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ABSTRACT

Learned indexes fit machine learning (ML) models to the data
and use them to make query operations more time and space-
efficient. Recent works propose using learned spatial indexes to
improve spatial query performance by optimizing the storage
layout or internal search structures according to the data distri-
bution. However, only a few learned indexes exploit the query
workload distribution to enhance their performance. In addition,
building and updating learned spatial indexes are often costly on
large datasets due to the inefficiency of (re)training ML models.

In this paper, we present WaZI, a learned and workload-aware
variant of the Z-index, which jointly optimizes the storage layout
and search structures, as a viable solution for the above chal-
lenges of spatial indexing. Specifically, we first formulate a cost
function to measure the performance of a Z-index on a dataset for
a range-query workload. Then, we optimize the Z-index structure
by minimizing the cost function through adaptive partitioning
and ordering for index construction. Moreover, we design a novel
page-skipping mechanism to improve the query performance of
WaZI by reducing access to irrelevant data pages. Our extensive
experiments show that the WaZI index improves range query
time by 40% on average over the baselines while always per-
forming better or comparably to state-of-the-art spatial indexes.
Additionally, it also maintains good point query performance.
Generally, WaZI provides favorable tradeoffs among query la-
tency, construction time, and index size.

1 INTRODUCTION

Spatial query processing has attracted significant interest in the
database community over the last three decades with the prolif-
eration of location-based services (LBSs). Although numerous
index structures such as R-trees [17] and k-d trees [6] have been
deployed in database systems to improve spatial query perfor-
mance, their efficiency still cannot fully satisfy the requirements
of real-world applications due to the rapid growth in the volume
of spatial data.

The seminal work of Kraska et al. [22] inspired the introduc-
tion of machine learning (ML) based indexes (i.e., learned indexes)
[7, 10, 18, 22, 27, 36, 43, 46] to replace their traditional counter-
parts as a way of improving query performance by exploiting
data or query patterns or both while reducing space usage. Most
of the learned indexes developed are specific for one-dimensional
data [7, 10, 13, 18, 22], which follows the abstraction that an index
is a model that predicts the position of an element in a sorted ar-
ray. Such an abstraction is made possible only by the prerequisite
that the data resides in a sorted array. Therefore, any model that
accurately and efficiently learns the data’s cumulative density
function (CDF) can serve as an index.
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However, the above abstraction is not squarely applicable to
spatial indexes since there is no predefined ordering between
data points. Nonetheless, a few learned spatial indexes have at-
tempted to overcome this challenge by using space-filling curves
(SFCs) to linearize the spatial indexing task [36, 38, 43]. The con-
struction procedure for such indexes proceeds in two phases.
The first phase uses space-filling curves for data linearization.
The second phase performs the transformed one-dimensional
indexing task. These indexes usually optimize the second phase
of the construction while using standard methods for the first
phase (linearization), missing out on the opportunity to tailor
the linearization to fit the data and workload better.

To remedy the problem, in this work, we present a generalized
variant of the Z-index that is both data- and workload-aware. A
Z-index is an intuitively simple spatial index structure with a long
history in database management systems [39]. It uses a Z-curve

(a.k.a. Z-order curve) to compute a sort order, denoted by Ord,
for multi-dimensional data points. Figure 1a shows an example
of the Z-curve and the corresponding Z-index. The Z-curve visits
the data points according to a hierarchical partitioning of the
data space into cells and a specific ordering of these cells. For
instance, at the top level, the space is partitioned into four cells,
namely A, B, C, and D; at the second level, each of these cells is
partitioned into four sub-cells, and so on, with the partitioning
happening at the coordinates corresponding to the median of the
data along each axis. Within each cell, the ordering of its sub-cells
consistently follows the same ‘Z’-like pattern: cells are ordered
as “abcd” for the first level, with higher-level cells having higher
priority in the point ordering. Each cell is further partitioned and
ordered until the cells reach a predetermined size 𝐿.

The Z-index has the desirable property of monotonicity; that
is, any point “dominated” (i.e., having smaller values in both di-
mensions) by point 𝑎 in the data space will always have a smaller
sort order Ord than 𝑎. This monotonicity property facilitates the
processing of range queries, represented as rectangles in the data
space. A standard range-query algorithm is to obtain the loca-
tions in Ord of the bottom-left and top-right points of the query
rectangle, scan the data entries between the two, and filter the
data points that satisfy the query range. However, the efficiency
of such a range-query algorithm could still be vastly improved.
For example, let us consider the range query with rectangle 𝑅

in Figure 1b: the algorithm processes many data entries outside
the result set (e.g., all points in cell B), which could lead to high
query latencies.

Our Contributions. We propose a generalization of the Z-index
that adapts gracefully to both the distribution of spatial data and
the workload of range queries, mitigating the retrieval of redun-
dant data entries, and thus leading to improved query latencies
at little additional cost to index construction. Specifically, we
present a method to construct a learned and workload-aware
space-filling curve to improve the range-query performance of
a generalized Z-index variant. The Workload-aware Z-Index
(WaZI) variant we propose is flexible in two ways compared
to the base Z-index: the partition location and the ordering of
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Figure 1: Illustrations of the base Z-curve and Z-index and their variants proposed in this work.

child cells. Intuitively, it pays off to partition the data space so
that cells correspond to regions that are fetched by several simi-
lar range queries. Such a partitioning allows the index to avoid
processing points in other cells during the execution of these
queries. For example, the Z-index with an alternative ordering
and partitioning shown in Figure 1c processes fewer redundant
data entries than the base Z-index in Figure 1b. Therefore, if
similar queries dominate the anticipated query workload, the
alternative ordering and partitioning of cells can reduce query la-
tency. The Z-index variant we propose is general enough to allow
different ordering and partitioning for each cell across the index
hierarchy, as shown in Figure 1d. Additionally, by harnessing the
structural properties of the index, we develop and incorporate
an efficient mechanism to reduce the computation required by
skipping non-overlapping pages during range query processing.

In the experiments, we compare WaZI with four state-of-the-
art spatial indexes including Flood [29], STR [25], a query-aware
incremental index QUASII [35], and a cost-optimized variant
of R-tree CUR [40]. The baselines considered cover the scope
of indexes regarding query-awareness and the use of learned
components. The results show that WaZI performs better than
these baselines in terms of range and point query latency while
exhibiting favorable tradeoffs regarding construction time and
index size. In the critical metric of range query latency, WaZI sig-
nificantly outperforms all the baselines. The main contributions
of this paper include:
1) formalizing the problem of optimizing the partitioning and

Z-ordering for the given data and anticipated query workload;
2) providing an index construction algorithm that minimizes the

retrieval cost;
3) presenting a mechanism to efficiently skip over large regions

of irrelevant pages to avoid the computational cost associated
with skipped pages;

4) providing an experimental evaluation of the proposed index
against existing approaches, addressing the cost redemption
behavior and effects of workload changes, as well as an abla-
tion study to demonstrate the benefit from different compo-
nents of our approach.

An extended abstract associated with this work was presented at
a non-archival workshop [33].

2 RELATEDWORK

In this section, we review the existing literature on learned indexes

and spatial indexes, which are closely relevant to the problem we
study in this paper.

Traditional Spatial Indexes. Spatial indexes [12] were well
studied across several decades in the database community. Ex-
isting (non-learned) spatial indexes are generally categorized
into three classes. The first category is space partitioning-based
indexes, e.g., k-d trees [6], Quad-trees [11], and Grid Files [30],
which recursively split the data space into sub-regions and then
index each sub-region hierarchically. The second category is
data partitioning-based indexes, including R-tree [17] and its vari-
ants [2, 4, 5, 20, 41], which recursively divide the dataset into
subsets and then index each subset hierarchically. The differ-
ences between different R-tree variants lie in how they eval-
uate the goodness of data partitioning and the algorithms for
index construction based on the partitioning scheme. The third
category is data transformation-based indexes, which transform
multi-dimensional data into one dimension and then utilize a one-
dimensional index, e.g., B-trees. Space-filling curves (SFCs) are
the typical transformation method. Such data transformations
act as a hybrid between data and space partitioning methods
where the space partitioning nature of SFC is utilized along with
data partitioning methods of the one-dimension index. The Z-
index [3, 39] is a typical index of this kind, based on the Z-curve
for data transformation. The index construction for Z-index most
commonly proceeds by sorting all the points using the SFC sort-
order, packing them into leaves, and then building the index
bottom-up level-by-level. Some mechanisms that utilize proper-
ties of the SFCs have been used to improve range query perfor-
mance in such indexes: like the BIGMIN algorithm associated
with Z-order curves [42] or the calculate_next_match function for
Hilbert curves [23]. However, none of the above spatial indexes
can be adapted to data or query patterns, and thus they often
suffer from inferior query performance compared to their learned
counterparts.

Learned Indexes. Kraska et al. [22] first proposed the learned

indexes, which utilize machine learning models to enhance or
replace traditional indexes for data access in databases. The ab-
straction used in [22] to motivate such methods was that an
index is essentially a structure that predicts the location of an
item in a sorted array, or a structure that predicts the cumula-
tive density function of the underlying data. They propose the
recursive model index (RMI), which consists of a hierarchy of
regression models for capturing the relationship between sorted
keys and their ranks in the dataset. According to [22], the bene-
fits of learned indexes lie in smaller index sizes and lower query
latency. After this seminal work, many learned indexes were pro-
posed in the last four years, such as PGM-Index [10], ALEX [7],
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RadixSpline [21], and Shift-Table [18]. They outperformed RMI
by using simpler linear spline models and supporting efficient
index updates. Nevertheless, all the learned indexes mentioned
above are specific to one-dimensional data and cannot be directly
used for spatial query processing.

Learned Spatial Indexes. The most relevant studies to our
problem are the ones on learned spatial indexes [1, 8, 9, 16, 27–
29, 36, 43, 45, 46]. The learned spatial indexes can be categorized
into two categories. The first category is learned search structure-

based indexes, where the methods use learned models to improve
search performance on default data layouts. Wang et al. [43]
proposed the ZM-index, an extension of RMI [22] using a linear
layout based on Z-order values for spatial data points. Qi et al.
[36] proposed a recursive spatial model index (Rsmi) to build an
index utilizing the Z-order values and using neural networks to
infer data partitioning. The intuition behind RSMI is that the
application of neural networks to learn fine-grained Z-order
mappings would result in partitions with better locality. While
ZM and RSMI seem conceptually similar to WaZI, they have
three main differences from WaZI. First, ZM and RSMI utilize
Z-ordering in the rank space of the data, whereas WaZI avoids
the rank space projection by operating in the original data space.
Second, ZM and RSMI use default Z-ordering for the data layout
and a hierarchy of learned models for query processing. However,
WaZI optimizes the data layout using learned models only in the
training phase but does not use them to process queries. Third,
both ZM and RSMI (as with other learned search structure-based
indexes) are workload-agnostic, while WaZI is workload-aware.
Li et al. [27] proposed LISA, a spatial index that divides the data
space into a grid-like layout numbered by a partially monotonic
function and learns functions to map data points to a grid cell
and subsequently its respective page. Zhang et al. [46] proposed
SPRIG, a learned spatial index that uses the spatial interpolation
function as a learned model to efficiently filter the cells in the
grid file. Al-Mamun et al. [1] proposed a method to improve the
query performance of R-trees by using multi-label classification
models to identify the required leaf nodes for a query incurring
high tree-traversal cost.

The second category is layout optimization-based indexes,
where data layout is optimized using ML models to improve
query performance. Nathan et al. [29] proposed a learned multi-
dimensional index called Flood based on the Grid File index [30]
using machine-aware optimizations for grid layouts. Flood is
constructed by training a performance prediction model based on
randomly sampled layouts, and then using the prediction model
to select the best layout from a set of candidate grid layouts. The
main limitation is that Flood is optimized for an average query
and performs poorly on skewed query workloads. This limitation
was addressed in Tsunami [8], a learned multi-dimensional index
that partitions the data space based on statistical tests of query
distribution and constructs Flood indexes over each partition.
The statistical tests for query distribution changes are based on
the shapes and sizes of queries and hence do not apply to our
setting in this paper. Yang et al. [45] proposed an index-like struc-
ture called Qd-tree to optimize multi-dimensional data layouts
using deep reinforcement learning (RL). Gu et al. [16] proposed a
technique to construct R-trees by training RL-methods to perform
ChooseSubtree and Split operations in required for sequential in-
dex construction. Dong et al. [9] proposed an R-tree variant that
utilizes ML models to partition the dataset into homogeneous
zones.

𝑋
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1

B C

9 10 11 12
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. . .
LeafList

Figure 2: Illustration of the quaternary tree structure of a

Z-index. Each leaf node holds a pointer to its subsequent

leaf node as well as a pointer to the page containing its

corresponding data points.

3 THE BASE Z-INDEX

In this section, we provide the basic background on Z-index. A
Z-index is a space-partitioning index that divides the data space
hierarchically. At each level, the corresponding data space is
partitioned into four cells along the median of data points, and
the four child cells are ordered in a ‘Z’-pattern. The complete Z-
index thus enforces an ordering on cells of the leaf nodes, hence
imposing a partial-sort order among the data points.

Two elements define a Z-index. The first element is a hier-

archical partitioning of the data space into cells, with each cell
partitioned into four child cells down to a predetermined granu-
larity of leaf-cell size 𝐿. Corresponding split points h determines
the hierarchical partitioning: for the base Z-index variant, these
occur at the median of the 𝑥- and 𝑦-coordinates of all data points.
The second element is the ordering o of the cells at each level. The
four child cells of each parent cell of the base Z-index variant are
ordered according to the “abcd” pattern, whereby higher-level
cells have higher ordering importance, as shown in Figure 1a.
The curve order follows the higher-level ordering to place all
leaf cells within cell B after all the leaf cells within cell A. The
relative order of the leaf cells in A (or any other higher-level
cell) is then determined by the second level of partitioning and
ordering. Therefore, a Z-index instanceZ is defined as a set of
partition points h = (x, y) and orderings o associated with each
of the internal nodes of a quaternary tree, as shown in Figure 2.

Each internal node stores the coordinates of the split point,
according to which the corresponding cell is partitioned into
its child cells and the ordering of the child cells. During tree
traversal, say for a point query p, we traverse down the tree by
identifying the relevant child node at each internal node. The
relevant child node is computed by first comparing the query
point p with the partition point h of the current node to identify
whether the p resides in quadrants A, B, C, or D (Lines 4–5 in
Algorithm 1) and picking the appropriate pointer based on the
ordering o used (Lines 6–9).

The leaf nodes of a Z-index contain a bounding rectangle (𝑏𝑏𝑠)
for the area spanned by the leaf and a pointer to a page with at
most 𝐿 elements. Each leaf node also contains a pointer to the
next leaf node defined by the sort order, creating a linked list
structure at the leaf layer of the tree (LeafList). Note that Z-index
is assumed to be clustered, with data points corresponding to
consecutive leaf nodes stored in consecutive pages. We consider
the data points within a page to be stored in random order.
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Algorithm 1: TreeTraversal
Input :Z-index Z, node 𝑋 in Z, point query p
Output :Boolean b whether p exists

1 if 𝑋 is a leaf node then

2 return 𝑋 . 𝑝𝑎𝑔𝑒

3 else

4 𝑏𝑖𝑡𝑥 = p. 𝑥 > 𝑋 . 𝑥

5 𝑏𝑖𝑡𝑦 = p. 𝑦 > 𝑋 . 𝑦

6 if 𝑋 . o == “abcd” then
7 𝑐𝑖𝑑 = 2𝑏𝑖𝑡𝑦 + 𝑏𝑖𝑡𝑥
8 else

9 𝑐𝑖𝑑 = 2𝑏𝑖𝑡𝑥 + 𝑏𝑖𝑡𝑦
10 return TreeTraversal(𝑋 . 𝑐ℎ𝑖𝑙𝑑 [𝑐𝑖𝑑 ])

Algorithm 2: Range-qery
Input :Z-index Z, range query R
Output :Set of points 𝑟𝑒𝑠𝑢𝑙𝑡 in range R

1 Page low = TreeTraversal (BL (R))
2 Page high = TreeTraversal (TR (R))
3 Initialize 𝑟𝑒𝑠𝑢𝑙𝑡 = ∅ and 𝑃 = low
4 while 𝑃 ≤ high do

5 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = PageQueryOverlap (𝑃 , R)
6 if overlap == true then

7 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ Filter (𝑃 )
8 𝑃 = NextPage (𝑃 , 𝑜𝑣𝑒𝑟𝑙𝑎𝑝)
9 return 𝑟𝑒𝑠𝑢𝑙𝑡

Crucially, note that the abcd ordering guaranteesmonotonicity

for points that fall within different leaf cells: if point 𝑎 in page 𝑋
is dominated by point 𝑏 in page 𝑌 ≠ 𝑋 , then leaf 𝑋 will appear
earlier in the LeafList than 𝑌 . Here, point 𝑎 is dominated by
point 𝑏 if 𝑎.𝑥 ≤ 𝑏.𝑥 and 𝑎.𝑦 ≤ 𝑏.𝑦, and at least one coordinate of
𝑎 is strictly smaller than that of 𝑏. This monotonicity property
is utilized in a Z-index for a specific range query processing
mechanism. A range query R, defined by two points BL(R) and
TR(R) (see Figure 1b), is processed by Z-index in two phases. First,
the leaf nodes enclosing two query extremes, BL(R) and TR(R),
within the Z-index are identified (Lines 1–2 of Algorithm 2) in
the index lookup phase. Let us refer to these leaf nodes as low
and high. These represent the first and last possible leaf nodes
in the LeafList that may overlap with R. Second, in the scanning
phase, we check the leaf nodes within the range [low : high] for
overlap with R based on their𝑏𝑏𝑠 , and pages of overlapping nodes
are scanned to filter the query results (Lines 3–8 of Algorithm 2).

4 THE WAZI INDEX

This section presents our method to build a workload-aware vari-
ant of the Z-index, i.e., WaZI. Within a Z-index, the scanning
phase completely dominates the query latency. We aim to mini-
mize the number of points accessed during the scanning phase.
Towards this end, we present a cost formulation for the number
of points accessed during range query processing (Section 4.1)
and an approach to building WaZI based on minimizing the cost
function (Section 4.3).

4.1 Adaptive Partitioning and Ordering

The two defining elements of a Z-index, partitioning and order-
ing, are computed using fixed heuristics for the base variant. By
contrast, we propose a generalized variant WaZI of the Z-index,

for which the partitioning and ordering can vary for each node,
as illustrated in Figure 1d. First, whereas for the base variant,
the split points are predetermined to be placed at the median
of the data along the 𝑥 and 𝑦 axes, for WaZI, we propose that
the split points can be placed anywhere within the data range,
allowing for more flexible data partitioning. Second, whereas for
the base variant, the ordering of the child cells is predetermined
to follow the “abcd” pattern for every parent cell, for WaZI, we
propose the order is allowed to be either “abcd” or “acbd”, as
both orderings preserve monotonicity.

Our aim in making these changes in WaZI is for the index to
be adaptive to the given data and anticipated range queries. For
example, a Z-index with the alternative partitioning and ordering
shown in Figure 1c would be better adapted to the range query
R shown therein than the one shown in Figure 1b, as it would
retrieve fewer data points in query processing.

Specifically, for a given dataset D and a set of range queries
Q, we are interested in building an instance of the generalized
Z-index to minimize a corresponding retrieval cost. The retrieval
cost for a range query is measured by the number of data points
compared against a query box R in the filtering phase. In prac-
tice, Q can be obtained from historical logs of range queries, as
“representatives” for the application at hand, or in general, as an-
ticipated range queries for which the index should be optimized.

4.2 Retrieval Cost

Here we present the objective function we aim to optimize when
building a Z-index, as described above. For a given Z-index and
query R, let 𝛿R∈𝑋𝑌 be the function to indicate whether R has its
bottom-left vertex in 𝑋 and its top-right vertex in 𝑌 . As a simple
illustration case, let us consider a single-level Z-index with cells
ordered according to the “abcd” order, and the splits occur as
in Figure 1b. Following the range query processing discussed
earlier, the retrieval cost for the chosen split and ordering equals

𝑐𝑜𝑠𝑡𝑋 (R | 𝑥,𝑦; abcd) = 𝛿R∈AD (𝑛A + 𝑛B + 𝑛C + 𝑛D )+
𝛿R∈AC (𝑛A + 𝛼𝑛B + 𝑛C ) + 𝛿R∈BD (𝑛B + 𝛼𝑛C + 𝑛D )+
𝛿R∈AB (𝑛A + 𝑛B ) + 𝛿R∈CD (𝑛C + 𝑛D )+
𝛿R∈AA𝑛A + 𝛿R∈BB𝑛B + 𝛿R∈CC𝑛C + 𝛿R∈DD𝑛D , (1)

where 𝑛
𝑋

denotes the number of data points in each cell. Notice
that 𝑛

𝑋
and 𝛿R∈𝑋𝑌 depend on the split location (𝑥,𝑦); however,

we omit the dependency from our notation for simplicity. To
see why the formula holds, note that when R ∈ AB, the Z-index
retrieves all points only from cells A and B, as no other cells fall
between A and B in the “abcd” ordering of cells. However, when
R ∈ AC (as in Figure 1b), in addition to filtering points from A
and C, the Z-index also compares 𝑏𝑏𝑠 and skips over the non-
overlapping leaf node B as it falls between A and C in the “abcd”
ordering. The impact of skipping over leaf cells is represented in
our cost as a fraction 𝛼 < 1 of the number of points.

The rest of the cases follow similarly. Notice that if the ordering
of the cells is “acbd” instead, the cost formula will differ from
Eq. 1:

𝑐𝑜𝑠𝑡𝑋 (R | 𝑥,𝑦; acbd) = 𝛿R∈AD (𝑛A + 𝑛B + 𝑛C + 𝑛D )+
𝛿R∈AB (𝑛A + 𝛼𝑛B + 𝑛C ) + 𝛿R∈CD (𝑛B + 𝛼𝑛C + 𝑛D )+
𝛿R∈AC (𝑛A + 𝑛C ) + 𝛿R∈BD (𝑛B + 𝑛D )+
𝛿R∈AA𝑛A + 𝛿R∈BB𝑛B + 𝛿R∈CC𝑛C + 𝛿R∈DD𝑛D (2)

More generally, when the Z-index consists of more than one
level of partitions, the retrieval cost is defined recursively, as the
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Z-index structure of second-level partitions (for each of A, B, C,
and D) affects the total cost of retrieval. Defining the retrieval
cost of a Z-index with two levels would involve recursively sub-
stituting Eq. 1 or 2 for each term of the form 𝛿R∈𝑋𝑋 𝑛

𝑋
based on

the ordering o𝑋 under consideration:

𝑐𝑜𝑠𝑡𝑋 (R | 𝑥,𝑦; acbd) = 𝛿R∈AD (𝑛A + 𝑛B + 𝑛C + 𝑛D )+
𝛿R∈AB (𝑛A + 𝛼𝑛B + 𝑛C ) + 𝛿R∈CD (𝑛B + 𝛼𝑛C + 𝑛D )+
𝛿R∈AC (𝑛A + 𝑛C ) + 𝛿R∈BD (𝑛B + 𝑛D )+
𝑐𝑜𝑠𝑡A (R | 𝑥,𝑦; oA) + 𝑐𝑜𝑠𝑡B (R | 𝑥,𝑦; oB)+
𝑐𝑜𝑠𝑡C (R | 𝑥,𝑦; oC) + 𝑐𝑜𝑠𝑡D (R | 𝑥,𝑦; oD) (3)

For a set of queries Q and a Z-indexZ with cell 𝑋 , the total
cost of all queries is aggregated to form the full cost C. Specifically,
if the ordering of 𝑋 is “abcd”, the cost function is

C𝑋 (Q | 𝑥,𝑦; abcd) =
∑︂
R∈Q

𝑐𝑜𝑠𝑡𝑋 (R | 𝑥,𝑦; abcd)

= 𝑞AD (𝑛A + 𝑛B + 𝑛C + 𝑛D )+
𝑞AC (𝑛A + 𝛼𝑛B + 𝑛C ) + 𝑞BD (𝑛B + 𝛼𝑛C + 𝑛D )+
𝑞AB (𝑛A + 𝑛B ) + 𝑞CD (𝑛C + 𝑛D )+
CA (R | 𝑥,𝑦; oA) + CB (R | 𝑥,𝑦; oB)+
CC (R | 𝑥,𝑦; oC) + CD (R | 𝑥,𝑦; oD), (4)

with the terms 𝑞
𝑋𝑌

=
∑︁

R∈Q 𝛿R∈𝑋𝑌 . A similar equation is also
present for the alternative ordering of “acbd”.

4.3 Index Construction

The formulation of retrieval cost in Eq. 4 leads to a cost function
that exhibits an optimal substructure, where optimal configura-
tion and the associated ordering for all possible child cell combi-
nations should be known before one can compute the optimal
configuration at a given node. Finding the optimal solution under
this cost formulation using dynamic programming has a com-
plexity of 𝑂 (𝑁 4). The complexity follows because, for 𝑁 points
in two dimensions, there are 𝑁 4 rectangles enclosing unique sub-
sets of points. Hence, the state space for dynamic programming
is at most 𝑁 4. Obviously, such an approach is infeasible even for
moderately sized datasets.

Instead, we adopt a Greedy algorithm for index construction.
The Greedy algorithm simplifies Eq. 4 by formulating the cost
for lower levels as 𝑞

𝑋𝑋
𝑛
𝑋

. This simplification uses an upper
bound on the possible retrieval cost of each sub-partition in place
of the recursive cost definition of Eq. 4. Following this intuition
also yields an approach that allows for optimization steps to
be performed greedily for each layer hierarchically. Intuitively,
the greedy algorithm proceeds at one level at a time, from top
to bottom, selecting the partition point and ordering using the
alternative cost function:

C𝑋 (Q | 𝑥,𝑦; abcd) =
∑︂
R∈Q

𝑐𝑜𝑠𝑡𝑋 (R | 𝑥,𝑦; abcd)

= 𝑞AD (𝑛A + 𝑛B + 𝑛C + 𝑛D )+
𝑞AC (𝑛A + 𝛼𝑛B + 𝑛C ) + 𝑞BD (𝑛B + 𝛼𝑛C + 𝑛D )+
𝑞AB (𝑛A + 𝑛B ) + 𝑞CD (𝑛C + 𝑛D )+
𝑞AA𝑛A + 𝑞BB𝑛B + 𝑞CC𝑛C + 𝑞DD𝑛D (5)

The pseudocode for index construction is presented in Algo-
rithm 3. The steps for index construction are described at three
levels of detail. First, our algorithm proceeds greedily, determin-
ing the partitioning and ordering of the cells within the same

Algorithm 3: Greedy
Input :Z-index Z, node 𝑋 in Z, workload Q, data D

1 if 𝑛
𝑋

< 𝐿 then return;
/* Draw 𝜅 candidate split points */

2 𝑋𝑌 := UniformSample (𝑋 ,𝜅)
/* Select split and ordering to minimize Eq. 5 */

3 (x, y, o) = arg min(𝑥,𝑦)∈𝑋𝑌 ;o∈{abcd,acbd} C(Q | 𝑥, 𝑦; o)
/* Define cells w.r.t. split point */

4 Cells A, B,C,D := Split(𝑋 , (x, y))
5 Add cells A, B,C,D and ordering o to Z
/* Apply Greedy to child cells */

6 foreach Cell 𝑌 ∈ {A, B,C,D} do
7 Greedy (Z, 𝑌 , Q, D; SolveCell)

level, one level at a time, from top (root) to bottom (leaf). There-
fore, every time a cell 𝑋 needs to be split and its children ordered,
we use the configuration that minimizes the objective C (Eq. 5).

Second, we choose the partitioning and ordering minimiz-
ing the objective C for a given cell 𝑋 by uniformly sampling
the candidate split points and selecting the one that minimizes
our objective. More specifically, for each cell that it considers
for splitting, Greedy samples 𝜅 candidate split points uniformly
at random from the region covered by the cell, evaluates the
objective C for each candidate split point for both possible order-
ings, and returns the split-point and ordering with the minimum
C. We choose sampling-based optimization over more compli-
cated optimizers (like Bayesian optimization) to avoid the high
computation overhead incurred by such optimizers. More impor-
tantly, we observed that each iteration of an optimizer incurs
computational cost several magnitudes higher than computing
the objective function. In our experiments, we observe no perfor-
mance improvement over sampling-based optimization to justify
the added computational cost of said optimizers.

Third, we approximate the exact data distributionD and range
query distribution Q with approximate distributions by ML mod-
els (i.e., “learned” approaches). These approximate distributions
allow for efficient estimations of the number of data points (and
queries) that fall within each of the child cells resulting from a
candidate partitioning of a given cell, as needed to compute the
objective C. We used Random Forest Density Estimation models
(RFDE) [44] for our density estimation. Specifically, we construct
a forest of k-d trees constructed with randomized split dimen-
sions at each node. Each node stores the number of data points
(cardinality) contained within the region. Density estimation
in an RFDE model is performed as a tree traversal, collecting
the cardinality information from nodes overlapping the density
estimation query.

5 SKIPPING MECHANISM

Processing range queries involves scanning and filtering points
from an interval [low : high] of leaf nodes within the LeafList
ordered by a Z-index. Figure 3a illustrates such an ordering (solid
grey arrows) of leaf nodes. The leaf nodes have been named 𝑎

through 𝑞 following the ordering shown in grey. Given a range
query R (red box), the query processing algorithm will compare
all leaf nodes within the interval [𝑎 : 𝑚] (shaded in red) and
return points from relevant leaf nodes (i.e., those that overlap
with the range query). For the example in Figure 3a, the relevant
leaf nodes are 𝑎, 𝑗, 𝑘, 𝑙 , and𝑚, whereas the pages 𝑏 through 𝑖 are
irrelevant. We perform a bounding box comparison of the pages
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Figure 3: Illustration of skipping during range query processing; (a) Standard range query processing of range query 𝑅 (red)

processes pages in range [𝑎 : 𝑚]; (b) The four different irrelevancy criteria explained. (c) Motivating example for efficient

skipping. As we process page 𝑏, we know that it does not overlap the query because of Below. We also know that the

next page in the sort-order that may satisfy the criterion is 𝑑 . Similarly, at page 𝑑 we can skip ahead to page 𝑗 , saving the

computation required to process pages 𝑒 through 𝑖;

Algorithm 4: Look-ahead Pointer Construction
Input :Z-index Z
/* Initalize all lookahead pointer */

1 InitializeLookahead (LeafList)
/* Iterate backward through leaf nodes */

2 foreach node 𝑃 in Reverse(LeafList) do
3 foreach case in [Below, Above, Left, Right ] do

/* Init with the next ptr of LeafList */

4 𝑃 .case = next (𝑃 )
5 while case not improved do

6 𝑃 .case = (𝑃 .case).case

before scanning points stored within them and hence data on
pages 𝑏 through 𝑖 are not scanned. But, the number of points 𝑟
returned by the algorithm for a range query is often comparable
(or significantly smaller in case of low selectivity queries) than the
total number of leaf nodes 𝑠 for which we compare overlap, that
is, 𝑠 ≫ 𝑟 . In such cases, the redundant computation of checking
overlap between bounding boxes of irrelevant leaf nodes and the
range query can become a bottleneck. Our solution to address
this issue is skipping over leaf nodes irrelevant to the query.
For the example above, Figure 3c depicts two practical instances
of skipping from 𝑏 to 𝑑 and 𝑑 to 𝑗 (blue arrows), reducing the
number of leaf nodes visited (shaded red) from 13 to 7.

We propose our novel mechanism for efficient skipping in two
parts. First, we design a skipping mechanism that operates on any
range query using look-ahead pointers. Second, we present the
algorithm to precompute the look-ahead pointers during index
construction. Finally, we modify the retrieval cost from Eq. 5 to
accurately incorporate the impact of skipping.

5.1 Look-ahead Pointers

In standard processing (cf. Section 3) for a range query R, we
check whether the bounding box of any leaf node overlaps with R.
If so, we read and filter points stored in the page associated with
that leaf node. Otherwise, we follow the pointer to the next leaf
node in the LeafList, iteratively proceeding until a relevant page
is found or we reach the end of the interval [low : high]. As
discussed earlier, this may be inefficient. Our solution introduces
four additional look-ahead pointers for each leaf node, allowing

us to skip irrelevant pages accessed with the standard query
processing algorithm.

The four look-ahead pointers map to the four possible criteria
under which a leaf node may be irrelevant; we name them Below,
Above, Left, and Right. For instance, Below indicates that the
𝑦-coordinate of the top-right of the leaf node 𝑃 , represented by
TR(𝑃).𝑦, is lower than the 𝑦-coordinate of bottom-left of the
query R, TR(𝑃) .𝑦 < BL(R) .𝑦. Or put simply, the area covered
by 𝑃 lies entirely below the range query R. The other criteria
follow similarly. Figure 3b shows the four criteria for a candidate
R. For example, in Figure 3a, the leaf node represented by 𝑑 is
irrelevant to the range query shown in red as it would satisfy
Below criteria, where 𝑓 satisfies both Right and Below criteria.
Note that pages within the interval [low : high] of a query
R cannot lie in the bottom-left and top-right sections due to
monotonicity constraint.

A look-ahead pointer associated with each of the four crite-
ria points to the next possible leaf node that could be relevant,
skipping over leaf nodes that are guaranteed to be deemed irrele-
vant due to the same criteria. Specifically, consider a leaf node 𝑃1
whose look-ahead pointer associated with Below points to 𝑃2. 𝑃2
is the earliest leaf node in LeafList that satisfies the conditions
TR(𝑃1).𝑦 < TR(𝑃2).𝑦 and Ord(𝑃1) < Ord(𝑃2). For example,
leaf node 𝑑 in Figure 3a is irrelevant due to the Below criterion.
Consequently, nodes [𝑒 : 𝑖] are guaranteed to be irrelevant to
R due to Below as ∀𝑥 ∈ [𝑒 : 𝑖],TR(𝑥) .𝑦 ≤ TR(𝑑) .𝑦. Therefore,
we know that for any query R that disqualifies 𝑑 due to Below,
nodes [𝑒 : 𝑖] will also be deemed irrelevant.

We utilize look-ahead pointers to modify the range-query
processing algorithm. If we identify that a leaf node 𝑃 does not
overlap with R, we now follow a look-ahead pointer instead of
following the next pointer. The choice of look-ahead pointer is
made by discerning the criteria under which leaf node 𝑃 was
deemed irrelevant. If an irrelevant leaf node satisfies multiple cri-
teria, we pick the look-ahead pointer that skips over the greatest
number of nodes.

5.2 Building Look-ahead Pointers

The algorithm for computing the look-ahead pointers is pre-
sented in Algorithm 4. The look-ahead pointers are constructed
in the final phase of index construction for a Z-index, where the
hierarchical structure already imposes an ordering Ord on the
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leaf nodes. The construction of look-ahead pointers considers leaf
nodes in the reverse order of the LeafList. The look-ahead point-
ers for the last leaf node point to a dummy page signifying the
end of LeafList. For each subsequent (i.e., earlier in LeafList)
leaf node 𝑃 , we utilize the constructed look-ahead pointers within
the suffix of LeafList to compute the look-ahead pointer. To
construct a look-ahead pointer associated with a given criterion
(say, Below), we temporarily assign the corresponding look-
ahead pointer 𝑃 .Below to the next pointer of LeafList. We then
recursively check whether the node pointed to by 𝑃 .Below im-
proves the criterion. Improving the criterion in this case refers
to having an improved value for the corresponding disqualifying
comparison. In the case of Below, the improved value would
be if the pointer 𝑃 .Below points to a page with a greater up-
per bound value along the 𝑦-coordinate; put simply, it is higher
than leaf node 𝑃 . If the check for improving criterion fails, we
follow the corresponding nodes’s pointer for the criterion, thus
finding later nodes recursively (Line 6 of Algorithm 4). For each
leaf node, the look-ahead construction algorithm performs at
most

√︁
|LeafList| recursion steps. Therefore, the complexity of

Algorithm 4 is 𝑂 ( |LeafList|3/2), where |LeafList| ≈ 𝑁 /𝐿.
The retrieval cost formulation presented in Eq. 5 accounts for

the skipping cost of irrelevant leaf nodes using 𝛼 . We can now
update the cost formulation to accurately reflect the retrieval
cost of a given query in light of the skipping mechanism men-
tioned above and account for the redundant quadrant fetched
for processing queries by setting the 𝛼 value to a small constant.
In our experiments, we set 𝛼 to 10−5. The small value of 𝛼 will
more accurately reflect the cost of skipping over irrelevant pages
within redundant quadrants using the look-ahead pointers. The
index construction (Algorithm 3) remains unchanged except for
the fact that one would utilize a smaller 𝛼 value for Eq. 5 in Line 3
of Algorithm 3 when used along with look-ahead pointers.

6 EXPERIMENTS

In this section, we first describe the setup of our experiments.
Then, we present the experimental results with discussions.

6.1 Baselines

We compare the learned workload-aware Z-Index WaZI with the
following competitors:
1) Sort Tile Recursive R-tree (STR) [25]: a simple R-tree pack-

ing method based on tiling the data space into vertical or
horizontal slices recursively to construct an R-tree.

2) Cost-based unbalanced R-trees (CUR) [40]: a query-aware
unbalanced R-tree construction algorithm which places nodes
higher in the tree based on the expected number of access
under a given workload.

3) Flood (Flood) [29]: a grid-based index built to efficiently pro-
cess range queries by optimizing the grid structure based on
the estimated query processing cost.

4) QUery-Aware Spatial Incremental Index (QUASII) [35]: a query-
aware index which applies cracking [19] during query pro-
cessing to adapt the index to the query workload.

5) Base Z-Index (Base): the base Z-index built by partitioning
the data points using the median along each axis and “abcd”
ordering of children at each level as presented in Section 3.
We also implemented the greedy variant of Qd-tree (Qd-Gr)

[45] as the RL-variant requires a large action space which is in-
feasible in our setting. The cost formulation of Qd-Gr creates
unbalanced trees tailored for disk-based indexes. Additionally,
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Figure 4: Average range query performance of all indexes

considered in the experiments.

Table 1: Key properties of indexes in the experiments.

Index SFC-based Query-Aware Learned
STR
CUR

Flood
QUASII

Base
WaZI

we experimented with Zpgm [10, 42], HRR [37, 38], QUILTS [31]
and Rsmi [36]. However, these five indexes performed signifi-
cantly worse than the other baselines considered (as shown in
Figure 4). Therefore, we chose to not include them in more de-
tailed experimentation later. Interestingly, four out of the five
indexes we discarded (Zpgm, HRR, QUILTS, and Rsmi) are based
on Z-order curves within the rank space. Additionally, we also
attempted to use BMTree [26] and LMSFC [15] as baselines in
our experiments. However, BMTree construction failed to fin-
ish in a reasonable duration and LMSFC does not have publicly
available implementation.

The indexes considered show a balanced representation along
three different categorizations, as presented in Table 1. The ‘SFC-
based’ column indicates if the construction algorithm of the in-
dexes utilized space filling curves. The ‘Query-Aware’ column
indicates if the index construction tailors for a specific query
workload. Finally, the ‘Learned’ column refers to indexes that
utilize any form of learning algorithms (to model cost function,
density estimates, etc.) within the index or during construction.
Implementation. Base and WaZI are constructed with specific
algorithms for finding their respective partition point and order-
ing. The Base version utilizes the naive method of comparing
bounding boxes to decide if a given page overlaps with the range
query before filtering points within the page. Whereas WaZI
utilizes the efficient skipping mechanism mentioned in Section 5.
We implement the two variants of Z-index in C++.1

Similarly, we also implement STR [25] and QUASII [35] as de-
scribed by the original authors. We utilize a converged QUASII in-
dex for our evaluations, i.e., an index that has completely adapted
to the query distribution without the need for further incremen-
tal updates. A simplified Flood-Index for 2D indexing (Flood) is
implemented in C++, where we identify the optimal grid struc-
ture by evaluating the performance of candidate grid partitions
on a sub-sample of range queries. We adapted the CUR tree
index to point data by using a ‘weighted’ RFDE estimator to
hold a weighted sum of points covering each node. Each point
is weighted by the number of distinct queries fetching the point.
Finally, we use weighted density estimates to select partitions
following the Sort Tile Recursive algorithm to construct CUR.
1Our implementation is published at https://version.helsinki.fi/ads/learned-zindex.
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(a) DCaliNev (b) DNewYork (c) DJapan (d) DIberia

(e) QCaliNev (f) QNewYork (g) QJapan (h) QIberia

Figure 5: Datasets and queryworkloads in the experiments.

We conducted all the experiments on a server with an Intel®
Xeon® E5-2680v4 CPU @ 2.40GHz and 16 GB memory. The exper-
iments were performed on a single thread without multithreading
or GPUs. All methods were compiled with the -O3 optimizer flag.
Finally, we set the leaf node capacity 𝐿 to 256 in our experiments.

6.2 Datasets and Query Workloads

We utilize real-world datasets along with skewed semi-synthetic
query workloads. The real-world datasets consist of points of
interest (POI) from OpenStreetMap [32] for selected regions. The
four regions we chose are: California Coast (CaliNev), New York
City (NewYork), Japan (Japan), and Iberian Peninsula (Iberia).
We extract all POIs from the regions and sample these to produce
datasets of appropriate size when required. The distribution of
data points D are presented in Figures 5a–5d.

We focus on skewed query workloads varying from the under-
lying data distribution for insightful analysis. This setup differs
from past works showcasing experiments that use query dis-
tributions that follow the data distribution [36]. Alternatively,
we present results on query workloads with real-world inspired
skewness on the underlying data distribution. We generate semi-
synthetic query workloads for the real-world datasets by utilizing
check-in information in the Gowalla dataset [24]. Specifically, we
extract check-ins that lie within the corresponding region and
utilize these locations to generate a query workload resembling
the distribution of check-in locations. The process for generating
range queries proceeds by sampling the centers of query rectan-
gles from the set of check-in locations and growing along the
four directions such that the query covers a portion of data space
equivalent to the required selectivity. We represent selectivity as a
percentage of data space. Figure 5 presents the query distribution
Q (i.e., the check-in locations) for each of the real-world datasets.
The distributions of check-in locations are skewed towards pop-
ular locations compared to the underlying data distribution D.
We experiment with datasets ranging from 4 to 64 million data
points and range query workloads of varying selectivity (ranging
from 0.0004% to 0.1024% of data space). The range of parameters
used for data generation are presented in Table 2.

6.3 Range Query Performance

Figure 6 presents the average range query latencies of different
indexes at four levels of query selectivities (low to high). These
index latencies are evaluated over range-query workloads of
20,000 queries. We observe that WaZI clearly outperforms all
other indexes in most cases. The closest competition for WaZI

Table 2: Parameter setting.

Parameter Values (default in bold)

Dataset size (×106) [4, 8, 16, 32, 64]
Query selectivity (%) [0.0016, 0.0064, 0.0256, 0.1024]

Leaf-node size 256
Range-query workload size 20,000

is from QUASII on the Japan dataset for the selectivity values
0.0064% (top-right in Figure 6) and 0.1024% (bottom-right). Never-
theless, WaZI always performs similarly or (often substantially)
better than QUASII. The improvements are most noticeable for
the lower selectivity queries where WaZI is better by about 2.3×
to 8.1× over QUASII. We also note that the indexes showcase
different scales of range query latencies over different datasets.

To further analyze the advantages of WaZI over Base, we
present a percentage improvement plot in Figure 7. The per-
centages are calculated in comparison with the performance of
Base for each dataset-workload pair. We present the average
improvements of indexes over different datasets and selectivi-
ties. Across different datasets, WaZI showcases improvements
between 12.8% for the Japan dataset and 47.6% for the NewYork
dataset (top in Figure 7). CUR and STR showcase improvements
over Base for two out of the four datasets. We also see that the
percentage differences between indexes decrease as the selectiv-
ity increases. The improvements by WaZI linearly decrease from
31% for 0.0016% selectivity queries to 14% for 0.1024% selectivity
queries. This indicates that, as the selectivity increases, query
processing encounters fewer false positives relative to the actual
query result size. Therefore, a learned and workload-aware index
is more suited for settings with low-selectivity queries. Finally,
WaZI is the only index that shows a consistent improvement
over Base.
Range Query over Different Dataset Sizes. Additionally, we
plot the average range query latencies in Figure 8 to analyze the
performance of different indexes across varying dataset sizes.
The query latencies are recorded for a query workload with a
selectivity of 0.0256%. We observe that the performance of all
indexes scales nearly linearly with the dataset size, with WaZI
outperforming all competing baselines over different data sizes.
Furthermore, the difference in performance between the competi-
tors and WaZI remains somewhat constant with an increasing
dataset size.
Projection vs Scanning. It is useful to analyze the query pro-
cessing latency of an index in two parts. In the first part, termed
Projection, the index traverses its search structure to identify all
the leaf nodes (and hence the pages) overlapping a given range
query. Second, we scan the data points within the projected pages
to filter the result set. Such analysis separates the performance
overhead of the internal search structure from the performance
overheads originating from the data layout of the constructed
index.

Figure 9 shows the two parts of query time for a 32 million-
sized dataset under a mid-selectivity query workload. In terms
of projection (top in Figure 9), CUR, QUASII, and STR perform
worst due to its tree-traversal cost, followed by Z-indexes Base
and WaZI. WaZI performs 4.3× faster projection than Base. This
speedup could mostly be attributed to the efficient skipping mech-
anism. Flood performs the fastest projection (about 20× faster
than Base) of the query to pages, as it does not perform a tree
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Figure 6: Average range query latency for all the indexes over four selectivity ranges. We observe that WaZI consistently

outperforms all the competing baselines.
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Figure 8: Range query time by varying the dataset size

from 4 to 64 million for a mid-selectivity (0.0256%) query

workload.

traversal for projection like the other indexes. The scan phase of
the indexing dominates the performance of an index. WaZI out-
performs other indexes in terms of scan time due to its optimized
data layout.
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Figure 9: Range query latencies of different indexes split

into the Projection and Scan phases.

Remark on kNN and Spatial-Join Queries. For spatial in-
dexes that are not specialized to kNN or spatial-join queries (as
is the case for all indexes we evaluate), kNN and spatial-join
queries are typically decomposed to and processed as sets of
range queries [34]. As a result, query performance exhibits the
same behavior as their range query performance presented above,
as we have confirmed experimentally. For this reason, we do not
include additional results for kNN and spatial-join queries.

6.4 Point Query Performance

Although we focus on optimizing indexes for range-query work-
loads, we also show the performance of proposed indexes for
point queries for completeness. We sample 50,000 point queries
from the data distributionD of the respective datasets. Figure 10
presents the average query time (over different datasets) for vari-
ous indexes against increasing data size. Comparing indexes from
best to worst, we see that WaZI and Base outperform all other
baselines. This performance is due to simpler computations re-
quired at the internal nodes of a Z-index (see Algorithm 1) to iden-
tify the relevant child nodes. Flood index performs similarly but
slower than WaZI and Base. STR and CUR have non-overlapping
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Figure 10: Point query time by varying the dataset size

from 4 to 64 million. We observe that WaZI performs the

best across all dataset sizes.

Table 3: Build time (in seconds) of all indexes compared.

Size (×106) Base CUR Flood QUASII STR WaZI
4 7.4 23.8 4.6 123.6 1.8 25.1
8 16.2 48.5 10.1 418.1 4.0 51.8
16 35.0 97.0 25.8 4400.7 8.4 105.3
32 71.6 188.5 42.1 15781.5 19.1 203.2
64 154.6 366.9 97.3 57943.8 40.5 414.3

child nodes and perform marginally faster than CUR which al-
lows for overlapping. Finally, QUASII suffers computationally due
to the heavily fractured data layout caused by database cracking-
based index construction. Generally, the performance of each
index over point queries is highly correlated with its respective
cost of tree traversal and the underlying data layout. We see that
WaZI performs better than the baselines by a factor of 1.5–15×
due to the efficiency of node-level computations.

6.5 Build Time

We record the build time for all the indexes we compare in Table 3.
For all indexes, the build time grows linearly as the dataset size
increases. STR takes the least time for index construction as the
Sort-tile recursive algorithm has a log-linear complexity. Among
the query-aware indexes (see Table 1), WaZI performs third best
behind Flood and CUR. On comparison against learned indexes,
WaZI performs second best behind Flood. WaZI requires 5.4×
more build time than Flood. We mainly attribute this to the need
for constructing and evaluating data density estimators required
for cost computations. The build-time of WaZI is similar to the
query-aware CUR index which utilizes query selectivity estima-
tion of data points to compute an approximate cost. Therefore,
compared to the baselines considered, WaZI has a reasonable
build time.
Cost-redemption. Typically, learned indexes achieve improved
query execution time, at the cost of computationally expensive
index building. To quantify this trade-off for a given dataset and
query workload, we define cost redemption as the number of query
executions for which the cumulative (building+querying) time
of an index is equal to the respective cumulative time of Base.
Specifically, the cost-redemption value of index 𝑋 is defined as
𝑟𝑒𝑑𝑋 = 𝑋 .𝐵𝑢𝑖𝑙𝑑−Base.𝐵𝑢𝑖𝑙𝑑

Base.𝑄𝑢𝑒𝑟𝑦−𝑋 .𝑄𝑢𝑒𝑟𝑦 .

Table 4: Cost-redemption value of indexes against Base.

Lower is better. Missing values indicate that the index does

not redeem its high-construction time with efficient query

performance compared to Base.

Data Dist. CUR Flood QUASII STR WaZI
CaliNev (+) 550k (−) 13k (−) (−) 320k (+) 192k

Iberia (−) (−) 44k (−) (−) 450k (+) 746k
Japan (−) (−) 6.5k (−) (−) 69k (+) 269k

NewYork (+) 1300k (−) 830k (−) (+) (+) 743k

Table 5: Sizes (in MBs) of all indexes compared.

Size (×106) Base CUR Flood QUASII STR WaZI
4 8.27 10.33 5.39 3.02 7.09 8.99
8 16.83 19.05 6.14 5.31 15.41 17.80
16 34.94 36.91 11.00 13.79 23.48 35.15
32 67.60 74.73 37.18 26.83 66.02 69.84
64 135.86 149.01 53.13 61.48 112.00 138.83

We showcase the cost-redemption of the considered indexes
in Table 4. Cells marked with (+) correspond to cases where
the index eventually redeems its higher building time after the
reported number of queries. By contrast, cells marked with (−)
correspond to the opposite behavior: they have faster building
time than Base, but larger query execution time, leading to larger
cumulative time after the reported number of queries. Finally, a
missing value indicates that the index has better (+) or worse (−)
cumulative time regardless of the number of queries executed.
From Table 4 we can see that Flood and STR are better than
Base in the short run due to their smaller build times. CUR is
better than Base in the longer run for CaliNev and NewYork
datasets while being clearly worse for Iberia and Japan. The
massive build time of QUASII and the slower query performance
indicate that it is the worst-performing index. Finally, WaZI is a
better choice than Base if the expected query workload has at
least 106 queries. Therefore, this is a limitation of WaZI as it is
not suited for workflows that require quick index construction
to execute a few queries as found in data analysis workflows.
Instead, it is suited for workflows where index construction can
be performed offline using more computational resources and
deployed for an extended amount of time.

6.6 Index Size

We present the size of each index built for the datasets with 32
million points in Table 5. QUILTS, Flood and QUASII exhibit
0.31 − 0.59× smaller index sizes than WaZI. The index size of
WaZI is similar to the R-tree-based indexes, CUR and STR. Cru-
cially note that the size of WaZI is nearly identical to Base. This
indicates that the methods presented in this paper construct a
workload-aware version of Z-index at no additional space cost.
Furthermore, we see that the size of all the indexes we utilized
in our experiment grows linearly with the dataset size.

6.7 Index Update

WaZI supports index updates like other tree-based indexes. An
index update operation in WaZI is performed similarly to point
query processing. Inserting/deleting a point p proceeds by finding
the leaf node enclosing p (using Algorithm 1) and updating the
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Figure 11: Insert and range query latencies over inserts.
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Figure 12: Range query time of WaZI and Base over the
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responds to a more uniform workload; on the right, to a
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corresponding page. When any page overflows/underflows, we
perform a node splitting/merging operation as for any tree index.

Figure 11 examines the impact of insert queries on a subset
of indexes each containing 32 million data points. We sample 8
million insert query points uniformly from the data space and
incrementally insert these points in five equal-sized iterations.
For each iteration, we recorded the latencies of insert queries and
range queries after insertions. We split any overflowing pages of
WaZI along the data medians. We see that WaZI performs slowest
in terms of insert latencies in comparison with CUR and Flood
(left in Figure 11). This can be attributed to the costly update
to PageList during node splits and the need to recompute the
look-ahead pointers. We also note that the inserts have a minor
effect on range query performance, with latencies degrading
logarithmically with inserts.

6.8 Effect of Workload Changes

Workload-aware indexes are susceptible to degrading query per-
formance due to the changes in workloads. In this subsection,
we compare the effects of query workload changes on Base and
WaZI. Specifically, we build Base and WaZI using their original
query workload and evaluate them over iteratively changing
workloads. We experiment with both uniform and skewed work-
load changes. In the former case, we replace the dataset’s original
workload with uniformly sampled queries over the data space. In
the latter case, we replace the dataset’s original workload with
the (skewed) workloads of other datasets.

The results of the experiment are presented in Figure 12. We
see that the performance of Base remains relatively stable across
the range of workload changes, while WaZI degrades in perfor-
mance. As the workload changes to a uniform workload (left in
Figure 12), WaZI degrades gracefully and remains better than
Base. This shows that WaZI’s skipping mechanism and the layout

which is tailored to both the data and the original query workload
(see Eq. 5) retains some advantage over the Base index even over
uniform queries. The weakness of WaZI is highlighted in the case
where the workload changes to a differently skewed workload
(right in Figure 12). The performance of WaZI degrades rapidly
and becomes slower than Base after the workload changes more
than 60%. This indicates that WaZI is most suited for the settings
with known query workloads which do not change drastically
and it requires to be rebuilt if the workload changes sufficiently.

To our knowledge, automatically deciding when to rebuild a
spatial index in case of workload drift is an open problem. How-
ever, there have been extensive studies on detecting concept drift
for ML models [14]. We suggest that similar methods could be
adapted for rebuilding spatial indexes. However, the exploration
of such methods is beyond the scope of the paper.

6.9 Ablation Study

In this paper, we presented methods to perform adaptive parti-
tioning and ordering (Section 4.1) and a novel skipping algorithm
(Section 5) to create the WaZI index. Here we perform an ablation
study for the two methods we presented. To facilitate compar-
ison of each individual method mentioned above, we compare
the Base and WaZI index against two additional methods:

• Base+SK: A Base index variant with default partition-
ing upon which we construct and utilize the look-ahead
pointer logic.
• WaZI-SK: A WaZI variant with adaptive partitioning, but

no look-ahead pointers.

We perform experiments on a dataset of size 8 million and log
metrics of interest. The results of the experiment are presented
in Figure 13. First, we show the incremental improvements made
against Base by the additional methods in Figure 13 (top-left).
We see that both WaZI-SK and Base+SK perform similarly for
low selectivity indicating both the methods contribute equally
towards the improved performance. However, as selectivity in-
creases, WaZI-SK and Base+SK diverge. At higher selectivity
workloads, Base+SK tends towards the performance of Base
index while WaZI-SK tends towards WaZI. This trend shows that
adaptive partitioning improves performance by a larger factor
than the use of look-ahead pointers at high selectivity ranges.

Second, the bottom-left plot of Figure 13 shows the number of
bounding boxes (𝑏𝑏𝑠) checked for overlap with the range query
while processing leaf nodes in the [low : high] interval. We
clearly see that the use of look-ahead pointers drastically re-
duces the number of bounding boxes compared. Indexes with
look-ahead pointers perform 50–100× fewer bounding box com-
parisons.

Third, we show the number of excess points compared (top-
right) and the number of pages scanned (bottom-right). The un-
derlying data-layout of an index greatly impacts the performance
on these two metrics. We see that Base and Base+SK perform
worse than WaZI and WaZI-SK indicating that the adaptive par-
titioning is the key differentiating factor. Therefore, we infer that
adaptive partitioning creates data layouts that are more efficient
for range query processing in a Z-index.

From these results, we can conclude that the two methods
we present in this paper address two key aspects of range query
performance in a Z-index. The adaptive partitioning generates
better data layouts and the look-ahead pointers facilitate quicker
traversal of the layout.
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Figure 13: Results for ablation study regarding query time

(top-left), excess retrievals (top-right), bounding boxes

checked (bottom-left), and pages scanned (bottom-right).

7 CONCLUSION

In this paper, we presented WaZI, a learned and workload-aware
variant of a Z-index that jointly optimizes the storage layout
and search structures for spatial indexing. Our method adapts to
data distribution and query workload to build indexes to provide
better range query performance. We began by devising a metric
for optimization based on the number of data points fetched dur-
ing query processing, called retrieval cost. Then we proposed an
algorithm for building a Z-index variant, WaZI, which minimizes
the retrieval cost. Additionally, we designed efficient mechanisms
for WaZI to skip irrelevant pages accessed during range query
processing. Through extensive experiments, we demonstrated
that WaZI improved upon existing spatial indexes, such as Flood
and CUR, in terms of range query performance for real-world
datasets. We presented a comprehensive ablation study, where
we showed the relative contribution of each component towards
improvements shown by WaZI. Additionally, we see that WaZI
performs well on point query performance while providing fa-
vorable construction time and index size tradeoffs.

For future work, we intend to explore three aspects that are
not yet covered by this paper. First, we intend to expand the cost
formulation to account for other factors of index performance
beyond retrieval cost so as to fit mixed types of query workloads.
Second, we intend to explore ways to solve for the recursive
cost formulation briefly mentioned in Section 4.3. Specifically,
we aim to use machine learning models to efficiently learn the
retrieval cost, which currently requires a dynamic programming
algorithm with a state space of 𝑂 (𝑁 4). Third, we intend to de-
velop mechanisms to decide when to retrain an index when the
data distribution and query workload change.
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