
Predicting Fact Contributions fromQuery Logs with Machine
Learning

Dana Arad
Tel Aviv University

danaarad1@mail.tau.ac.il

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Nave Frost
eBay Research

nafrost@ebay.com

ABSTRACT
A recent line of work has proposed to quantify the contribution
of database tuples to query answers using Shapley values, a game
theoretic function that has been extensively used as means of
attribution in other areas, notably Machine Learning.

In this paper we analyze and evaluate LearnShapley, a solu-
tion that employs Machine Learning to rank input facts based on
their estimated (Shapley-based) contribution to query answers.
LearnShapley is trained on a corpus of SPJU queries, their output
and the Shapley values of each input tuple with respect to each
output tuple. At inference time, LearnShapley is given a new
SPJU query over the same database schema, an output tuple of in-
terest, and its lineage (i.e. the set of all facts that have contributed
in some way to the generation of the tuple). Our experiments
evaluate to what extent LearnShapley is able to leverage similar-
ity measures applied to the query in hand and the queries stored
in the repository, to compute a ranking of the facts in the lineage
based on their contribution. Overall, our experiments indicate
that a log of past queries, output tuples and their Shapley values
includes a reasonably relevant signal for predicting the ranking
of facts contributions for a new SPJU query over the same data-
base. Both DBShap and our code are publicly available, and may
serve for further investigation of Machine Learning approaches
for explainability in databases.

1 INTRODUCTION
Explaining query answers has been extensively studied in recent
years, following many different approaches [1, 14, 21, 29, 39, 40].
A notable such approach is to quantify the contribution of each
input database fact to each tuple in the query result. Here again,
many different contribution measures have been proposed [29,
31, 33, 40]. In particular, [30] and subsequent works [15, 37], have
advocated for the use of Shapley values [42], a game-theoretic
function for distributing wealth in a cooperative game. Shapley
values have strong theoretical justifications, have been exten-
sively used in Game Theory and have been adopted as a con-
tribution measure in a variety of areas, notably explaining the
predictions of Machine Learning classifiers.

Example 1.1. Our running example focuses on a database of
movies, an instance of which is shown in Figure 1. Consider the
query 𝑞inf in Figure 2a, looking for movies released in 2007 and
produced by American production companies. For a given tuple
in the query result, many different database facts contribute in
some way to its derivation. For 𝑞inf and the output tuple Alice,
one such derivation involves 𝑎1 (the tuple representing Alice), 𝑟1
(the role of Alice in Superman),𝑚1 (Superman was produced in
2007 by Universal) and 𝑐1 (Universal is an American company).

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

movies
name year company

𝑚1 Superman 2007 Universal
𝑚2 Spiderman 2007 Universal
𝑚3 Aquaman 2007 Warner
𝑚4 Batman 2008 Warner
𝑚5 Wonder Woman 2008 Disney

roles
actor movie

𝑟1 Alice Superman
𝑟2 Alice Spiderman
𝑟3 Alice Aquaman
𝑟4 Alice Batman
𝑟5 Bob Aquaman
𝑟6 Bob Batman
𝑟7 David Aquaman
𝑟8 David Batman
𝑟9 Carol Wonder Woman

companies
company country

𝑐1 Universal USA
𝑐2 Warner USA
𝑐3 Disney USA

actors
name age

𝑎1 Alice 45
𝑎2 Bob 23
𝑎3 Carol 65
𝑎4 David 30

Figure 1: DB Instance

Other derivations exist as well, involving information on other
movies, production companies and roles.

The set of all facts appearing in at least one derivation is called
the tuple’s lineage. The lineage may contain many database facts,
and may be hard to interpret. In particular, some facts contribute
more than others to the derivation of the output tuple. In our
example, Universal is more influential than Warner since Alice
participated in two movies produced by Universal and only in
one produced by Warner. Measuring the contribution is far more
complex in general, and the measure of Shapley values has been
shown to be a good fit for quantifying the contribution in query
answering [30]. For this example, the Shapley values of all facts
in the companies table with respect to each of the query’s results
are presented as heat-maps in Figure 2d.

Shapley values can help us gain insights on the importance
of facts with respect to tuples in the query result, yet computing
Shapley values for query answering is intractable in general
(specifically, it is FP#P-hard [30] in data complexity). Existing
solutions [15] rely on detailed query provenance, captured by
boolean expressions which are further processed into particular
forms. Storing such detailed form of provenance for every query
and every output tuple typically entails a non-negligble overhead,
despite significant advancements in provenance tracking such as
[1, 2, 41]. The solution in [15] is confined to Select-Project-Join-
Union (SPJU) queries, and while the complexity of computing
Shapley values has been studied for other fragments of SQL such
as negation and aggregation, there are, to our knowledge, no
available implementation for SQL fragments beyond SPJU. See
Section 6 for a detailed overview of previous solutions for Shapley
values computation.

In this experiments and analysis paper we ask whether a Ma-
chine Learning approach, specifically LearnShapley that was first

Experiments & Analyses Paper

Series ISSN: 2367-2005 704 10.48786/edbt.2024.60

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.60

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy Dana Arad, Daniel Deutch, and Nave Frost

1 SELECT DISTINCT actors.name

2 FROM movies, actors, companies, roles
3 WHERE movies.title = roles.movie AND
4 actors.name = roles.actor AND
5 movies.company = companies.name AND
6 companies.country = “USA” AND

7 movies.year = 2007

8

(a) Inference query 𝑞inf

1 SELECT DISTINCT movies.title

2 FROM movies, actors, companies, roles
3 WHERE movies.title = roles.movie AND
4 actors.name = roles.actor AND
5 movies.company = companies.name AND
6 companies.country = “USA” AND

7 movies.year = 2007 AND

8 actors.name = “Alice”

(b) Log query 𝑞1

1 SELECT DISTINCT actors.name

2 FROM movies, actors, companies, roles
3 WHERE movies.title = roles.movie AND
4 actors.name = roles.actor AND
5 movies.company = companies.name AND
6 companies.country = “USA” AND

7 actors.age > 30

8

(c) Log query 𝑞2
Alice Bob David

𝑐1 0.158 0 0
𝑐2 0.075 0.25 0.25
𝑐3 0 0 0

(d) 𝑞inf Shapley values

Superman Spiderman Aquaman
𝑐1 0.25 0 0.25
𝑐2 0 0.25 0
𝑐3 0 0 0

(e) 𝑞1 Shapley values

Alice Carol
𝑐1 0.115 0
𝑐2 0.115 0
𝑐3 0 0.25

(f) 𝑞2 Shapley values

Figure 2: Inference query along with two queries from the historic query log, and the Shapley values of production companies facts
with respect to all output tuples. Differences between the queries are color-highlighted.

introduced in a demonstration paper [5] (including no experi-
ments or analysis), can serve as an alternative to the algorithmic
approach, in the context of Shapley values for SPJU Query An-
swering. The goal of LearnShapley is, given a SPJU query and the
lineage of its output fact, to rank facts appearing in the lineage
based on their (hidden) contribution. Thereby, through an in-
vestment in training time (see below), LearnShapley circumvents
the computational overhead at inference time incurred by the
previously proposed exact computation algorithm, both in the
sense that it relies on a simpler input (lineage vs. provenance)
and in the sense that inference itself is significantly faster. The
main question that we ask here, is to what extent does the pre-
dicted ranking match the gold ranking which is based on the
real Shapley values. The reason for our focus on SPJU is that, as
explained above, there is no existing tractable implementation
for other SQL fragments. This means that for fragments beyond
SPJU there is no training data available for learning, and also no
baselines to test the results against.

Dataset Used in Training, Experiments and Analysis. Training
and experiments are carried over a repository of SPJU queries
(Select, Project, Join, Union), answers and their real Shapley val-
ues (called DBShap), which consists of two databases, IMDB and
Academic, a total of 293 SPJU queries having a total of one million
results and 18 million contributing facts along with their Shapley
value information. We used splits of this dataset for training and
for testing LearnShapley. Note that the generation of DBShap
involves running the exact algorithm of [15] over the detailed
provenance of queries, yet this is done offline and not at deploy-
ment. In contrast, at deployment time LearnShapley has access
only to the query lineage.

Pre-training Objectives. Many Machine Learning approaches
follow the pre-training / fine-tuning paradigm, in which the
model is trained on intermediate tasks in order to learn funda-
mental concepts that will later improve the performance on the
end task. In order to obtain signals from historic queries, one
should identify query characteristics that are similar between a
new unseen query and the historic queries. To this end, we de-
fine several pre-training objectives, based on three key notions of
query similarity: syntactic similarity, the similarity of the queries’
results. For the latter, we define a novel metric for rank-based
similarity that captures how similar are the contributions of facts
to the queries’ output tuples.

Example 1.2. Assume an historic query log that consists of
queries 𝑞1 and 𝑞2, depicted in Figure 2b and 2c. 𝑞1 outputs titles
of movies released in 2007, produced by American production
companies, in which Alice played a role. 𝑞2 returns the names
of actors over 30 years old, that played a role in a movie pro-
duced by a American production company. Syntactic similarities
and differences to the query of interest (𝑞inf) are presented in
Figure 2a.

The results of 𝑞1 are the movies Superman, Spiderman and
Aquaman, and the results of 𝑞2 are the actors Alice and Carol.
Figure 2e and 2f depict the Shapley values of facts from the
companies table with respect to each of the queries results.

The historic query log along with the historic Shapley values
can aid in providing insights on the influential facts for new
queries. For instance, based on the Shapley values of 𝑞1, we ob-
serve that the production company associatedwith 𝑐1 contributed
significantly to two of the movies that Alice participated in; the
fact 𝑐2 also contributed to one of the query results (Spiderman),
whereas 𝑐3 had no contribution to any result. In addition, based
on the Shapley values of 𝑞2, we can deduce that the produc-
tion companies associated with facts 𝑐1 and 𝑐2 are influential
for Alice, while 𝑐3 is influential for Carol. Going back to the
𝑞inf, based on the insights learned from 𝑞2, we may predict that
Universal (𝑐1) and Warner (𝑐2) are dominant production com-
panies with respect to Alice. Furthermore, based on the insights
obtained from 𝑞1, one may learn that 𝑐1 has a higher contribution
than 𝑐2.

Experiments. We then conduct an extensive experimental study,
examining the performance of LearnShapley as well as differ-
ent ablations thereof with respect to the DBShap benchmark.
We compare the rankings that LearnShapley outputs with the
gold ranking that uses the actual Shapley values, using standard
measures of comparing ranked lists (nCDG and precision at k).
We show that LearnShapley consistently achieves good results
with respect to both metrics. Training a model incurs the (offline)
overhead of several days for the databases in DBShap. Training
is of course not needed by an algorithmic solution such as in
[15]. On the other hand, LearnShapley has the benefit of relying
at deployment only on the query lineage (set of contributing
tuples) rather than detailed boolean provenance. Furthermore,
the inference time of LearnShapley to predict ranking of contri-
bution based on the lineage typically incurs only split seconds
and is significantly faster than exact computation (even if we
assume that the algorithm of [15] is given access to the detailed

705

Predicting Fact Contributions fromQuery Logs with Machine Learning EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

boolean provenance). We conclude that overall, once the model
is deployed, it constitutes a fast solution for real-time ranking of
facts contribution in query answering.

Limitations of LearnShapley. LearnShapley is a system for in-
domain learning, namely the queries used in training and the
queries used in testing/deployment should be on the same data-
base schema. The system aims at picking up signals from the
contribution of facts to past queries, generalizing to predict their
contribution to new queries. We analyze how well LearnShapley
performs this generalization. We further investigate: what about
facts that were not seen at training time? Can LearnShapley rea-
sonably predict their relative order of contribution? Our results
indicate that some signal exists and is utilized in this respect, yet
there is a significant room for improvement, calling for further
research in this respect. Such research could proceed in two di-
rections: improving the prediction quality for unseen facts for
the given schema, and generalization to a new schema. In terms
of expected input, the model expects the lineage as input at infer-
ence time. This constitutes a significant step forward compared
to previous work [15] requiring full detailed provenance, yet it
would be desirable to further generalize LearnShapley so that
even the lineage is not needed. The challenge here is that Learn-
Shapley is currently trained on positive samples, i.e. facts with
non-zero Shapley value. Thus, the system is not able to accurately
differentiate between contributing and non-contributing facts,
which is essential for predicting the ranking of any arbitrary set
of facts from the database.

The structure of this paper is as follows. We start by recalling
the necessary preliminaries in Section 2. In Section 3, we recall the
problem of learning to rank facts contribution in query answering,
and the components of LearnShapley. In Section 4 we provide
statistics and examples on the training and test data, and in
Section 5 we detail the design and results of our experimental
study. We overview related work in Section 6 and conclude in
Section 7.

2 PRELIMINARIES
Wenext recall the necessary preliminaries on relational databases,
lineage and provenance, Shapley values computation [15], query
similarities [6]and [5], and present extended versions for exam-
ples from [5].

2.1 Relational Databases, Lineage and
Provenance

We follow the convention in [30] and subsequent works on Shap-
ley values, and use the term facts to refer to tuples from the input
database (whose contributions we wish to assess), and the term
tuples to refer to tuples in the query answer (with respect to
which the contribution is made). Then, a relation 𝑅 = {𝑡1, . . . , 𝑡𝑘 }
is a finite set of facts, and a database D =

Ï
𝑖∈𝐼 𝑅𝑖 is a disjoint

union of a finite set of relations. A query 𝑞 is a function that
takes as input a database D and a outputs a set of tuples, i.e.,
𝑞(D) = {𝑡 ′1, . . . , 𝑡

′
𝑟 }.

To explain query results, we associate database facts with
unique annotations, serving as their identifiers. Two commonly
used forms of explanations are then lineage and provenance,
which vary in their granularity. Lineage only shows the facts
that were used in the evaluation of the query and contributed
to the inclusion of 𝑡 in 𝑞(D), while provenance also reveals
the relationships between those contributing facts. Formally, for

a database D, query 𝑞, and output tuple 𝑡 , the provenance of
(𝑞, 𝑡) on D, denoted Prov(D, 𝑞, 𝑡), is a Boolean function that
represents the dependence of tuple 𝑡 on the input facts of D.
Intuitively, Prov(D, 𝑞, 𝑡) captures the conditions under which 𝑡
appears in the query result. The lineage of (𝑞, 𝑡) on D, denoted
Lineage(D, 𝑞, 𝑡), is the set of variables in Prov(D, 𝑞, 𝑡). There are
existing methods for capturing both the provenance and lineage
of (𝑞, 𝑡) on D during the evaluation of 𝑞(D) [2, 16, 41]. Since
lineage does not require capturing the dependencies between dif-
ferent facts, its capture tends to be more efficient. For example, in
[17] the authors show that provenance may be significantly com-
pressed when equating some variables, which is lower-bounded
by the lineage size.

Example 2.1. Recall the database D depicted in Figure 1 and
note now the annotations that are attached to facts (the annota-
tions are 𝑟𝑖 for 𝑖 = 1, . . . , 9,𝑚𝑖 for 𝑖 = 1, . . . , 5, 𝑐𝑖 for 𝑖 = 1, . . . , 4
and 𝑎𝑖 for 𝑖 = 1, . . . 4). The query 𝑞inf depicted in Figure 2a. For
output tuple Alice the provenance is:

Prov(D, 𝑞inf,Alice) =(𝑎1 ∧𝑚1 ∧ 𝑐1 ∧ 𝑟1)∨
(𝑎1 ∧𝑚2 ∧ 𝑐1 ∧ 𝑟2)∨
(𝑎1 ∧𝑚3 ∧ 𝑐2 ∧ 𝑟3) .

Lineage(D, 𝑞inf,Alice) ={𝑎1,𝑚1,𝑚2,𝑚3, 𝑐1, 𝑐2, 𝑟1, 𝑟2, 𝑟3}.

2.2 Shapley values in query answering
The Shapley value [42], a game-theoretic measure of wealth
distribution with strong theoretical foundations [38], has recently
been suggested as a method for evaluating the contribution of
input facts to query answers [30]. Let 𝑞 be a query, 𝑡 ∈ 𝑞(D) be
an output tuple, and 𝑓 ∈ D be a fact. Denote 𝑞𝑡 (D) as a Boolean
function returning 1 if and only if 𝑡 ∈ 𝑞(D). The Shapley value
of 𝑓 in D for query (𝑞, 𝑡), denoted Shapley(D, 𝑞, 𝑡, 𝑓), is defined
as:

Shapley(D, 𝑞, 𝑡, 𝑓) def
=∑︁

𝐸⊆D\{ 𝑓 }

|𝐸 |!(|D| − |𝐸 | − 1)!
|D|!

(
𝑞𝑡 (𝐸 ∪ {𝑓 }) − 𝑞𝑡 (𝐸)

)
.

Intuitively, the value Shapley(D, 𝑞, 𝑡, 𝑓) represents the contribu-
tion of 𝑓 to the query’s output 𝑡 .

Example 2.2. Recall that Example 1.1 explained intuitively why
Shapley(D, 𝑞inf,Alice, 𝑐1) > Shapley(D, 𝑞inf,Alice, 𝑐2).

Next, we will exemplify it more formally. Recall the provenance
of Alice from Example 2.1. For simplicity we will ignore facts
in D that are not part of Lineage(D, 𝑞inf,Alice), as they have no
contribution to the result. To calculate Shapley(D, 𝑞inf,Alice, 𝑐2),
we need to consider all 𝐸 ⊆ D \ {𝑐2} such that 𝑞𝑡 (𝐸 ∪ {𝑐2}) −
𝑞𝑡 (𝐸) ≠ 0. This requires that {𝑎1,𝑚3, 𝑟3} ⊆ 𝐸 and neither the
clauses (𝑎1 ∧𝑚1 ∧ 𝑐1 ∧ 𝑟1) and (𝑎1 ∧𝑚2 ∧ 𝑐1 ∧ 𝑟2) are satisfied.
In total, there is one such set of size 3 ({𝑎1,𝑚3, 𝑟3}), 5 sets of size
4 (e.g., {𝑎1,𝑚3, 𝑐1, 𝑟3}), 10 sets of size 5 (e.g., {𝑎1,𝑚1,𝑚3, 𝑐1, 𝑟3}),
8 sets of size 6 (e.g., {𝑎1,𝑚1,𝑚2,𝑚3, 𝑐1, 𝑟3}), and a single set of
size 7 ({𝑎1,𝑚1,𝑚2,𝑚3, 𝑟1, 𝑟2, 𝑟3}). Thus,

Shapley(D, 𝑞inf,Alice, 𝑐2) =
3! · 5!
9! + 5 · 4! · 4!9! + 10 · 5! · 3!9! +

8 · 6! · 2!9! + 7! · 1!
9! =

19
252 ≈

0.075.

706

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy Dana Arad, Daniel Deutch, and Nave Frost

Similarly, left for the reader, it can be shown that

Shapley(D, 𝑞inf,Alice, 𝑐1) =

2 · 3! · 5!9! + 10 · 4! · 4!9! + 19 · 5! · 3!9! +

15 · 6! · 2!9! + 3 · 7! · 1!9! =
10
63 ≈

0.158.

It is important to note that calculating the Shapley value for
most queries is computationally intractable [30]. However, a
recent study [15] has demonstrated an effective approach for
computing Shapley values that relies on query provenance. This
solution shows that, if provenance can be transformed into a spe-
cific circuit form, Shapley values can be computed in polynomial
time. However, it is important to note that the approach in [15]
may introduce a significant overhead over the native query com-
putation. Capturing query provenance, which is required by this
method, may introduce a significant overhead, and the obtained
boolean formula must also be processed in an additional time-
consuming step. In this work, we use the solution in [15] in an
offline manner over a query log to generate training data for our
model. During inference, we provide predictions on the ordering
of influential facts without the need to capture provenance at all.

2.3 Query Similarity Metrics
To predict the contribution of facts to the results of a given target
query, LearnShapley relies on training data that includes Shapley
values with respect to the answers of queries from a historic query
log. To learn from these past queries, we need first to assess the
similarity of these queries to the target query. Many similarity
metrics have been proposed for computing query similarity, the
quality of which heavily depends on the exact task, database
schema and other factors. We utilize two existing notions of
query similarity - syntax-based and witness based.

Syntax-Based Similarity: We follow [24] which defined
the similarity of two queries using set similarity. A query 𝑞 is
a represented as a set of operations, namely 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞) =

{𝑜𝑝1, 𝑜𝑝2, ..., 𝑜𝑝𝑘 } where 𝑜𝑝𝑖 is either a projection, a selection or
a join:

• A projection operation Π𝑅.𝑐 is defined by the relation 𝑅
and column 𝑐 that the data is projected onto.

• A selection operation 𝜎𝑅.𝑐,𝜑 is defined by a relation 𝑅, a
column 𝑐 , and a Boolean condition 𝜑 that is applied on the
relation column.

• A equi-join operation ⊲⊳𝑅1 .𝑐1=𝑅2 .𝑐2 is defined by two pairs
of relations and columns, 𝑅1, 𝑐1 and 𝑅2, 𝑐2 that are com-
pared.

Two operations are equal if they are of the same type and have
the same features.

Finally, sim𝑠 (𝑞, 𝑞′) is the set similarity of𝑞 and𝑞′ using Jaccard
similarity:

sim𝑠 (𝑞, 𝑞′) =
|𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞) ∩ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞′) |
|𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞) ∪ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞′) | .

Example 2.3. We wish to calculate the syntax-based similarity
of the inference query𝑞inf depicted in Figure 2a and𝑞1 depicted in
Figure 2b. The queries differentiate in their projection operations,
Π𝑎𝑐𝑡𝑜𝑟𝑠.𝑛𝑎𝑚𝑒 and Π𝑚𝑜𝑣𝑖𝑒.𝑡𝑖𝑡𝑙𝑒 , and 𝑞1 contains an additional se-
lection operation 𝜎𝑎𝑐𝑡𝑜𝑟𝑠.𝑛𝑎𝑚𝑒=”𝐴𝑙𝑖𝑐𝑒”, as highlighted in Figure 2.
Using operation set representation:

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞inf) = {Π𝑎𝑐𝑡𝑜𝑟𝑠.𝑛𝑎𝑚𝑒 , ⊲⊳𝑚𝑜𝑣𝑖𝑒𝑠.𝑡𝑖𝑡𝑙𝑒=𝑟𝑜𝑙𝑒𝑠.𝑚𝑜𝑣𝑖𝑒 ,

⊲⊳𝑎𝑐𝑡𝑜𝑟𝑠.𝑛𝑎𝑚𝑒=𝑟𝑜𝑙𝑒𝑠.𝑎𝑐𝑡𝑜𝑟 , ⊲⊳𝑚𝑜𝑣𝑖𝑒𝑠.𝑐𝑜𝑚𝑝𝑎𝑛𝑦=𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠.𝑛𝑎𝑚𝑒 ,

𝜎𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠.𝑐𝑜𝑢𝑛𝑡𝑟𝑦=”𝑈𝑆𝐴”, 𝜎𝑚𝑜𝑣𝑖𝑒𝑠.𝑦𝑒𝑎𝑟=2007}

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞1) = {Π𝑚𝑜𝑣𝑖𝑒.𝑡𝑖𝑡𝑙𝑒 , ⊲⊳𝑚𝑜𝑣𝑖𝑒𝑠.𝑡𝑖𝑡𝑙𝑒=𝑟𝑜𝑙𝑒𝑠.𝑚𝑜𝑣𝑖𝑒 ,

⊲⊳𝑎𝑐𝑡𝑜𝑟𝑠.𝑛𝑎𝑚𝑒=𝑟𝑜𝑙𝑒𝑠.𝑎𝑐𝑡𝑜𝑟 , ⊲⊳𝑚𝑜𝑣𝑖𝑒𝑠.𝑐𝑜𝑚𝑝𝑎𝑛𝑦=𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠.𝑛𝑎𝑚𝑒 ,

𝜎𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠.𝑐𝑜𝑢𝑛𝑡𝑟𝑦=”𝑈𝑆𝐴”, 𝜎𝑚𝑜𝑣𝑖𝑒𝑠.𝑦𝑒𝑎𝑟=2007, 𝜎𝑎𝑐𝑡𝑜𝑟𝑠.𝑛𝑎𝑚𝑒=”𝐴𝑙𝑖𝑐𝑒”}

The similarity of the queries is the Jaccard similarity of the
operation sets:

sim𝑠 (𝑞inf, 𝑞1) =
|𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞inf) ∩ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞1) |
|𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞inf) ∪ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑞1) |

=
5
8

Witness-Based Similarity: Another similarity metric can be
defined using the notion of witnesses [6], where𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞) =
𝑞(D). The similarity between two queries 𝑞 and 𝑞′ is computed
as the set similarity of the witnesses sets, using Jaccard similarity

sim𝑤 (𝑞, 𝑞′) = |𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞) ∩𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞′) |
|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞) ∪𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞′) | =

|𝑞(D) ∩ 𝑞′ (D)|
|𝑞(D) ∪ 𝑞′ (D)| .

Example 2.4. Now, we wish to calculate the witness-based
similarity of queries 𝑞inf and 𝑞1. However, since the queries have
different projection operations, they do not share any witnesses
and sim𝑤 (𝑞inf, 𝑞1) = 0. Instead, we calculate the witness-based
similarity metric on 𝑞inf and 𝑞2 depicted in Figure 2c, which
equals 1

4 .

sim𝑠 (𝑞inf, 𝑞2) =
|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞inf) ∩𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞2) |
|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞inf) ∪𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠 (𝑞2) |

=
1
4

2.4 Language Models
Modern day language models follow the pre-training/fine-tuning
paradigm, and pre-trained language models have achieved no-
table success on various natural language tasks. Recent lines
of work have also demonstrated how these pre-trained models
can be applied to other fields, and specifically to database-related
tasks [13, 22, 47]. During the pre-training stage, a model is trained
on auxiliary tasks that help the model learn meaningful represen-
tations of the input. In this work, we employ BERT [18] and utilize
the contextualize representations learned during pre-training,
which after further fine-tuning enables the model to comprehend
semantic and syntactic aspects of queries and database structure.

The input for BERT consists of two sentences, 𝑠1 and 𝑠2 sep-
arated by a special token [SEP]. Another special token, [CLS],
is added before the first sentence. BERT is jointly pre-trained
on two objectives: (1) masked language modeling, where the
model has to reconstruct masked tokens from the input, and (2)
next sentence prediction, where the model predicts whether 𝑠2 is
entailed from 𝑠1. The output of the final hidden state correspond-
ing to the [CLS] token is used as the representation of the full
input sequence, and can be passed to subsequent classification
and regression tasks, as in next-sentence prediction. Different
pre-training objectives can affect the performance of the model
on downstream tasks, and thus should be constructed to assist
the model in learning meaningful signals [13, 26]. In this work
we construct three pre-training objectives based on different no-
tions of query similarity, that help the model learn meaningful
representations, as demonstrated in Section 5.5.

3 LEARNSHAPLEY
This section recaps (and extends, where needed) the description
of LearnShapley from [5], serving as further preliminaries for

707

Predicting Fact Contributions fromQuery Logs with Machine Learning EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

1 SELECT DISTINCT actors.age

2 FROM movies, actors, companies, roles
3 WHERE movies.title = roles.movie AND
4 actors.name = roles.actor AND
5 movies.company = companies.name AND
6 companies.country = “USA” AND

7 movies.year = 2007

(a) query 𝑞3

45 23 30
𝑐1 0.158 0 0
𝑐2 0.075 0.25 0.25
𝑐3 0 0 0

(b) 𝑞3 Shapley values

Figure 3: 𝑞3, a variation of 𝑞inf with a different projection clause.
Although the results of 𝑞3 and 𝑞inf contain different output tuples,
their computation and contributing facts are identical. These
signals are captured by the rank-based similarity.

our novel contributions which are the experiments and analysis
that follow.

3.1 Problem Definition
Given a database D, a query log Q is a set of quartets (𝑞, 𝑡, 𝑓 , 𝑣)
where 𝑞 is a query, 𝑡 is an output tuple of 𝑞 (i.e. 𝑡 ∈ 𝑞(D)), 𝑓 ∈ D
is a fact, and 𝑣 = Shapley(D, 𝑞, 𝑡, 𝑓). Our goal is to train a model
on Q so that given a new query 𝑞 ∉ Q, an output tuple 𝑡 ∈ 𝑞(D),
and the lineage Lineage(𝑞,D, 𝑡), output a ranked list of the facts
in Lineage(𝑞,D, 𝑡) whose ranking is similar as possible to their
ranking according to the (hidden) Shapley values with respect to
𝑡 .

For example, recall Example 2.1: for the query 𝑞inf and output
tuple Alice. The Shapley values of some facts in Lineage(D, 𝑞inf,Alice)
are shown in Example 2.2. Our goal is predicting a ranking of all
such facts, which will be close (as defined in Section 5.2) to their
ranking according to their actual Shapley values.

The solution focuses on in-domain learning, meaning that
the train, dev and test queries are over the same database. This
corresponds to a common scenario in which a DBA has a log
of past queries and needs to handle new queries over the same
database. We also focus on a setting where the lineage (but not
the detailed provenance) is given. Other settings are left for future
work and briefly discussed in Section 7.

3.2 Query Similarity
Learning to predict query similarity can help our model iden-
tify latent aspects in the query, and better associate new queries
with the signals from the query log. While syntax-based and
witness-based similarities capture meaningful aspects of query
similarity, they do not capture signals regarding the reasoning,
i.e. contributing facts, that led to the appearance of tuples in the
query’s results. For example, equivalent queries will have perfect
witness-based but may have a low syntax-based score. Moreover,
queries that are almost identical, except for the projection opera-
tion, will have a witness-based score of 0, but may still provide
signals since their computation is almost identical. We define a
novel query similarity metric, rank-based similarity, in order to
capture this different and complementing notion of similarity.

Rank-Based Similarity: We present a novel method of eval-
uating query similarity that is based on the ranking of facts’
Shapley values with respect to output tuples. This is rooted in the
observation that two output tuples sets may be very different, yet
still informative for each other. The Shapley values, and thus the
ranking, are available at training time, and the idea is to use this
information to have the model learn which queries yield similar
ranking of facts. Then, at inference time (where the ranking is of
course not available), the learned similarity of queries with this

respect can help the model focus on inferring a ranking based
on the most relevant queries.

Example 3.1. Figure 3 shows 𝑞3, which outputs the ages of
actors that played in movies released in 2007 and produced by
American production companies. 𝑞3 is similar to 𝑞inf (shown in
Figure 2a) in a way that witness-based and syntax-based simi-
larity fail to capture: Since 𝑞3 and 𝑞inf have different projection
clauses, their witness-based similarity is 0. Their syntax-based
similarity is high, 57 , as only one operation is changed. However,
this is also the case if we examine 𝑞inf and a variation of 𝑞inf with
a 𝑚𝑜𝑣𝑖𝑒.𝑦𝑒𝑎𝑟 ! = 2007, for which the computational reasoning
is completely different. 𝑞3 and 𝑞inf share the same computation
process up until the projection clause, meaning they share infor-
mation on the provenance of each output tuple, and the ranking
of the facts that contributed to the appearance of these tuples in
the result. When comparing 𝑞inf and 𝑞3, the facts that contributed
to the appearance of 45 in 𝑞3 are identical to that of Alice in
𝑞inf, and again for 23 and 30 with respect to Bob and David.

Since queries can be similar in their computation process, but
have different projection clause, the first task is aligning the
output tuples sets based on similarity of their contributing facts
rankings:

Given two queries 𝑞 and 𝑞′, we define the complete bipar-
tite graph, 𝐺 = (𝑞(D) ∪ 𝑞′ (D), 𝐸), where 𝑞(D) = {𝑡1, . . . , 𝑡𝑛}
𝑞′ (D) = {𝑡 ′1, . . . , 𝑡

′
𝑚} are the outputs of queries 𝑞 and 𝑞′ over

D. Let us denote by 𝑟𝑎𝑛𝑘𝑡𝑖 (D, 𝑞) the ranking of all facts 𝑓 ∈ D,
ranked by their Shapley values with respect to the output tuple
𝑡𝑖 of query 𝑞. We define a weight function𝓌 : 𝐸 → [0, 1] as

𝓌(𝑡𝑖 , 𝑡 ′𝑗) = 1 − 𝐾𝑑 (𝑟𝑎𝑛𝑘𝑡𝑖 (D, 𝑞), 𝑟𝑎𝑛𝑘𝑡 ′𝑗 (D, 𝑞
′)).

Where 𝐾𝑑 is the normalized Kendall tau distance. We pro-
ceed to find a maximum weighted matching of (𝐺,𝓌), denoted
asM, which can be computed efficiently using the Hungarian
algorithm [23]. The similarity of 𝑞 and 𝑞′ is then defined as

sim𝑟 (𝑞, 𝑞′) =
∑
𝑒∈M 𝓌(𝑒)

|𝑞(D)| + |𝑞′ (D)| − |M| .

We find an alignment of the queries’ results, such that each
matched pair has the most similar facts ranking. The closer the
similarity is to one, the greater the size of the matching and the
quality of each individual match altogether.

Figure 5: A maximum weighted matching on 𝐺 = (𝑞inf (D) ∪
𝑞3 (D), 𝐸). Facts ranking presented besides the nodes.

Example 3.2. We will demonstrate the computation of the
rank-based similarity metric for queries 𝑞inf and 𝑞3. First, we
construct the complete bipartite graph where the nodes in each
side consists of the output tuples of each query 𝑞inf and 𝑞3, as
can be seen in Figure 5. For brevity we will use the facts ranking
of companies table. In practice, we use all facts in the union of
the lineages of all output tuples from both queries. We proceed

708

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy Dana Arad, Daniel Deutch, and Nave Frost

Figure 4: Overview of LearnShapley’s system architecture. During pre-training (a), LearnShapley takes two queries as input, and
outputs the syntax, witness and rank-based similarity scores. Then, LearnShapley is fine-tuned (b) for Shapley value prediction, which
will be used to rank the contributing facts with respect to a specific query and output tuple.

Figure 6: DBShap data collection pipeline. Queries are executed
using a provenance-aware database to obtain the output tuples
and detailed provenance. Shapley values of contributing facts
are computed using the provenance w.r.t. each query and output
tuple.

to find a maximum weighted matchingM, the edges ofM are
marked in bold, and the weight of each edge is denoted (note
that there exist other maximum weighted matchings). We then
have:

sim𝑟 (𝑞inf, 𝑞3) =
∑
𝑒∈M 𝓌(𝑒)

|𝑞inf (D)| + |𝑞3 (D)| − |M| =
3
3 = 1

Note that computing this metric requires exact Shapley values
and may be costly. In our system, it is used mainly in the training
process. Thus, the computation is done offline and does not affect
the inference time.

3.3 Model Architecture
Since the queries, tuples and facts are textual, LearnShapley uti-
lizes BERT (Bidirectional Encoder Representations from Trans-
formers) [18], a self-supervised technique that learns contextual-
ized representations of sequences of text. BERT is a pre-trained
model, meaning that the model is trained on an intermediate task
with the goal of learning meaningful representations of textual
inputs, and can later be fine-tuned, refining its performance to-
wards many different target tasks. We employ BERT in order to
learn contextualized representations of queries and facts. Thus,
we extend BERT’s training methodology, and propose additional
pre-training objectives, to refine the models language capabilities
to the setting of queries and tuples. Our pre-training objectives
aim to help the model learn different aspects of query structure
and similarity. Then, we fine-tune the model with the task of
predicting the exact Shapley value of a fact with respect to a
query and output tuple. We use the predicted Shapley value to
rank the facts according to their contribution.

Pre-Training:We define our pre-training objective as follows:
we create three signals based on the similarities defined in Sec-
tion 3.2: rank-based similarity denoted as sim𝑟 , witness-based
similarity denoted as sim𝑤 and syntax-based similarity denoted
as sim𝑠 . Given two queries 𝑞 and 𝑞′, and their tokenized repre-
sentation 𝑞 = 𝑞1, . . . , 𝑞𝑘 and 𝑞′ = 𝑞′1, . . . , 𝑞

′
𝑟 , the input for the

model is the sequence of tokens

[CLS], 𝑞1, . . . , 𝑞𝑘 , [SEP], 𝑞
′
1, . . . , 𝑞

′
𝑟 .

Where [CLS] and [SEP] tokens are the special tokens described
by [18]. BERT returns a sequence of contextualized vectors

𝑣[CLS], 𝑣𝑞1 , . . . , 𝑣𝑞𝑘 , 𝑣[SEP], 𝑣𝑞′1
, . . . , 𝑣𝑞′𝑟 .

We add three separate linear layers on top of the 𝑣[CLS], each
corresponding to a single similarity metric. We use regression
loss and train the model to predict sim𝑟 (𝑞, 𝑞′), sim𝑤 (𝑞, 𝑞′) and
sim𝑠 (𝑞, 𝑞′), respectively.

We define the pre-training loss as an aggregation of the losses
of each individual objective (𝛼 , 𝛽 , 𝛾 are hyper-parameters, we
found equal weights to work best):

ℓpre-training = 𝛼 · ℓsim𝑠
+ 𝛽 · ℓsim𝑟

+ 𝛾 · ℓsim𝑤

Fine-Tuning: In order to rank the influencing facts, we further
fine tune the model to predict the Shapley value of a fact 𝑓 with
respect to a query 𝑞 and an output tuple 𝑡 . Given the tokenized
representation of each element, 𝑞 = 𝑞1, . . . , 𝑞𝑘 , 𝑡 = 𝑡1, . . . , 𝑡𝑟 , and
𝑓 = 𝑓1, . . . , 𝑓𝑠 , we construct the input for the model:

[CLS], 𝑞1, . . . , 𝑞𝑘 , [SEP], 𝑡1, . . . , 𝑡𝑟 , [SEP], 𝑓1, . . . , 𝑓𝑠

We then add a linear layer on top of the contextual represen-
tation of the [CLS] token, and further train the model using
regression loss. In this stage, we use the Shapley values scaled
by a magnitude of 1000 in order to avoid numeric issues.

4 TRAINING AND EVALUATION DATA
We train and evaluate LearnShapley using a dataset of SPJU
queries over two databases, IMDB and Academic. For each triplet
of query, output tuple and fact, DBShap also includes the exact
Shapley value of the fact with respect to the query and output
tuple, computed using [15]. The dataset, called DBShap, includes
queries, query results and contributing facts (in our prior work
the solution was demonstrated over queries from DBShap but
not tested over it, and its description was correspondingly only
partial). The data collection pipeline is detailed in Figure 6. For
each pair of queries,DBShap also contains query similarity scores

709

Predicting Fact Contributions fromQuery Logs with Machine Learning EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

IMDB

(a) Syntax (b) Witness (c) Rank

Academic

(d) Syntax (e) Witness (f) Rank

Figure 7: Heatmaps of DBShap queries similarities

computed according to the syntax-based, witness-based and rank-
based similarities defined in Section 3.2. All queries in DBShap
are in SPJU (Select, Project, Join, Union), since the solution in
[15] is restricted to this query class.

Overall, DBShap includes 293 unique queries, yielding a total
of 1M output tuples, and 18M contributing facts. Following com-
mon practice, we randomly split the queries into train (70%), dev
(10%) and test (20%). Each split includes the queries along with
their results and contributing facts. DBShap is publicly available
in [3].

Table 1: DBShap statistics

train dev test Total

IMDB

queries 137 20 40 197
results 923,688 7,085 39,018 969,791
facts 16,588,223 95,992 1,136,501 17,820,716
avg results per query 6,742.25 354.25 975.45 4,922.80
max results for a query 306,735 2,556 15,078 306,735
avg contributing facts per result 17.96 13.55 29.13 18.37
max contributing facts for a result 261 224 233 261

Academic

queries 67 9 20 96
results 27,080 792 2,174 30,046
facts 195,850 8,779 26,508 231,137
avg results per query 404.18 88 108.7 312.98
max results for a query 10,640 625 594 10,640
avg contributing facts per result 7.23 11.08 12.19 7.69
max contributing facts for a result 262 95 165 262

Table 2: Average query similarities in splits of DBShap

Average Query Similarity
train-train train-dev train-test All Queries

Syntax-Based Similarity 0.144 0.140 0.146 0.150
Witness-Based Similarity 0.012 0.002 0.006 0.015IMDB
Rank-Based Similarity 0.179 0.185 0.171 0.145
Syntax-Based Similarity 0.204 0.241 0.171 0.208
Witness-Based Similarity 0.030 0.010 0.010 0.033Academic
Rank-Based Similarity 0.321 0.312 0.308 0.323

DBShap Statistics:On average, the IMDB queries have around
5k results per query, and around 18 contributing facts per result.
The Academic queries have an average of around 312 results per
query and around 8 contributing facts per result. Both databases

include some queries and output tuples with over 200 contribut-
ing facts. Queries, results and facts statistics are summarized in
Table 1.

Table 2 summarizes statistics on the query similarity scores in
DBShap. The table presents the average query similarity between
different data splits, i.e. the average similarity of train queries
with respect to train, dev and test queries, respectively. Figure 7
shows a heatmap representation of these similarity scores. The
heatmaps demonstrate the notion of orthogonality between the
different metrics, and show that each captures different charac-
teristics of query similarities as different areas of the grid are
activated.

Examples fromDBShap: Figure 8 shows examples of queries,
output tuples and a small subset of facts and corresponding Shap-
ley values from DBShap. Query (a) over the Academic database
outputs the domain names for which there are conferences that
have publications published after 2010 by authors from Univer-
sity of California San Diego, with less than 100 publications and
a total of more than 1000 citations. We focus on one of the query
results, “Software Engineering”. Examples of contributing facts
include a tuple for a particularly prolific author, and of relevant
conferences in which papers were published (CAV and ISSRE).
Query (b), over IMDB, outputs the names of people whose name
start with the letter “B” and participated in the cast of movies
produced by American production companies. Consider the out-
put tuple representing the actress Lita Baron. Baron participated
in the movie “Dale Robertson”, which has only one release, by
NBC. By comparison, the 1949 adventure film “Bomba on Pan-
ther Island” featuring Baron has many releases over the years,
only one of which was by the Warner Home Video production
company. The Shapley values of NBC and Warner Home Video
with respect to the query and output tuple (shown in Figure 8)
reflect this: NBC has a greater contribution compared to Warner
Home Video company for this output tuple.

710

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy Dana Arad, Daniel Deutch, and Nave Frost

Figure 8: Selected data samples from DBShap with a subset of influential facts

Table 3: LearnShapley results compared to Nearest Query baselines and LearnShapley ablations. Highest scores are marked in bold,
second highest marked with underline.

IMDB Academic
Model NDCG@10 P@1 P@3 P@5 NDCG@10 P@1 P@3 P@5

LearnShapley BERT-large + Pre-Training + Fine-Tuning 0.952 0.938 0.932 0.947 0.972 0.963 0.900 0.878
BERT-base + Pre-Training + Fine-Tuning 0.948 0.925 0.930 0.945 0.968 0.958 0.900 0.873

Ablations BERT base + Fine-Tuning 0.944 0.888 0.924 0.943 0.952 0.953 0.868 0.872
Transformer Encoder 0.928 0.846 0.884 0.922 0.927 0.898 0.861 0.871

Nearest Queries
Syntax-Based Similarity (n=3) 0.679 0.447 0.467 0.421 0.291 0.049 0.073 0.068
Witness-Based Similarity (n=3) 0.679 0.444 0.462 0.399 0.291 0.043 0.078 0.70
Rank-Based Similarity (n=3) 0.677 0.422 0.439 0.396 0.290 0.045 0.087 0.076

5 EXPERIMENTS
We have implemented LearnShapley in Python 3.7 using PyTorch
[35] and the Transformers library [46]. All experiment were
preformed on a Linux Ubuntu 18.04.5 LTS machine with 512G
RAM, AMD EPYC 7302 16-Core Processor and two GeForce RTX
309 GPUs. The source code of our implementation is available in
[4].

5.1 Compared Methods
The exact algorithm for Shapley value computation from [15] is
used in an offline manner to compute DBShap, from which dis-
tinct subsets are used as training and test data for LearnShapley.
This in particular means that we compare the ranking produced
by LearnShapley to the gold ranking yielded by [15]. Note that
in contrast to the alternative of using [15] for deployment, Learn-
Shapley does not require detailed provenance for inference but
rather only lineage. We also compare the performance of our
system to another possible approach that learns from a query log
but relies only on the lineage at inference time, namely that of
Nearest Queries. Nearest Queries is based on the aggregation of

Shapley values of contributing facts of the 𝑛 nearest queries to
the query in question, where the similarity metric and 𝑛, number
of neighbors to consider are configurable. We implemented the
Nearest Queries models in Python 3.7. We present variations of
this model using syntax-based, witness based and rank-based
similarities, using 𝑛 = 3, which led to the best results. Note that
Nearest Queries with rank-based similarity is only feasible in a
controlled experiment, since computing rank based similarity
requires exact Shapley values of all contributing facts.

5.2 Evaluation Metrics
We evaluate the predicted rank over the set of test queries over
each database inDBShap. Given a databaseD, query 𝑞, an output
tuple 𝑡 , and a set of facts Lineage(D, 𝑞, 𝑡), we wish to rank the
fact according to their contribution. To this end, we first obtain
the predicted Shapley value of every fact 𝑓 ∈ Lineage(D, 𝑞, 𝑡).
We then rank the facts according to the predicted Shapley values
in order to produce the predicted rank. We evaluate the predicted
rank with respect to the gold rank using two metrics:

711

Predicting Fact Contributions fromQuery Logs with Machine Learning EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

• Normalized Discounted Cumulative Gain (NDCG) is
a measure of ranking quality [45], calculated as the ratio
between the Discounted Cumulative Gain (DCG) and the
Ideal Discounted Cumulative Gain (IDCG). The DCG is a
sum of the scores, or gains, of ranked elements based on
its position in the result. The IDCG is the highest DCG
out of all possible rankings, used to normalize the DCG
score between 0 and 1. We measure NDCG for the top 10
contributing facts, denoted as NDCG@10.

• Precision at k (p@k) measures how many facts from
the top k are in the model’s prediction. If there are ties,
we take the first k facts plus all subsequent facts that hold
the same rank as the k’th element. We measure p@k for
k=1,3,5, denoted as p@1, p@3 and p@5.

5.3 Main Experimental Results
Table 3 shows the NDCG@10, p@1, p@3 and p@5 scores of
LearnShapley over both databases in DBShap. We trained two
variations of LearnShapley, LearnShapley-base and LearnShap-
ley-large which utilizes BERT-base and BERT-large, respectively.
After the pre-training stage, we chose the pre-training checkpoint
with the lowest MSE score on the dev set. After fine-tuning, we
chose the checkpoint with the highest NDCG@10 score over the
dev set. Both versions of LearnShapley significantly outperforms
all nearest queries models for both IMDB and Academic, and
achieves scores close to 1 in all metrics. In terms of NDCG@10,
LearnShapley-base demonstrates 0.7 (Academic) and 0.3 (IMDB)
points improvement compared to baseline models. In compar-
ison, previous work which uses detailed boolean provenance
at deployment to rank database facts which was tested on a
slightly different set of queries over IMDB, was able to achieve
near-perfect NDCG and p@5 scores [15]. While our results are
slightly lower, they are achieved when given only the lineage
at deployment time rather than the boolean provenance. On the
Academic database, LearnShapley-base achieves 0.8-0.9 points
improvement on p@1, p@3 and p@5, respectively. On IMDB, we
observe slightly smaller improvements: 0.4-0.5 points improve-
ments in p@1, p@3 and p@5 scores, since the performance of
baseline methods is much higher compared to Academic. We
conjecture that this is caused by different characteristics of the
query log used for training: Nearest Queries models rely more
heavily on the query log having very similar queries to the query
of interest at inference time, while LearnShapley’s architecture
allows it to generalize better. These results demonstrate that
LearnShapley better captures the importance and contribution of
facts and better generalizes to unseen query-output tuple pairs.
LearnShapley-large achieves even better NDCG@10 scores with
additional 0.004 points in both Academic and IMDB, and 0.003-
0.007 additional p@k points compared to LearnShapley-base.

5.4 Analysis
Performance as a Function of Lineage Size: Figure 9a shows
the relationship between the size of the lineage of queries and
output tuples from the Academic database and the performance
of LearnShapley-base in terms of NDCG@10. Each data point
represents a query and output tuple, where output tuples of the
same query have the same color. The dotted black line is the linear
trendline. LearnShapley shows an improvement in NDCG@10
scores as the number of facts in the lineage decreases. Never-
theless, LearnShapley achieves high NDCG@10 scores even for

queries and output tuples with the largest size lineage in the
Academic test set in DBShap, with 165 contributing facts.

Performance as a Function of Query Similarity: The pre-
training objective aims to help the model identify similar queries
and learn signals from these queries. Thus, we analyze the simi-
larity scores of nearest queries vs. the NDCG@10 score for query
and output tuple pair. Each data point in Figure 10 represents
a query and output tuple pair, (𝑞, 𝑡). The x axis is the similar-
ity score of 𝑞 and (top) the single nearest query or (bottom) the
average of 5 nearest queries with respect to syntax-based, witness-
based and rank-based similarities. The y axis is the NDCG@10
score of the ranking of contributing facts with respect to (𝑞, 𝑡)
obtained by running LearnShapley-base. When taking the aver-
age of 5 nearest queries we see a positive correlation with respect
to all similarity metrics, which is not the case when comparing to
the single most similar query. This is an indication of the model’s
ability to generalize and aggregate signals from several queries
in the training data in order to make predictions at test time.

(a) (b)

Figure 9: Performance (NDCG@10) of LearnShapley on query-
output tuple pairs from the Academic database, as a function
of (a) the number of contributing fact in the lineage and (b) the
number of tables joined by the query. Each point represents a
query and output tuple, where output tuples of the same query
have the same color. Darker colors represent multiple points in
the same location.

Performance as a Function of the Query Complexity:
Figure 9b shows the model’s performance for varying number
of tables joined in the query, which is commonly used as a mea-
sure of the query complexity. Interestingly, we have observed
no significant correlation between the query complexity and the
model performance. Also, we observe that the model achieves
very high scores even for some very complex queries joining 9
and 10 tables.

5.5 Ablation Study
Language Models: A key component of LearnShapley is the
use of a language model in order to learn complex signals of
queries and databases semantics. A natural question is whether
the use of BERT is necessary, or maybe smaller models will still
be able to learn signals and apply them to new data. Table 3
shows the performance of a transformer encoder with 3 layers
and 8 attention heads compared to the performance of Learn-
Shapley. The transformer encoder was randomly initialized and
then trained for 50 epochs using the same data used during the
fine-tuning stage of LearnShapley. As in LearnShapley, we chose
the checkpoint with the highest NDCG@10 score on the dev
set. On Academic, the transformer model shows a drop of 0.2 in
NDCG@10 compared to LearnShapley-base, and 0.01, 0.032 and
0.003 points drop in p@1, p@3 and p@5. On IMDB, we observe

712

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy Dana Arad, Daniel Deutch, and Nave Frost

(a) Maximum sim𝑠 (b) Maximum sim𝑤

(c) Maximum sim𝑟 (d) Mean sim𝑠 of 5 Nearest Queries

(e) Mean sim𝑤 of 5 Nearest Queries (f) Mean sim𝑟 of 5 Nearest Queries

Figure 10: NDCG@10 of LearnShapley on query and output
tuple pairs (𝑞, 𝑡) with respect to maximum similarity score to
𝑞 in DBShap (top) and the average similarity score of 5 most
similar queries to 𝑞 in DBShap (bottom), using syntax-based ((a),
(d)), witness-based ((b), (e))) and rank-based ((c), (f)) similarity
metrics. Each point represents a query and output tuple, where
output tuples of the same query have the same color. Darker
colors represent multiple points in the same location.

a slightly smaller drop of 0.02 points in NDCG@10, and 0.079,
0.046 and 0.023 points drop in p@1, p@3 and p@5, respectively.

Pre-Training: Another natural question is whether or not
the additional pre-training stage indeed helps LearnShapley to
learn relevant signals. We test this property by directly fine-
tuning BERT on the same data as in the fine-tuning stage of
LearnShapley, and comparing the performance of both models.
We fine-tune BERT-base for 10 epochs and choose the checkpoint
with the highest NDCG@10 score on the dev set. Results are
shown in Table 3, under Ablations. We can see that for both
databases LearnShapley-base obtains higher scores across all
metrics. Pre-training improves the model performance by 0.016
(Academic) and 0.004 (IMDB) points in terms of NDCG@10, and
adds 0.001-0.037 points of p@k scores to the base version of the
model.

Similarity Metrics: The similarity metrics used during pre-
training represent different characteristics of query similarity. We
train variations of LearnShapley-base on the Academic dataset,
pre-trained on different subsets of similarity metrics, in order
to study the effect of each metric combination on the model’s
performance. Each model was pre-trained for 20 epochs, and
fine-tuned for 10 epochs on the same data as LearnShapley. As in
LearnShapley, after pre-training we chose the checkpoint with
the lowest MSE score on the dev set. For fine-tuning, Ablation
results are summarized in Table 4. While all metrics provide
the model with helpful information, some metrics contribute
more than others. As expected, the highest performance using
all evaluation metrics is obtained when LearnShapley is pre-
trained on all similarity metrics, i.e. rank-based, syntax-based

and witness-based. When pre-training on two of these similarity
metrics we observe a slight drop in performance - an average
of 0.05 drop in NDCG@10 and 0.01 drop in p@1. Removing
the witness-based similarity metric has the most effect in terms
of NDCG@10, resulting in a 0.07 drop. This is demonstrated
again in the case of single similarity metrics - a model trained
on witness similarity alone achieve the highest scores out of all
single-metric models when measuring both NDCG@10 and p@k.
This is somewhat surprising, since witness similarity provides
the most sparse signal to the model out of all metrics, meaning
most of the witness similarity scores are 0. This demonstrates the
precision/recall trade-off of witness similarity. In the few cases
where witness similarity is high, it is a strong indication that the
semantics of the queries are similar and the queries likely share
computational information.

Table 4: Performance of LearnShapley-base with different com-
binations of similarity metrics used for pre-training.

NDCG@10 p@1 p@3 p@5
LearnShapley-base 0.968 0.958 0.900 0.873
witness & rank (w/o syntax) 0.960 0.945 0.889 0.861
syntax & rank (w/o witness) 0.959 0.957 0.881 0.867
witness & syntax (w/o rank) 0.963 0.939 0.900 0.854
syntax (w/o witness & rank) 0.934 0.873 0.865 0.861
witness (w/o syntax & rank) 0.939 0.870 0.871 0.868
rank (w/o witness & syntax) 0.932 0.856 0.896 0.860

(a) NDCG@10 (b) p@1

(c) p@3 (d) p@5

Figure 11: Performance (NDCG@10, p@1, p@3 and p@5) as a
function of the training set size on the Academic dataset. Training
set size controls the amount of over-all data seen during training,
and particularly the percent of new facts, previously unseen
by the model, at test time. LearnShapley is in blue (top), and
Nearest Queries models are in red, yellow and green (overlapping,
bottom).

Tradeoffs. Introducing the fine-tuning phase incurred addi-
tional 25% time at training time (different fine-tuning objectives
were similar in terms of their overhead on their training time); as
shown above, it yields in return a non-negligible gains in terms
of quality.

713

Predicting Fact Contributions fromQuery Logs with Machine Learning EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

5.6 Varying Query Log Sizes
The performance of LearnShapley heavily relies on the number
of queries in the log and their density in terms of query similarity.
We study the effect of the query log size by training variations
of LearnShapley and Nearest Queries models on 10%, 25%, 50%
and 75% of the original query log in DBShap. Each subset was
randomly chosen, and contains all smaller subsets (i.e. the 25% ex-
periment includes all queries used in the 10% experiment). Other
than the difference in training data, the training of LearnShap-
ley and Nearest Queries models is the same as in 5.3. Figure 11
summarizes the results. LearnShapley trained on only 10% and
25% percent of the query log still outperforms baseline methods
that were trained on 100% of the queries. As expected, training
on smaller subsets of the query log results in lower performance
across all metrics and models examined, however LearnShap-
ley is proving to be more robust and shows a smaller drop in
performance compared to the naive Nearest Queries models.

(a) Facts Seen During Training

(b) Facts Unseen During Training

Figure 12:NDCG of partial rankings on the Academic test set: for
each query and output tuple, we measure separately the NDCG of
facts seen during training, and new facts, unseen during training.

5.7 Ranking Unseen Facts
The input to LearnShapley includes only queries, their output
and lineage rather than the entire database. This in particular
means that at training time, LearnShapley only “sees” facts par-
ticipating in the lineage of query results in the training set. Our
experiments demonstrates the performance of LearnShapley in
such scenarios. In the test set of DBShap, 37.75% of the facts
that appear in the lineage of queries are new to the model in the
sense that they did not appear in the lineage of queries in the
training set. Furthermore, the experiments described in Section
5.6 demonstrates the performance of LearnShapley with increas-
ing percentages of new, unseen facts. There, 75,50,25% log sizes

correspond to 40.1%, 45% and 69% (respectively) of the facts in
the test set were new to the model.

We analyze the performance of LearnShapley on seen and un-
seen facts from the Academic test set. Figure 12 demonstrates the
partial NDCG scores of the rankings generated by LearnShapley,
limited to the subset of either seen or unseen facts. As expected,
LearnShapley achieves higher partial NDCG score on the subsets
of facts that are seen by the model during training (10% improve-
ment on average). While the overall scores of unseen facts are
lower, Figure 12b shows that in many cases, LearnShapley is still
able to preform well. Note that the NDCG scores in Figure 12b
are evaluated on subsets of fact, thus the reported partial NDCG
score are not comparable to the NDCG score of the complete
set of facts, namely those shown in Figure 9. Table 5 shows an
example of a test query, whose lineage contains new facts. Learn-
Shapley is able to generalize and produces a correct ranking of
the previously unseen fact, marked in bold. Note, in contrast, that
the Nearest Queries approach predicts the score for each fact to
be its average score for other (nearest) queries in the training
set. This score is naturally 0 for every unseen fact. The baseline
approach thus utilizes no signal on unseen facts, simply placing
them below all seen facts and in arbitrary order.

Table 5: Prediction of LearnShapley for a query (top) and output
tuple (first tuple in the table) with facts in the lineage unseen
by the model during training (ranked 5, in bold). LearnShapley
successfully predicts the rank of the previous unseen fact.

SELECT author.name
FROM author, organization, writes, publication, conference
WHERE author.oid = organization.oid AND
author.aid = writes.aid AND writes.pid = publication.pid AND
publication.cid = conference.cid AND
organization.name = ’University of Michigan’ AND
publication.year >2010
GROUP BY author.name

Predicted
Rank

True
Rank Tuple Value

1 1 [’Michael G. Kallitsis’, ...]
4 2 [’University of Michigan’, ...]
3 3 [’Network Decomposition...]
2 4 [’IEEE SmartGridComm’, ...]
5 5 [’IEEE GLOBECOM’, ...]
6 6 [’A decentralized algorithm for optimal...’, ...]

5.8 Inference Times
We compare the inference time of LearnShapley to Nearest Queries
models with syntax-based and witness-based similarities. Table 6
summarizes the maximum and average inference times for query
and output tuple pairs from DBShap. The time complexity of
k-NN algorithm is 𝑂 (𝑛𝑑) where 𝑑 is the time complexity of the
distance function. In our implementation, the distance between
a pair of queries 𝑞1 and 𝑞2 is equal to one minus their similarity
score: 𝑑 (𝑞1, 𝑞2) = 1 − 𝑠𝑖𝑚(𝑞1, 𝑞2). Thus, the time complexity and
subsequent inference time of Nearest Queries model depends on
the used similarity metric and the size of the query log. We see
this reflected in the inference times in Table 6: witness-based
similarity requires only set operations on existing data from DB-
Shap, i.e. output tuple ids, while syntax-based similarity requires
additional pre-processing in the form of decomposing the query

714

EDBT 2024, 25th March-28th March, 2024, Paestum, Italy Dana Arad, Daniel Deutch, and Nave Frost

Table 6: Mean and Maximum inference times in seconds for
query and output tuple pairs from DBShap. Inference time eval-
uated on Nearest Queries models with syntax-based similarity
and witness-based similarities, and both sizes of LearnShapley.

Academic IMDB
Mean Max Mean Max

Exact computation 2.491 469.885 3.750 1404.49
Nearest Queries (Syntax) 0.094 5.516 0.227 31.167
Nearest Queries (Witness) 0.013 0.043 0.090 0.335
LearnShapley-base 0.0786 1.070 0.169 1.393
LearnShapley-large 0.173 2.333 0.363 2.954

into the different query operations. At inference time, LearnShap-
ley requires forward passes through the model whose execution
time only depends on the model size. Thus, the inference time of
LearnShapley-base is slightly longer than witness-based Nearest
Queries, but 5× less than that of syntax-based Nearest Queries
on average. While LearnShapley-large has the longest inference
times on average, syntax-based Nearest Queries has the longest
times in the worst case, with 30× and 10× longer inference times
compared to LearnShapley-base and LearnShapley-large. We also
compare the execution time of the state-of-the-art baseline for
exact computation [15] to the execution time of LearnShapley
at deployment. Observe that LearnShapley is much faster at de-
ployment than exact Shapley value computation. In addition,
the Shapley computation algorithm in [15] works on detailed
why-provenance whereas LearnShapley only needs the lineage at
deployment. Note that the results are aggregated (average/max)
over pairs of a query and an output tuple; the overall effect of the
speed-up exacerbates (in absolute terms of the overall execution
time) if we repeat the process in order to explain all output tuples
of a given query.

The effect of ablations. Most of the different ablations had no
effect on the inference time since they did not affect the architec-
ture. One ablation that did make a difference is the transformer
encoder architecture, where we used a randomly initialized trans-
former encoder that is smaller in size, compared to BERT. This
variation achieved lower quality scores across all of our metrics,
and thus, for brevity, we do not include its execution time.

6 RELATEDWORK
Query answering explanations and Shapley values: There
are two main types of models that exist for explaining database
query results. The first are models that provide information about
the provenance of output tuples, such as the facts involved in their
calculation, and potentially the relationships between them, at
different levels of detail (e.g. [8, 9, 11, 14, 20]). A major challenge
in this area has been the complexity of provenance expressions,
which makes it difficult to efficiently compute and store. As a
result, the fields of provenance factorization and summarization
have been studied as ways to compactly represent provenance
(e.g. [7, 10, 25, 34, 36]). The second type are models that quantify
the contributions of facts (e.g. [19, 29, 32, 33, 40]). This latter
approach is the one that we follow in this paper.

Specifically, the works of [15, 30, 37] have studied in depth
the use of Shapley values to quantify facts contribution in query
answering. In [30, 37] the authors have laid the foundations for
studying the problem, but had not focused on practically effi-
cient algorithms for computing Shapley values; in fact, they have
shown that exact computation is intractable for a large class of

queries (namely, non-hierarchical ones). In [15], the authors in-
troduce an exact method for computing Shapley values and a
faster, but less reliable, inexact method for ranking facts based on
Shapley values. Both methods utilize boolean provenance for rele-
vant tuples. The exact method uses knowledge compilation [12],
and is only applicable in cases where the boolean provenance
can be compiled into a deterministic and decomposable circuit of
a reasonable size. The inexact method, called CNF Proxy, starts
from a non-factorized DNF representation of the provenance
and applies Tseytin transformation [44] to obtain a CNF. Such
non-factorized representations may not be readily available, and
may be much larger than the lineage due to repetition of vari-
ables across clauses. In our work, we used the exact computation
method proposed in [15] to calculate DBShap offline, which we
then use as training data. However, during inference, our model
relies solely on lineage, not the full provenance. Its fast inference
time renders it suitable for real-time analysis.

Language models: The use of pre-trained language models
has gained significant attention in the field of natural language
processing [18, 27]. These models have also been applied to the
field of databases, with research proving their utility in tasks
such as table understanding [13, 22, 47], column understanding
[43], and text-to-SQL [28, 48].

7 CONCLUSION
In this work, we preformed extensive experiments and analysis
of LearnShapley, a novel machine learning approach designed
to rank facts based on their contribution to query results. To this
end we introduced DBShap, a dataset for the learning task of
ranking fact contribution in query answering.

Our analysis reveals that LearnShapley consistently achieves
high performance, with NDCG@10, p@1, p@3, and p@5 scores
exceeding 0.9 for all metrics. These scores reflect the high fidelity
of the predicted rankings compared to the true ranking obtained
via the actual Shapley values of the tuples with respect to the new
query. We further analyze the performance of LearnShapley and
show that it generalizes and achieves high NDCG@10 scores for
even the queries with the largest lineage size in DBShap. Future
work in this direction can focus on improving LearnShapley’s
ability to generalize to unseen facts and tables, and develop new
methods can be applied to previously unseen databases.

Additionally, we preformed an extensive ablation study on
the effect of each component of LearnShapley. We find that the
proposed pre-training objectives along with the task-specific
fine-tuning, all contribute to the model’s high performance.

In this work, we focus on a setting where the lineage (but
not the detailed provenance) is given. Future work can utilize
DBShap to design models for different tasks, such as predicting
the lineage of a given query and result, or obtaining the ranking
of contributing facts without assuming access to the lineage.

Acknowledgments. This research has been partially funded
by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant
agreement No. 804302).

715

Predicting Fact Contributions fromQuery Logs with Machine Learning EDBT 2024, 25th March-28th March, 2024, Paestum, Italy

REFERENCES
[1] Bahareh Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Radhakr-

ishnan, and Boris Glavic. 2018. Using Reenactment to Retroactively Capture
Provenance for Transactions. IEEE Transactions on Knowledge and Data Engi-
neering 30, 3 (2018), 599–612. https://doi.org/10.1109/TKDE.2017.2769056

[2] Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian
Zeng. 2018. GProM-a swiss army knife for your provenance needs. AQuarterly
bulletin of the Computer Society of the IEEE Technical Committee on Data
Engineering 41, 1 (2018).

[3] Dana Arad, Daniel Deutch, and Nave Frost. 2022. DBShap: A dataset of
queries, query results, fact contributions and Shapley values over the IMDB
and Academic databases. https://www.cs.tau.ac.il/~danielde/dbshap_page/
dbshap.html.

[4] Dana Arad, Daniel Deutch, and Nave Frost. 2022. LearnShapley: A system for
ranking facts contributions based on query log. https://github.com/danaarad/
LearnShapley.

[5] Dana Arad, Daniel Deutch, and Nave Frost. 2022. LearnShapley: Learning
to Predict Rankings of Facts Contribution Based on Query Logs. In Proceed-
ings of the 31st ACM International Conference on Information & Knowledge
Management. 4788–4792.

[6] Natalia Arzamasova, Klemens Böhm, Bertrand Goldman, Christian Saaler, and
Martin Schäler. 2019. On the usefulness of SQL-query-similarity measures to
find user interests. IEEE Transactions on Knowledge and Data Engineering 32,
10 (2019), 1982–1999.

[7] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodnỳ. 2012. FDB: A query
engine for factorised relational databases. arXiv preprint arXiv:1203.2672
(2012).

[8] Peter Buneman, James Cheney, Wang-Chiew Tan, and Stijn Vansummeren.
2008. Curated databases. In Proceedings of PODS. 1–12. https://homepages.
inf.ed.ac.uk/opb/papers/inv.pdf

[9] Peter Buneman, Sanjeev Khanna, and TanWang-Chiew. 2001. Why and where:
A characterization of data provenance. In ICDT. Springer, 316–330. https://
repository.upenn.edu/cgi/viewcontent.cgi?article=1209&context=cis_papers

[10] Adriane P Chapman, Hosagrahar V Jagadish, and Prakash Ramanan. 2008.
Efficient provenance storage. In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data. 993–1006.

[11] Yingwei Cui, Jennifer Widom, and Janet L Wiener. 2000. Tracing the lineage
of view data in a warehousing environment. ACM Transactions on Database
Systems (TODS) 25, 2 (2000), 179–227. http://ilpubs.stanford.edu:8090/252/1/
1997-3.pdf

[12] Adnan Darwiche and Pierre Marquis. 2002. A knowledge compilation map.
Journal of Artificial Intelligence Research 17 (2002), 229–264. https://arxiv.org/
abs/1106.1819

[13] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table
understanding through representation learning. ACM SIGMOD Record 51, 1
(2022), 33–40.

[14] Daniel Deutch, Nave Frost, and Amir Gilad. 2020. Explaining natural language
query results. The VLDB Journal 29, 1 (2020), 485–508.

[15] Daniel Deutch, Nave Frost, Benny Kimelfeld, and Mikaël Monet. 2022. Com-
puting the Shapley Value of Facts in Query Answering. In Proceedings of the
2022 International Conference on Management of Data. 1570–1583.

[16] Daniel Deutch, Amir Gilad, and Yuval Moskovitch. 2015. Selective provenance
for datalog programs using top-k queries. Proceedings of the VLDB Endowment
8, 12 (2015), 1394–1405.

[17] Daniel Deutch, Yuval Moskovitch, and Noam Rinetzky. 2019. Hypothetical
Reasoning via Provenance Abstraction. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019. ACM, 537–554. https://doi.org/10.1145/
3299869.3300084

[18] JacobDevlin,Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[19] Dennis Dosso, Susan B Davidson, and Gianmaria Silvello. 2022. Credit dis-
tribution in relational scientific databases. Information Systems 109 (2022),
102060.

[20] Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance
semirings. In Proceedings of PODS. 31–40. https://repository.upenn.edu/cgi/
viewcontent.cgi?article=1022&context=db_research

[21] Todd J Green and Val Tannen. 2017. The semiring framework for database
provenance. In Proceedings of PODS. 93–99. https://dl.acm.org/doi/10.1145/
3034786.3056125

[22] Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. TaPas: Weakly supervised table parsing
via pre-training. arXiv preprint arXiv:2004.02349 (2020).

[23] Harold W Kuhn. 1955. The Hungarian method for the assignment problem.
Naval research logistics quarterly 2, 1-2 (1955), 83–97.

[24] Gokhan Kul, Duc Thanh Anh Luong, Ting Xie, Varun Chandola, Oliver
Kennedy, and Shambhu Upadhyaya. 2018. Similarity metrics for SQL query
clustering. IEEE Transactions on Knowledge and Data Engineering 30, 12 (2018),
2408–2420.

[25] Seokki Lee, Bertram Ludäscher, and Boris Glavic. 2020. Approximate sum-
maries for why and why-not provenance (extended version). arXiv preprint
arXiv:2002.00084 (2020).

[26] Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida
Wang, and Luke Zettlemoyer. 2020. Pre-training via paraphrasing. Advances
in Neural Information Processing Systems 33 (2020), 18470–18481.

[27] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart:
Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[28] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2020. Bridging textual
and tabular data for cross-domain text-to-sql semantic parsing. arXiv preprint
arXiv:2012.12627 (2020).

[29] Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. 2020.
The Shapley value of tuples in query answering. In ICDT, Vol. 155. Schloss
Dagstuhl, 20:1–20:19. https://arxiv.org/abs/1904.08679

[30] Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. 2020.
The Shapley value of tuples in query answering. In ICDT, Vol. 155. Schloss
Dagstuhl, 20:1–20:19. https://arxiv.org/abs/1904.08679

[31] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu.
2010. The complexity of causality and responsibility for query answers and
non-answers. PVLDB 4, 1 (2010), 34–45. https://www.vldb.org/pvldb/vol4/
p34-meliou.pdf

[32] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F Moore, and Dan Suciu.
2010. The complexity of causality and responsibility for query answers and
non-answers. Proceedings of the VLDB Endowment (2010).

[33] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. 2014. Causality and explana-
tions in databases. Proceedings of the VLDB Endowment (PVLDB) 7, 13 (2014),
1715–1716. http://www.vldb.org/pvldb/vol7/p1715-meliou.pdf

[34] Dan Olteanu and Jakub Závodnỳ. 2012. Factorised representations of query
results: size bounds and readability. In Proceedings of the 15th International
Conference on Database Theory. 285–298.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. 2019. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems 32 (2019).

[36] Christopher Ré and Dan Suciu. 2008. Approximate lineage for probabilistic
databases. Proceedings of the VLDB Endowment 1, 1 (2008), 797–808.

[37] Alon Reshef, Benny Kimelfeld, and Ester Livshits. 2020. The impact of negation
on the complexity of the Shapley value in conjunctive queries. In Proceedings
of PODS. 285–297. https://arxiv.org/abs/1912.12610

[38] Alvin E Roth. 1988. The Shapley value: essays in honor of Lloyd S. Shapley.
Cambridge University Press.

[39] Sudeepa Roy, Laurel J. Orr, and Dan Suciu. 2015. Explaining query an-
swers with explanation-ready databases. Proceedings of the VLDB Endowment
(PVLDB) 9, 4 (2015), 348–359. http://www.vldb.org/pvldb/vol9/p348-roy.pdf

[40] Babak Salimi, Leopoldo E. Bertossi, Dan Suciu, and Guy Van den Broeck. 2016.
Quantifying causal effects on query answering in databases. In TaPP. USENIX
Association. http://web.cs.ucla.edu/~guyvdb/papers/SalimiTaPP16.pdf

[41] Pierre Senellart, Louis Jachiet, SilviuManiu, and Yann Ramusat. 2018. ProvSQL:
Provenance and probability management in postgresql. Proceedings of the
VLDB Endowment (PVLDB) 11, 12 (2018), 2034–2037. https://hal.inria.fr/
hal-01851538/file/p976-senellart.pdf

[42] Lloyd S Shapley. 1953. A value for n-person games. Contributions to the
Theory of Games 2, 28 (1953), 307–317. http://www.library.fa.ru/files/Roth2.
pdf#page=39

[43] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating columns with pre-trained
language models. In Proceedings of the 2022 International Conference on Man-
agement of Data. 1493–1503.

[44] Grigori S Tseitin. 1983. On the complexity of derivation in propositional
calculus. In Automation of reasoning. Springer, 466–483. https://link.springer.
com/chapter/10.1007/978-3-642-81955-1_28

[45] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu.
2013. A theoretical analysis of NDCG ranking measures. In Proceedings of
COLT, Vol. 8. 6. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
680.490&rep=rep1&type=pdf

[46] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, AnthonyMoi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771 (2019).

[47] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for joint understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314 (2020).

[48] Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi
Yang, Dragomir Radev, Richard Socher, and Caiming Xiong. 2020. GraPPa:
grammar-augmented pre-training for table semantic parsing. arXiv preprint
arXiv:2009.13845 (2020).

716

