constrained agglomerative
clustering and partitioning (REDCAP). IJGIS 22, 7 (2008), 801–823.

[25] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014.
Querying K-Truss Community in Large and Dynamic Graphs. In SIGMOD.
1311–1322.

[26] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015.
Approximate Closest Community Search in Networks. PVLDB 9, 4 (2015),
276–287.

[27] Sergei Ivanov, Konstantinos Theocharidis, Manolis Terrovitis, and Panagiotis
Karras. 2017. Content Recommendation for Viral Social Influence. In SIGIR.
565–574.

[28] Glen Jeh and JenniferWidom. 2002. SimRank: AMeasure of Structural-Context
Similarity. In KDD. 538–543.

[29] Glen Jeh and Jennifer Widom. 2003. Scaling Personalized Web Search. In
WWW. 271–279.

[30] Dmitri V. Kalashnikov. 2013. Super-EGO: fast multi-dimensional similarity
join. VLDBJ 22, 4 (2013), 561–585.

[31] Dmitri V. Kalashnikov and Sharad Mehrotra. 2006. Domain-Independent
Data Cleaning via Analysis of Entity-Relationship Graph. TODS 31, 2 (2006),
716–767.

[32] Ansh Khurana, Alvis Logins, and Panagiotis Karras. 2020. Selecting Influential
Features by a Learnable Content-Aware Linear Threshold Model. In CIKM.
635–644.

[33] Edwin M. Knorr and Raymond T. Ng. 1998. Algorithms for Mining Distance-
Based Outliers in Large Datasets. In VLDB. 392–403.

[34] Krzysztof Koperski and Jiawei Han. 1995. Discovery of spatial association
rules in geographic information databases. In Advances in Spatial Databases.
47–66.

[35] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential Community
Search in Large Networks. PVLDB 8, 5 (2015), 509–520.

[36] Yifan Li, Xiaohui Yu, and Nick Koudas. 2021. LES3: Learning-Based Exact Set
Similarity Search. PVLDB 14, 11 (2021), 2073–2086.

[37] Michael D. Lieberman, Jagan Sankaranarayanan, and Hanan Samet. 2008.
A Fast Similarity Join Algorithm Using Graphics Processing Units. In ICDE.
1111–1120.

[38] Yan Liu, Alexandru Niculescu-Mizil, and Wojciech Gryc. 2009. Topic-Link
LDA: Joint Models of Topic and Author Community. In ICML. 665–672.

[39] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. SIGMOD
Rec. 25, 2 (1996), 247–258.

[40] Ramesh M. Nallapati, Amr Ahmed, Eric P. Xing, and William W. Cohen. 2008.
Joint Latent Topic Models for Text and Citations. In KDD. 542–550.

[41] Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating commu-
nity structure in networks. Phys. Rev. E 69, 2 (2004), 026113.

[42] Rabia Nuray-Turan, Dmitri V. Kalashnikov, Sharad Mehrotra, and Yaming Yu.
2012. Attribute and Object Selection Queries on Objects with Probabilistic
Attributes. TODS 37, 1 (2012), 1–41.

[43] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge
Join. SIGMOD Rec. 25, 2 (1996), 259–270.

[44] Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy. 2013. Efficient Com-
munity Detection in Large Networks Using Content and Links. In WWW.
1089–1098.

[45] Sunita Sarawagi and Alok Kirpal. 2004. Efficient Set Joins on Similarity
Predicates. In SIGMOD. 743–754.

[46] Mauro Sozio and Aristides Gionis. 2010. The Community-Search Problem and
How to Plan a Successful Cocktail Party. In KDD. 939–948.

[47] Liwen Sun, Reynold Cheng, Xiang Li, David W. Cheung, and Jiawei Han. 2011.
On Link-Based Similarity Join. PVLDB 4, 11 (2011), 714–725.

[48] Konstantinos Theocharidis, Manolis Terrovitis, Spiros Skiadopoulos, and Pana-
giotis Karras. 2022. AContent Recommendation Policy for Gaining Subscribers.
In SIGIR. 2501–2506.

[49] George Tsatsanifos and Akrivi Vlachou. 2015. On Processing Top-k Spatio-
Textual Preference Queries. In EDBT. 433–444.

[50] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. 2009. Top-k Set
Similarity Joins. In ICDE. 916–927.

[51] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. 2011.
Efficient Similarity Joins for Near-Duplicate Detection. TODS 36, 3 (2011),
1–41.

[52] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2012. A
Model-Based Approach to Attributed Graph Clustering. In SIGMOD. 505–516.

[53] Jaewon Yang, Julian McAuley, and Jure Leskovec. 2013. Community Detection
in Networks with Node Attributes. In ICDM. 1151–1156.

[54] Alexandros Zeakis, Dimitrios Skoutas, Dimitris Sacharidis, Odysseas Papa-
petrou, and Manolis Koubarakis. 2022. TokenJoin: Efficient Filtering for Set
Similarity Join with Maximum Weighted Bipartite Matching. PVLDB 16, 4
(2022), 790–802.

[55] Fan Zhang, Xuemin Lin, Ying Zhang, Lu Qin, andWenjie Zhang. 2019. Efficient
community discoverywith user engagement and similarity. VLDBJ 28, 6 (2019),
987–1012.

[56] Weiguo Zheng, Lei Zou, Yansong Feng, Lei Chen, and Dongyan Zhao. 2013.
Efficient Simrank-Based Similarity Join over Large Graphs. PVLDB 6, 7 (2013),
493–504.

[57] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph Clustering Based on
Structural/Attribute Similarities. PVLDB 2, 1 (2009), 718–729.

583

