
In-Network Approximate and E�icient Spatiotemporal Range
�eries on Moving Objects

Guang Yang
Imperial College London

Ahbirup Ghosh
University of Cambridge

Liang Liang
Imperial College London

Thomas Heinis
Imperial College London

ABSTRACT

Data aggregations enable privacy-aware data analytics for mov-

ing objects. A spatiotemporal range count query is a fundamental

query that aggregates the count of objects in a given spatial region

and a time interval. Existing works are designed for centralized

systems, which lead to issues with extensive communication

and the potential for data leaks. Current in-network systems suf-

fer from the distinct count problem (counting the same objects

multiple times) and the dead space problem (excessive intra-

communication from ill-suited spatial subdivisions).

We propose a novel framework based on a planar graph rep-

resentation for e�cient privacy-aware in-network aggregate

queries. Unlike conventional spatial decomposition methods, our

framework uses sensor placement techniques to select sensors to

reduce dead space. A submodular maximization-based method

is introduced when the query distribution is known and a host

of sampling methods are used when the query distribution is

unknown or dynamic. We avoid double counting by tracking

movements along the graph edges using discrete di�erential

forms. We support queries with arbitrary temporal intervals with

a constant-sized regression model that accelerates the query per-

formance and reduces the storage size.

We evaluate our method on real-world mobility data, which

yields us a relative error of at most 13.8% with 25.6% of sensors

while achieving a speedup of 3.5×, 69.81% reduction in sensors

accessed, and a storage reduction of 99.96% compared to �nding

the exact count.

1 INTRODUCTION

Data privacy in the moving object data analytics context has

become increasingly crucial as large-scale online location-based

services continue to grow [36, 37]. In data analytics on moving

objects, systems face signi�cant challenges due to the amount

of data, the real-time query processing requirements, and data

privacy concerns. Current privacy-aware data analytics systems

aggregate data to implicitly store relevant information about

the query to improve query processing by reducing the data size

while ensuring anonymity. One fundamental query in moving ob-

ject data analytics is the spatiotemporal range query, ubiquitous

in location-based services [15, 17, 19, 36, 37]. In the privacy-aware

analytics context, the spatiotemporal range query aggregates the

count of the total number of distinct moving objects in a spatial

region over a time interval. This calls for a framework that e�-

ciently aggregates data and allows aggregated counts to deal with

persistent moving object updates without storing identi�ers.

Existing systems [9] preserve privacy by continuously aggre-

gating data at a central server before answering queries. They

bene�t from the extensive mature centralized algorithms [5, 15,

19, 36] and ease of management from having data in a single

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-091-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

10:00

10:00
10:05 Query server

10:15

Dispatch Query

Return Results

User

S
u

b
m

it
 Q

u
e

ry

Figure 1: (a) A sensors network tracking two users D1 and

DA . (b) The associated communication infrastructure.

place. While centralized query processing systems are currently

the norm, in-network systems are increasingly popular as they

mitigate the problems of centralized systems, where they cannot

e�ciently deal with high rates of updates for real-time appli-

cations and often face communication bottlenecks. Extensive

continuous communication is inevitable since updates must be

sent to the central server for aggregation. Additionally, privacy

concern arises with centralized systems since all data is stored

in the same location before aggregation. In-network systems, on

the other hand, naturally maintain data locality.

In-network systems aggregate updates on relevant (close-by)

sensors and only communicate to sensors that are involved in the

spatial query range. We depict an example query in Figure 1 for a

cell tower load balancing application, where the number of users

in each cell tower range needs to be monitored at di�erent time

intervals. An example spatiotemporal aggregate range query for

sensing region � in Figure 1a between time intervals 10 : 05

to 10 : 10 returns the number of distinct objects in � to be 2.

Privacy is preserved as all updates within � are local without

needing to know the full history of the moving object. Hence,

no single parties have access to the full mobility pattern at any

time. Queries are dispatched to the relevant sensors (only to �

without needing to communicate to � or �) shown in Figure 1b.

Communication to a centralized query dispatcher is needed only

when querying, which is muchmore e�cient than the continuous

sync required for centralized systems.

However, adapting in-network systems for moving object ag-

gregation queries is challenging as these queries require handling

frequent updates of moving objects, which they su�er due to the

double counting and dead space problems. Speci�cally, the double

counting problem occurs when we do not store moving objects’

identi�ers, resulting in distinct objects being counted multiple

times during updates [15, 36]. This is challenging for privacy-

aware queries as we cannot store the object identi�ers. The dead

space problem generates excessive communication between sen-

sors when ill-suited spatial partitions generate excessive dead

space in the partitions. Unlike centralized systems, in-network

systems are unaware of dead spaces. Therefore, they must �ood

all sensors within the query region - a challenge for in-network

query processing, increasing the communication cost (propor-

tional to the area of the query region [34]).

In this paper, we, therefore, develop a novel framework for

e�cient privacy-aware in-network aggregate queries. Our main

Series ISSN: 2367-2005 34 10.48786/edbt.2024.04

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.04

design idea is to build a framework based on a non-axis-aligned

spatial representation of the sensor network that can e�ciently

support moving object updates. We introduce the idea of storing

both the incoming and outgoing counts at the edges of spatial par-

titions during updates, which solves the double counting problem

without unique identi�ers. A planar graph representation con�g-

ures the spatial partitions (based on sensor and edge locations)

to minimize the dead spaces while preserving query accuracy. To

achieve e�cient query processing (in terms of query e�ciency

and in-network sensor infrastructure cost), we open up an al-

ternative way of thinking from in-network sensor placement

research: can we con�gure the sensor locations in such a way that

will make the query processing more e�cient?

We propose a planar graph representation of the in-network

system that decomposes the spatial domain based on sensor

placement techniques. The planar graph minimizes dead space

by selecting sensors based on a host of sampling methods when

the query distribution is unknown and dynamic. When the query

distribution is known, a modi�ed submodular maximization al-

gorithm [27] is used. The sensor con�guration can aid sensor

deployment (to achieve the best cost-saving and query accuracy)

or used to select a subset of sensors to activate at particular times

to save energy for a pre-existing set of sensors. An associated

query algorithm based on di�erential 1-form only requires access-

ing the sensors on the perimeter of the query region to reduce

communication. Speci�cally, counts are stored on the edges of

the planar graph, and queries are answered by integrating the

counts along the edges of the query region (de�ned as faces of the

planar graph). To solve the double counting problem, we store

two counts (incoming and outgoing) on each directed edge in

the planar graph. When answering queries, the incoming and

outgoing counts will ensure objects that exist and enter disjoint

partitions (or faces in the graph) multiple times will cancel out.

To preserve privacy in the temporal dimension, we take inspi-

ration from learned indexing [41] to infer the count at di�erent

timestamps using constant-sized machine-learning models. This

also increases query performance and reduces storage size.

Our contributions are summarized as follows:

• We propose an in-network framework with sensor place-

ment techniques to e�ciently answer queries and aggre-

gate data within the sensor network. Data is processed and

stored at each sensor, with no third parties accessing full

mobility patterns at any time. Our method seeks to bridge

the gap between privacy-aware moving object analytics

and e�cient in-network processing.

• We present a solution to the double counting problem in

an in-network setting by modifying the query algorithm

to account for incoming and outgoing counts.

• We support queries with arbitrary temporal intervals. To

accelerate the query process, we propose a constant-size

machine learning model that e�ciently predicts the count

using inference. This signi�cantly reduces the storage size

in each sensor and improves performance.

• We evaluate our framework and show it can achieve a high

accuracy level while signi�cantly reducing the storage

cost, lookup time, and communication cost.

2 RELATED WORKS

To the best of our knowledge, no existing methods bridge the

gap between privacy-aware data aggregation and sensor place-

ment. Both have been independently studied in the literature.

In the following section, we review all relevant works, includ-

ing, spatiotemporal range queries, privacy-preserving queries,

in-network query processing, and sensor placements.

2.1 Spatiotemporal Range Queries

We �rst discuss range queries for static objects before discussing

moving objects queries. Range queries on static objects are ef-

�ciently answered with hierarchical data structures, such as

R-trees [6], :3-trees [2] and QuadTrees [28, 40], using divide-

and-conquer. They are extended to querying moving objects by

supporting updates on objects, which includes lazy updates [1],

incremental updates [7], and selective updates [39]. However,

these methods are not privacy-preserving and require the entire

history of the moving objects.

2.2 Privacy-Preserving Queries

Increasing concerns over data privacy in recent years [12, 19, 38]

have led to growth in privacy-preserving querying methods.

Data aggregation is one of the most prominent methods for

desensitizing data and reducing storage requirements. Exist-

ing works on moving objects queries include distributed Euler-

histograms [15, 19], tree structures [36], and holistic aggregate

functions [5]. Recent works seek to perturb the moving object

data to preserve privacy [11] or improve the accuracy of exist-

ing approximate range count queries, speci�cally, with a private

BBD-Tree alongside a notion of fuzziness to the query range [23].

However, existingmethods are designed for centralized servers

where the full history of the moving objects must be kept before

aggregation. We argue that in-network systems can better pre-

serve privacy by keeping the data local to each sensor, which

prevents any party from viewing the full history at any time.

Additionally, learned indexes [13, 16, 25, 41], which exploit pat-

terns in the underlying data distribution, have recently emerged

as a compact alternative to traditional algorithmic indexes such

as the B+Tree. They model the Cumulative Distribution Function

(CDF) of the indexed keys to reduce the search bound of the

index. This inspired us to explore using a model to approximate

the count across timestamps, which no existing methods have

tried. Our approach takes inspiration from FLIRT [41] to further

preserve privacy and reduce storage requirements.

2.3 In-Network Query Processing

In-network query processing seeks to answer queries within

a physical sensor network (similar to edge computing), where

the low-resource sensors track the movement of moving objects.

Each sensor tracks the movement in spatial subdivisions. Tradi-

tionally, spatial subdivisions can be divided using axis-aligned

spatial indexes, including, Grids [15, 19, 29], R-trees [6, 36], :3-

trees [2, 7], and QuadTrees [28, 40]. However, these methods

generate much dead space. Sensors are unaware of whether the

area is a dead space. Hence, the in-network system must �ood

all nodes in the query range to answer the query, which results

in a communication cost proportional to the area of the query

region [18]. [34] improves the communication cost by using pla-

nar graphs and di�erential 1-forms to subdivide the space. They

support spatial range queries but do not answer spatiotemporal

queries. We take inspiration from [34]. While they focus on the

network performance of planar graphs and di�erential forms, we

extend this idea to spatiotemporal queries with a subset of sensors

and analyze the performance based on query performance.

35

2.4 Sensor Placement

Sensor placement has been studied extensively as a standalone

problem. For example, [3, 30] optimizes sensor placements for

tra�c �ows. [26] proposed submodular maximization for select-

ing sensors for contamination detection.

Recently, sensor placements have begun to incorporate sam-

pling. For example, [22] approximates a query by collecting sam-

ples in each sensor, and [8] reduces the number of sensors re-

quired to track movement between spatial subdivisions. However,

no existing methods focus on the network performance (reducing

sensors and communication costs), nor do they discuss where

to select sensors or how to track and aggregate movements for

queries within the sensor network.

3 BACKGROUND

In this section, we explain the problem setting and clarify the rea-

soning for our design.We then formulate the query and introduce

technical details about concepts and mathematical terminologies

used in the rest of the paper.

3.1 Problem Setting

In-network systems store counts locally to the sensor responsible

for the detection. Sensors can communicate with each other (e.g.,

mesh network), and some sensors act as communication nodes

to manage and aggregate counts from nearby sensors [43].

They improve privacy and reduce communication under con-

tinuous updates over centralized systems. Privacy is guaranteed

as data is kept local to relevant sensors, with no parties obtaining

the full mobility pattern of moving objects at any time. As for

communication, centralized systems continuously sync with all

the sensors for up-to-date counts, where they need to manage a

large number of simultaneous connections from each sensor. This

may be superior when the frequency of queries is higher than

updates. However, we argue that in most practical cases, the up-

date frequency is much higher than the query frequency, which

in-networks systems have lower communication costs and apply

to all network scenarios (e.g., increase bandwidth from 6G). Fur-

thermore, substantial network bandwidth and power are needed

for centralized systems if sensors are far from the servers (e.g.,

high-power radios for long-distance data transmission, which

can quickly drain battery-powered sensors).

However, we must address the dead space and distinct count

problems to support privacy-aware aggregate count query pro-

cessing for in-network systems. To create an e�cient in-network

query framework, we explore the idea of a planar graph with

discrete di�erential forms and sensor placement techniques to

decompose the spatial domain. Aside from solving these prob-

lems, we must also ensure e�cient query performance (accuracy

& time) and low sensor infrastructure cost (setup & operating

cost). We now explain the two problems and justify the reasoning

and advantages of the design decisions.

3.1.1 Dead Space Problem. We �rst expand on the dead space

problem described in the introduction. The dead space problem

occurs when ill-suited spatial partitions generate unnecessary

communication. The main rationale is that existing axis-aligned

spatial partitioning techniques are designed for centralized sys-

tems. Therefore, the partition considers the spatial distribution

of the entire data rather than the distribution of sensors.

For example, a sensor network is deployed for tra�c monitor-

ing in a city with curved roads (exemplary of real-world cities,

except Manhattan). Suppose we apply axis-aligned partitioning

based on the data distribution. In that case, we may place sensors

or select sensors (if a pre-existing set of sensors exists) at regular

axis-aligned intervals, using R-trees [6, 36], :3-trees [2, 7], or

QuadTrees [40]. This means we have sensors on roads and in

areas between roads (where no vehicle is present). Processing

queries would require the system to collect data from all the

sensors within the spatial and temporal range, leading to unnec-

essary communication and computation. Additionally, this leads

to a waste of resources as the sensors at the dead spaces consume

power without any contribution.

3.1.2 Double Counting Problem. The double counting prob-

lem occurs when we cannot distinguish unique objects without

identi�ers and count an object multiple times when it exits and

re-enters the sensing region during updates. Let’s consider an

example of a sensor network that monitors tra�c �ow on a high-

way. The sensors are placed at the exit and entry ramps. A vehicle

will be counted every time it enters the highway and exits at

the next ramp before re-entering the highway, resulting in an

overestimation of the number of distinct vehicles.

3.1.3 Our approach. We avoid ill-suited spatial partitions by

introducing a planar graph representation of the sensor distribu-

tion. The nodes of the planar graph represent the sensors, while

the faces represent the coverage of the sensors. The edges of

the planar graph are communication paths between nodes and

represent the border of the sensor coverage. The sensors at the

nodes bordering an edge detect moving object updates when they

move from one face to another. To prevent the double counting

problem, we introduce two counts (incoming & outgoing) at the

edges to record the direction of travel. The exact techniques for

�nding the direction of moving objects in a sensor network are

not the interest of this paper; readers can refer to [21]. To answer

queries, we represent the query region as faces of the planar

graph and �nd the count of the nodes at the border of these faces.

The planar graph allows us to route through the graph’s edges

to answer queries e�ciently. An associated query algorithm is

introduced to take into account the two counts when routing

through the edges during aggregation.

To achieve e�cient query processing, we need to consider

the sensor con�guration. We do not need every sensor on the

graphs to communicate with the remote query dispatching server.

Instead, fewer communication sensors can improve the overall

e�ciency at a loss of query accuracy by saving operating costs

and communication costs (which also decrease query response

time with less routing). The details of how communication sen-

sors collaborate to track objects are not the focus of this paper.

Readers can refer to [42]. The challenge here is minimizing the

communication sensors while preserving query accuracy.

We seek to tackle the sensor con�guration challenge from

the perspective of an in-network sensor placement problem. We

propose a sensor sampling algorithm based on submodular maxi-

mization, which accounts for the query distribution to maximize

the sensor coverage for a given number of sensors. We intro-

duce a host of sampling methods to con�gure the sensors to

support applications when the query distribution is unknown

and dynamic. Note that our main focus is on increasing com-

munication and computation e�ciency and does not focus on

privacy requirements. Before presenting the algorithms, we pro-

vide technical background about the planar graph representation

in the following sections.

36

Figure 2: Example of road network as the mobility graph

★� and dual graph � as the sensing graph. Two objects,

D1 and DA , are tracked within the region. &' is the query

region shown in green. D1 enters the&' at 10:00 and leaves

at 10:15. DA enters the &' at 10:05 and does not leave.

3.2 Planar Graph Representation

We �rst introduce the mobility and sensor domains used for

tracking moving objects.

3.2.1 Mobility Domain. The mobility domain is where mov-

ing objects are located and represents physical spatial regions.

E.g., the roads of the city form the mobility domain, where vehi-

cles move along the roads and movements are restricted by the

layout of the road. We usually represent this as a network graph.

E.g., in a road network, the roads represent edges, and junctions

represent nodes.

3.2.2 Sensor Domain. The sensor domain represents the place-

ment of sensors in a mobility domain used to track movements.

In the road network example, we can place sensors at strategic

points to track movement where the sensors’ network connec-

tivity graph represents the sensor domain.

3.2.3 Planar Graph Representation of Sensing and Mobility

Domains. Our framework abstracts the mobility and sensor do-

mains as planar graphs for their properties and advantages. This

is widely accepted as we can easily convert mobility graphs

through spatial decomposition and convert overlapping sensing

regions to non-overlapping "virtual" sensing regions.

The planar graph representation is shown in Figure 2. We

denote the planar mobility graph as ★� = (★+ ,★�). Using the

road network example, ★+ are junctions, and ★� are roads. The

sensor graph is denoted� = (+ , �), where+ are the sensors and

� are communication links between the sensors.� is constructed

to be the dual graph of ★� , which means the + represents a face

in★� . This allows us to use properties of the dual graph, such as

vertex-edge duality.

We represent the movements using discrete di�erential 1-

forms on the edges of �. To answer a query, we convert the

spatial range to be a union of faces in the sensor graph� , shown

as &' in Figure 2. The count is found by routing the sensors

around the perimeter of &' . Before explaining the exact algo-

rithms, we formulate the query in respect of the planar graph

representation and introduce di�erential forms.

3.3 Query Formulation

Asmentioned above, we de�ne spatiotemporal range count queries

in terms of planar graphs. Spatiotemporal queries have both a

Figure 3: (a) 0,1,2 cells (b) An oriented face f

spatial and time component. The spatial region is &' , and the

time interval is [C1, C2]. Here, we focus on two types of queries:

(1) Static object count query. Counts the objects that enter

&' before time C1 and leave after time C2 (and does not

temporarily leave &'). This counts the number of objects

within the region during the time interval. E.g., in Fig-

ure 2, the count in &' between [10:05,10:10] is 2. This

query strictly generalizes the spatial range count query,

as studied in [34]. To answer the spatial case, we can set

the timestamp C1 and C2 to be very close.

(2) Transient object count query. Counts the objects that either

enter &' before C1 and leave during [C1, C2]; or enter &'

between [C1, C2] and leave after C2. E.g., in Figure 2, the

count in &' between [10:05,10:10] is one since D1 enters

before 10:05 and leaves after 10:10. If we consider the time

interval [10:00,10:03], DA is not in the count. This query

provides the net change of objects during the time interval,

which is useful for applications such as tra�c �ow estima-

tion [35], where the transient count is used to calculate

the velocity of vehicles in a region (net count/time).

3.4 Discrete Di�erential Forms

Before discussing how range queries are answered, we introduce

relevant concepts about cell complexes and discrete di�eren-

tial one-forms. In algebraic topology, points/vertices/nodes are

considered 0-dimensional cells (0-cells), lines/edges are 1-cells,

and faces are 2-cells (example in Figure 3a). A cell complex is

a collection of cells where it’s dimension is determined by the

highest-dimension cell. E.g., the planar graphs★� &� in Figure 2

are considered 2-cell complexes.

The orientation of a :-cell is inherited from its (: + 1)-cell. In

Figure 3b, the face f , orientated counter-clockwise, imposes the

orientation of directed edge 4 to be [&, %]. The same edge 4 in

the opposite direction is −4 , which in our example will be [%,&].

We orient the faces counter-clockwise for our convention [24].

A : dimensional chain � is a linear combination of :-cells

28 : � =
∑

_828 , where _8 are binary weights for the 8-th cell

in the chain. m is the boundary operator for �nding the linear

combination along the perimeter of a face or the 1-dimensional

chain of a 2-cell. In Figure 3b, the perimeter is formed of edges

0, 1, 2, 3, 4 . The 1-dimensional chain of the face f assuming _8 = 1

is: mf = 0 + 1 + 2 + 3 + 4 .

Discrete di�erential 1-forms (denoted as di�erential forms) are

functions on 1-cells or edges. We use di�erential forms to keep

track of the number of moving objects on each edge. Formally,

a di�erential form is a function: b : � → R. It has a property

where b (−4) = −b (4), and we denote the di�erential form at time

C as bC . We �nd the number of moving objects contained in each

face by integrating the di�erential forms along the 1-chain �:

b (�) =
∑

4∈� b (4).

37

Figure 4: Sampling communication sensor location using road network of Beijing. (a) uniform sampling. (b) systematic

sampling. (c) strati�ed sampling. (d) :3-tree sampling. (e) QuadTree sampling. (f) Regions (red) selected by submodular

maximization given a set of queries (queries are not shown).

4 ALGORITHMS

In this section, we provide an overview, introduce how the sens-

ing graph is generated and describe the query answer process

before breaking down each step in detail.

4.1 Framework Overview

We show how to construct a planar graph representation when

the sensor and mobility graphs are unknown for completeness

in Section 4.2. This is useful for planning sensor development or

using the sensor graph as a spatial decomposition technique.

The �rst step in our framework is to generate a sensor con-

�guration from an existing planar graph representation of the

sensing and mobility domains (generated from Section 4.2, or

from pre-existing networks). We propose two approaches for

selecting the sensors based on the amount of prior knowledge

about the queries. If the query distribution is unknown or dy-

namic, we elect a subset of sensors using sampling algorithms.

In Section 4.3, we showcase multiple sampling algorithms for

di�erent use cases. When the query distribution is known, we

elect the sensors based on a submodular maximization, where

we maximize the sensor coverage given a budget. We present

the algorithm in Section 4.4. The selected sensors will be the

communication sensors that communicate with the query server.

They also manage and aggregate counts from local sensors within

their sensing region. This is often done in practice to limit long-

distance communication (sensor-to-server) to a few sensors. An

example can be found in [42].

After generating a sensor con�guration, we construct a new

"sampled" planar graph representation of the sensing domain and

generate the edges between the nodes in Section 4.5. For the query

oblivious case, we connect the nodes either with a triangulation-

based or :-NN-based algorithm. The edges are then materialized

in the network by routing through the shortest paths between

selected nodes in the original sensor graph.

We answer queries on the sampled sensor graph with the fol-

lowing steps: Section 4.6 explains how queries are dispatched

to relevant node/s and the steps to �nd all nodes that boundary

the spatial query region. We then �lter for the temporal range at

boundary nodes before computing the count considering incom-

ing and outgoing objects in Section 4.7-4.8. These sections also

explain how the sensor graph handles moving object updates.

As mentioned in Section 3.1.3, our goal is to improve query e�-

ciency. Therefore, we refrain from detailed privacy analysis, but

one can extend our method using methods from [20] to include

privacy guarantees.

4.2 Constructing Planar Graphs

We describe the process of generating planar mobility graphs

from a spatial map or spatial network graph. The senor graph is

the dual graph of the mobility graph.

As an example, we generate a road network graph from a

standard map obtained from mapping services. The �rst step is

to �lter our non-relevant nodes and edges. E.g., all non-vehicle

nodes and edges such as walking paths and train tracks. We then

generate the planarized graph by removing intersections from

underpasses and �yovers by inserting nodes at the intersections.

In the example above, moving objects travel along de�ned

paths, which constrains their movement to prede�ned paths.

However, there are many cases where moving objects can freely

roam around the spatial region (e.g. air and sea transportation). In

this case, we may want to generate "virtual" paths from historical

38

mobility traces. E.g., we generate paths from historical data where

there is considerable tra�c. However, estimating which paths to

generate is not trivial; we will leave this for future work.

4.3 Query Oblivious Sensor Selection

In this section, we describe the sensor selection algorithms when

we have no prior knowledge about the queries or when the query

distribution is unknown. Formally, there are |+ | possible locations

to place sensors, and the system has a budget for placing <

sensors that optimizes query performance. We propose to use

sampling to select a subset of nodes +̃ ⊂ + from the sensing

graph� to generate a sampled graph �̃ .We now present sampling

approaches aimed at various applications.

Uniform random sampling. we selects< nodes from + with

equal probability. Figure 4a shows sensors selected using uniform

sampling. This is the simplest type of sampling and has a bias

towards denser regions. Applications that query denser areas are

suitable for this method. E.g., tra�c monitoring applications may

prefer more sensors in densely populated areas.

Systematic sampling. We impose a virtual grid on the mobility

domain and select a node from each grid cell. The chosen node is

either closest to the cell center or is randomly selected in each cell.

An example is shown in Figure 4b. Systematic sampling ensures

a uniform distribution of nodes across the mobility graph. This is

suitable for applications where queries are uniformly distributed.

Strati�ed sampling. We partition the mobility graph using

strata (e.g., each district or zip-code region). We uniformly sam-

ple a set of nodes from each stratum. Figure 4c shows an example

where strata are districts in Beijing. A function de�nes the num-

ber of samples in each stratum. For simplicity, we use a function

that de�nes the number of samples based on the area of each

stratum. This function can be easily extended to incorporate

other factors, such as the importance of each stratum. This type

of sampling is useful when queries are de�ned based on strata.

Hierarchical space partition-based sampling. We build a

QuadTree or a :3-tree for the nodes + in graph � by recur-

sively partitioning the space until the leaf level has< nodes. Like

systematic sampling, we select nodes closest to the center or

randomly select nodes in each leaf node to form the sampled

nodes. Figure 4d,e show random :3-tree sampling and random

QuadTree sampling, respectively. This method takes bene�ts

from both uniform and systematic sampling.

We assume the cost of selecting any sensor to be uniform

for the sampling algorithms described above. However, we can

include non-uniformity by using di�erent weights for each node.

For example, if we were to make our sampling methods query

adaptive. We can use the number of times each node appeared in

previous queries as the weight.

4.4 Query Adaptive Sensor Selection

This section considers the case when the expected query regions

are known a priori (e.g., from domain experts or predictions

based on historical data). Similar to Section 4.3, we select <

sensors from |+ | from a subset of nodes +̃ ⊂ + ∈ � for generat-

ing the sampled graph �̃ . We formulated the problem of sensor

placement with combinatorial optimization and used submodular

maximization [27] to approximate the solution. We start with

how to use submodular maximization for sensor placement and

adapt it to our problem.

Figure 5: Example of two overlapping query regions. (a)

&1 and &2 are two overlapping query regions to form &3 =

&1 ∩&2. (b) Disjoint query regions &1 −&3, &2 −&3 and &3.

4.4.1 Submodular maximization for selecting sensors. We �rst

de�ne the sensor placement problem given expected query re-

gions. Consider a classical setting for studying sensor placements:

there are = possible locations (V) to place the sensors where each

sensor has a de�ned region it can sense. Given that we have the

budget to deploy< sensors, how do we choose the locations to

maximize the total coverage area? This is an NP-hard [26] prob-

lem because one needs to test all combinations ofV to choose

the best< locations, which needs exponential time.

Several approximation methods have been proposed in the

literature to tackle this general line of problems. We consider

submodular maximization as it matches our requirements. Let us

denote the set of< locations to be !. For simplicity, suppose each

sensor covers a unit circle on a plane. Here, the utility (area being

covered by the sensors) is submodular or has diminishing return

property. This means that when sensors are added sequentially,

the marginal area covered by each new sensor will be smaller

with more sensors. This is because the coverage area of the new

sensor may overlap with previous sensors.

We now de�ne sensor placement in terms of a submodular

optimization problem. Consider a set of sensors (, and the cov-

erage of the set of sensors is 5 ((). The marginal coverage of a

new sensor G , where (G ∉ (), is Δ(5 (G) = 5 ((∪ {G}) − 5 (() with

respect to (. For two sets of sensors � and �, where � ⊆ �, the

marginal coverage is:

Δ� (G) ≥ Δ� (G), >A

5 (� ∪ {G}) − 5 (�) ≥ 5 (� ∪ {G}) − 5 (�)

The function is monotone if 5 (�) ≤ 5 (�). In order to maxi-

mize the sensor coverage, we can maximize the following objec-

tive function. Here we assume the cost of selecting any sensor to

be uniform.

! = argmax!⊆V 5 (!) (1)

where, |! | ≤ <

This maximization admits an iterative greedy approximate

solution – start with an empty set and at iteration 8 choose the

sensor with the maximum marginal utility until< sensors are

selected. We can break the ties with random selection. We can

simplify the optimization with a (1 − 1
4) approximation [31].

(8+1 = (8 ∪ argmaxE∈V−(8 and |(8 |<<
Δ(8 (E) (2)

If the cost of the elements is not uniform, we need to add

constraints to this problem.

39

! = argmax!⊆L 5 (!) (3)

where,
∑

E∈!

2 (E) ≤ �

Where D is a sensor, 2 (D) is the cost function of selecting

sensorD, and � is the optimization budget. In this case, the greedy

algorithm starts with an empty set, and at each step 8 , it selects

the item as follows.

(8+1 = (8 ∪ argmaxE∈V−(8 and 2 (E)≤�−2 ((8)

Δ(8 (E)

2 (E)
(4)

Furthermore, Equation 4 and 2 can produce a 1
2 (1 − 1/4) ap-

proximation according to the �ndings in [27]. We will adapt the

approximation for choosing sensors given historical query data.

4.4.2 Submodular utility function given query regions. To se-

lect query regions to monitor, let us consider a set of historical

query regions, Q̄' = {&̄'}. Now our objective is to select the

query regions to monitor by placing the sensors at the boundaries

of these regions.

This problem di�ers from the ones described above as the

sensors monitor the boundaries of the regions. Following is our

insight. Let us consider two regions in Figure 5a,&1 and&2, that

overlap to form an overlapping region &3 = &1 ∩&2. Suppose

we choose to monitor the edges in m&1. Then our system cannot

answer a query on &2. However, if we also monitor the edges in

m&3, we could answer the query on both&1 and&2 (with a lower

bound). This adds a small additional cost since |m&3 ∩ m&1 | > 0.

Thus our strategy is to �rst maximally partition Q̄' so that

none of the resulting regions, Q' = {&'}, overlap and consider

that to be the set of regions to be selected. For our example,

Figure 5b shows the resulting query regions. Suppose f denotes

a maximal cell complex fully contained by at least one query

region in Q' . Then the tracking sensors need to be placed on

mf . Assuming the cost of each edge is uniform, the cost function

2 (f) and utility function 5 (f) for selecting the cell complex f is:

2 (f) = |mf | (5)

5 (f) =
∑

∀&' containing f

l (f)

l (&')
(6)

Where,l (f) denotes the number of cells within f . We observe

that the utility of the region f increases as the region covers a

larger area w.r.t a query region in Q' . We can replace l (f) with

a more general notion representing cells with di�erent weights.

2 (f) is the number of boundary edges for simplicity. We can use

a more complex function to incorporate the actual cost as long

as it monotonically increases with edges. E.g., increasing the size

of the area should increase the cost.

The utility function 5 (f) is always submodular and monotone

because (1) the ratio
l (()
l (&')

never decreases with more sensors

added to (. (2) l (.) is submodular since we are dealing with the

area. To select the subset of nodes +̃ , we �rst select the sensing

region f that maximizes the utility function 5 (f) until the budget

< (Figure 4f).

Equation 6 is the utility function used to select sensing regions

for lower bound approximations (e.g., the resulting count will

be less or equal to the actual count.) For upper bound approx-

imations, we can modify the f to denote a cell complex that

Figure 6: Generating edges from sampled nodes using tri-

angulation and :-NN (:=3). (a) Edges after triangulating +̃ .

(d) Edges after �nding :-nearest neighbor for each node E

in +̃ . (b,e) Replacing edges within the shortest path in � .

The blue nodes are intersection nodes added to ensure �̃ is

planar. (c,f) �̃ after simpli�cation.

contains one query region in Q' (details in Section 4.6). An alter-

native formulation for this problem considers partially covering

V regions. However, the naive solution to this formulation has

high computational complexity (exponential number of possible

sensing regions) and is not considered in our current scope.

4.5 Generating Sampled Graph

Once the subset of nodes +̃ is found, we generate the sampled

graph by connecting the nodes with edges. For the query oblivi-

ous selectionmethod, we �rst need to generate the edges between

the nodes, either using triangulation or :-NN.

For the same set of +̃ , Figure 6a shows how triangulated edges

are formed from +̃ (red), and Figure 6d shows edges formed by

:-NN (: = 3). For :-NN , we �nd the :-nearest neighbor nodes

D̃ ∈ N: (Ẽ) from +̃ for each node Ẽ ∈ +̃ . :-NN typically generates

more faces, each with a smaller area. This bene�t queries with

smaller spatial regions as they are more likely to contain one of

these faces. Note that �̃ becomes maximal when : =<.

Once the edges are formed between nodes, we must map the

edges to network paths to avoid any intersections (which makes

the graph non-planar). This is formalized by routing the shortest

paths between nodes in the original sensing graph� . Figure 6b,e

shows the shortest paths, where intersections are labeled as blue

nodes. We add the intersections to the sampled graph for virtual

representation proposes (they do not have to be communication

sensors). The resultant sampled graph �̃ is shown in Figure 6c,f.

For the query adaptive selection method, the edges are formed

from the boundary edges of selected regions. We only have to

map the edges to network paths for the query adaptive selection

method. For example, based on submodular maximization, we

can use a trivial case where all regions are considered triangles.

The �rst region contains three nodes which will form a triangle.

We then add another node to form another triangle (that maxi-

mizes the area) with two nodes from the existing triangle. The

process continues until we have< nodes. Therefore, the edges

are generated during this process, and we only need to map the

edges to the network paths to avoid intersections.

40

Figure 7: The query region &' (green) de�nes the rectan-

gular query region as faces in the sensing graph� . '1 and

'2 are the upper and lower approximation of &' .

4.6 Dispatching Queries

The query dispatches from a remote query server to the com-

munication nodes in the sampled graph �̃ . Before explaining

which nodes to dispatch the queries to, we �rst introduce how

the graphs de�ne the query regions. The remote query server

knows the structure of sensing graph � and sampled graph �̃

but does not know the exact counts. The query region is de�ned

as the union faces of the sensing graph � , which supports the

query region of any arbitrary shape. E.g., we enclose &' to a

rectangular query region in Figure 7.

Since �̃ is a subgraph of � , the queries answered in �̃ will be

approximate as we cannot guarantee&' to be present in �̃ . There

are two approximations: lower-bound approximation, which is

the maximal region enclosed by the query region &' (shown

as '2), and upper-bound approximation, which is the minimal

region containing &' (shown as '1). Depending on the type of

approximation (which can be speci�ed by the user), we de�ne

the query region as the union of faces in �̃ that are bounded by

(lower-bound) or bounds (upper-bound) the query region.

Once the query region is de�ned in �̃ , there are two ways

to communicate with the sensors depending on communication

cost. The �rst method involves communicating with all nodes on

the perimeter of the query region and aggregating the �nal count

in the query server. The second method involves communicating

with one node on the perimeter of the query region. The node

then �nds all other nodes on the perimeter via node traversal

(e.g., �ooding, routing) and aggregates the count back to the

node before returning the result to the query server. The choice

of method depends on the actual cost in the network and is not

the focus of this paper.

4.7 Querying the Sampled Graph

4.7.1 Snapshot. We �rst present how to update the count of

moving objects with di�erential forms without timestamps (or a

snapshot in time), before extending it to include timestamps. The

idea is to have a di�erential form along each edge 4̃ in �̃ to keep

track of the count (physically, the count is stored at the nodes,

and the edge counts act as an abstraction). Here we can take

advantage of the vertex-edge duality, where the object moves

along the edge ★4̃ in ★�̃ will cross an edge 4̃ in �̃ . Therefore the

corresponding di�erential form b (4̃) will be updated.

We de�ne two tracking forms for each directed edge: b+C (.) and

b−C (.). An example is shown in Figure 8b where object) moves

from source (f) to target (g). The shared edge crossed by) is

seen as 2 for mf and −2 for mg . Therefore,) leaves f via directed

edge 2 in the perspective of mf . We use b−C (2) to track this type

Figure 8: Di�erential form example. (a) The road network

is the dual graph (dotted line), with the sensor network

as the primal graph (solid line). ★E4GC is the in�nity node

that acts as a source and sinks for objects entering and

leaving the mobility graph. (b) Target) moving from face

f to g . The query region &' is the union of faces f and g

(&' = f ∪ g).

of movement. Similarly, we use b+C (−2) to track) as it enters g

via −2 in the perspective of mg . We use + to denote the movement

from one face to another:

b+C (−2) = b+C (−2) + 1 and b−C (2) = b−C (2) + 1 (7)

Theorem 4.1. If the di�erential forms are updated as per Equa-

tion 7, then at the current time C , the number of objects inside a cell

complex &' is given by
∑

4∈m& b+C (4) − b−C (4).

Proof sketch. In Figure 8, g is initially empty (m(g) = 0). Target

) enters g at time C from f and crosses at edge 2 . According

to Equation 7, b−C (2) = 1 since) is moving out of f . Similarly,

b+C (−2) = 1 as) moves into g . We �nd the count by integrating

the di�erential forms along the perimeter of the face. The count

at time C is bC (m(g)) = (b+C (3) − b−C (3)) + (b+C (4) − b−C (4)) +

(b+C (−2) − b−C (−2)) = b+C (−2) = 1. Similarly, the count in f is

bC (m(f)) = b+C (1) − b−C (2) = 1 − 1 = 0.

4.7.2 Arbitrary Time Intervals. We extend the tracking form

to contain a sequence of timestamps for each crossing event

to answer spatiotemporal range queries. We use ⊕ to represent

appending to a sequence (E.g., #»G ⊕ ~ means appending ~ to a

sequence #»G). Thus when an object crosses an edge 2 in Figure 8,

we update the tracking forms as follows.

W+C (−2) = W+C−1 (−2) ⊕ C and W−C (2) = W−C−1 (2) ⊕ C (8)

4.7.3 Static object count. We use a function � (WC (4), C) to

count the number of crossing events from −∞ to C at edge 4 . We

answer the static object count query by combining Equation 8,

� (WC (4), C) and Theorem 4.1.

Theorem 4.2. If the tracking forms are updated as per Equa-

tion 8, the number of objects inside a cell complex f up until C@ , is

given by: WC (mf) =
∑

4∈mf � (W
+
C (4), C@) −� (W−C (4), C@).

Proof sketch. In Figure 10, a blue trajectory enters through

edge 1 at C0 and exits from edge 2 at C3. The green trajectory

enters through edge 1 at C2, and the red trajectory enters through

edge 0 at C1. According to Equation 8, W+C3 (0) = {C1} since the

41

0 100000 200000 300000 400000 500000
time (key) +1.202e9

0

20

40

60

80

100

ac
cu

m
la

tiv
e

CO
UN

T
(m

ea
su

re
)

Linear Regression

0 100000 200000 300000 400000 500000
time (key) +1.202e9

0

20

40

60

80

100

Polynmial Regression

0 100000 200000 300000 400000 500000
time (key) +1.202e9

0

20

40

60

80

100

SVR

0 100000 200000 300000 400000 500000
time (key) +1.202e9

0

20

40

60

80

100

Decision Tree

0 100000 200000 300000 400000 500000
time (key) +1.202e9

0

20

40

60

80

100

Random Forest

Figure 9: Storing the range count and timestamp(B) in an example tracking form using popular regressors.

Figure 10: Example of two trajectories moving in and out

of f at di�erent timestamps

red trajectories enters through edge 0 at C1. Similarly, W+C3 (0) =

{C1}, W
+
C3
(1) = {C0, C2} and W−C3 (2) = {C3}. We �nd the count in

f by applying Theorem 4.2. Therefore, the count is WC (mf) =

� (W+C (0), C3) +� (W
+
C (1), C3) −� (W−C (2), C3) = 1 + 2 − 1 = 2.

4.7.4 Transient object count. We modify the count function

to �nd the number of objects between an arbitrary time range

for the transient object count case. The count function takes the

form� (WC (4), C1, C2) = � (WC (4), C2) −� (WC (4), C1), where it returns

the number of events from C1 until C2 at an edge 4 .

Theorem 4.3. The number of objects that entered and left a cell

complexf from C0 to C1 is given by:WC (mf) =
∑

4∈mf � (W
+
C (4), C0, C1)−

� (W−C (4), C0, C1), where negative results mean more moving objects

left during the time interval and vice versa.

Proof sketch. In Figure 10, we want to �nd the transient object

count inf between [C1, C3]. The count at edge1 is� (W
+
C (1), C1, C3) =

� (W+C (1), C3) −� (W+C (1), C1) = 2− 1 = 1. The same logic is applied

to edges 0 and 2 . According to Theorem 4.3, the count is WC (mf) =

� (W+C (0), C1, C3) +� (W
+
C (1), C1, C3) −� (W−C (2), C1, C3) = 0 + 1− 1 = 0.

Intuitively, this makes sense as there are always two objects

within f during [C1, C3].

4.8 Computing the count function using
regression models

Lastly, we introduce the machine-learning models used to store

and process timestamp sequences e�ciently. The naive method

to compute � (WC (4), C) is to search the count at time C in the se-

quence WC (4) at edge 4 . We can use indexing methods such as the

B-tree to e�ciently search and store the sequence. However, such

indexing methods require the sequence to be stored explicitly,

thus, making the storage size grow with increasing data size. We

take inspiration from learned indexes to compact the sequence

of timestamps which saves space. The tracking form’s mono-

tonic property (the temporal dimension continuously increases

and W+ and W− are always increasing) allows us to use a similar

approach to store tracking forms at each edge. Unlike learned

indexing, we only store the model parameter and infer the results

to reduce time complexity. This also grants us another level of

approximation in the temporal dimension, increasing privacy.

Speci�cally, we store the timestamps as a CDF (cumulative

distribution function) and predict the cumulative count of events

that happened till a given timestamp C . The count is approximated

by using the predicted count as the �nal answer. The lookup time

is reduced to $ (1) (considering the model does not increase

its parameters as we receive more events). Simple regression

models are used to reduce storage and training costs. Figure 9

shows popular regressors modeling the function � (WC (4), C) at

an edge 4 . Assuming we are using linear regression (Figure 9a),

we can compute the count � (WC (4), C) by applying � (WC (4), C) =

U + VC , where V and U are the weights and biases of the linear

model. The range count � (WC (4), C0, C1) is the di�erence between

� (WC (4), C1) = V + UC1 and � (WC (4), C0) = V + UC0.

We use a limited-size bu�er that can accommodate = events to

store new crossing events for updates. When the bu�er is full, we

build a new model and �ush the bu�er to make space for updates.

When combing the model and the bu�er, we can answer range

queries on at most 2= events in the past. We can further reduce

the storage space by learning the regressors incrementally. For

example, we learn a model at time C that combines the bu�er

[C − =, C] and the trained model at C − =. Alternatively, without

storing the keys, we can use a similar queue-type learned index

structure of FLIRT [41]. We leave this to future work and only

study the feasibility of using a regression model to store the

tracking form in this paper.

4.9 Theoretical Cost

The communication cost dominates the querying cost. Hence,

the number of nodes along the perimeter of the query region

serves as a proxy estimation for the querying cost.

We �rst formulate the cost for the non-sampled sensor graph

� to serve as a benchmark. Suppose the distribution of the nodes

is approximately uniform. In that case, the expected number of

nodes within the query region is given by |#� | =
�(&')
�()')

|# |,

where �(&') is the area of the query region, �()') is the total

area of the spatial region, and |# | is the total number of nodes in

� .
�(&')
�()')

here is the proportion of the query area with respect

to the total area.

We are interested in the number of points on the perimeter of

the query region&' . We expect those points to be located mostly

in a narrow band that runs close to the borders of &' . Say the

total area of that band is U�(&'). Assuming that the nodes of �

have an approximately uniform spatial distribution, the density

of nodes everywhere is similar. Hence, if&' increases, we expect

the perimeter band to increase proportionally to �(&'). Hence,

42

we hypothesize that the number of nodes on the query perimeter

is |#% | = U
�(&')
�()')

|# |.

Now, we compare it with our sampling strategy. For simplicity,

consider the :NN-based scheme. The total number of points in

the sample graph �̃ can be approximated by <:ℓ� , where <

is the number of nodes sampled, : is the number of neighbors

selected for each of the< nodes (see Section 4.5) and ℓ� is the

average shortest path length in � . For the triangulation-based

connections, : would be the average degree for each node, which

can be estimated with : =
|�̃ |

|#̃ |
=

3 |#̃ |−6

|#̃ |
(Euler’s Formula for

planar graphs). Hence, considering an approximately uniform

distribution, there will be |#̃% | =
�(&')
�()')

<:ℓ� nodes from �̃

inside the query region. This considers the cost of aggregating

counts from sensors to communication nodes.

Let’s now consider the order of ℓ� . It is well-known that many

real-life networks exhibit the small world phenomenon, by which

the average path length is$ (log |# |) [32], where# is the number

of nodes. The exact characterization of graphs that have this

property is complicated [10], but in general, we expect ℓ� =

6(|# |) to hold, where 6 is a sub-linear function, logarithmic in

the best case.

With this, |#̃% | simpli�es to |#̃% | =
�(&')
�()')

<:6(|# |). The

de�nitive comparison between the non-sampled cost |#% | and the

sampled cost |#̃% | will depend on the exact order of the function

6, but in general, we expect the small-world phenomenon to

manifest and the sampled cost |#̃% | to be lower.

For the previous discussion, we assumed the
�(&')
�()')

bounds

our query region. However, this may not be the case for the upper

bound approximation (E.g., '1 > &' in Figure 7). Determining

the minimal area that contains the query region is non-trivial. It

depends onmany aspects, such as the distribution of nodes, shape,

size, and alignment of the query region. To simplify the analysis,

we can increase
�(&')
�()')

by a factor to account for the extra area,

which does not change the overall complexity. In summary, the

querying cost for our framework is $
(

�(&')
�()')

<:6(|# |)
)

, with 6

a sub-linear function which in the best case is logarithmic.

5 EXPERIMENTS

We simulate an in-network system with abstractions in our ex-

periments. The main focus is evaluating the algorithmic improve-

ment independent of the real distributed implementation (e.g.,

the actual communication protocol). The evaluation examines

our framework’s performance against the baseline for static and

transient count queries under lower bound & upper bound ap-

proximation, edge generation methods (:-NN vs. triangulation),

query misses, and systems gains. Highlights of the results are

summarized as the following:

• We show signi�cant performance gains in terms of pro-

cessing speed, the number of nodes accessed, and storage

size compared to the baseline while reducing relative error.

• The submodular maximizationmethod achieves the lowest

relative error.

• The :3-tree and the QuadTree have the lowest relative

error for sampling methods.

• :-NN based connectivity has lower relative error for smaller

query regions.

• The regressionmodels provide speedup in query execution

time and reduction in storage requirement with minimal

impact on relative error.

5.1 Experimental setup

5.1.1 Dataset & Setup. The mobility graph uses a real-world

road network of Beijing [33] shown in Figure 4. The moving

objects data uses two GPS trajectory datasets, T-drive [44] and

Geolife [45]. The combined dataset contains 29,027 trajectories

collected from February 2007 to August 2012.

We conduct the experiments on a machine with Intel E5-2680

v3@2.50GHz running Centos 8. The core count is 48, and the

memory size is 128GB. Each experiment is repeated 50 times.

We report the median of the runs in solid lines, and the shaded

regions are between the 25th and 75th percentiles.

5.1.2 Baseline. The obvious baseline compares our method

against an unsampled sensing graph � based on [34] (Does not

support arbitrary time intervals). However, we also want to com-

pare with a baseline considering existing works on privacy-aware

aggregate range queries and sampling. The baseline by combining

these methods, as no single baseline meets all our goals.

Speci�cally, the baseline uses Euler-histograms [15, 19] to

count the number of objects within each face of the graph � .

We assume all counts are aggregated and stored in the nodes

before querying. A random index sampling algorithm [14, 29]

then uniformly sample faces in the graph.

5.1.3 Pre-processing. The road network is discretized using [4].

We insert nodes at any edge intersections and remove contour

nodes (nodes that are not junctions added by maps to indicate the

geometry of roads). We then map-match the trajectories to the

road network by mapping each trajectory location to the nearest

node and connecting them via the shortest path in the graph.

5.1.4 Performance measures. We use relative error to evaluate

the estimation error from approximating the query. The relative

error is
|[−[̂ |
[where [denotes the actual range count (count

from the unsampled graph �) and [̂ denotes the approximated

range counts. The closer the relative error is to zero, the more

accurate the approximation.

5.1.5 �ery generation. As mentioned in Section 4.6, the

queries are de�ned in terms of the sensor network to communi-

cate with all relevant sensors for the query. Therefore, we de�ne

query region as a union of faces of the non-sampled sensing

graph � .

We simulate this by selecting a rectangular spatial region of

area � before �nding the faces contained by the rectangular

region in the sensing graph � . The union of the faces forms a

subgraph which becomes our query region &' . The resulting

query regions will have irregular shapes and an upper bound

area of �. The temporal range is randomly sampled 7-day pe-

riods. Additionally, we choose 100 query regions uniformly as

the historical data for generating sensor placements with the

submodular maximization algorithm.

5.2 Size of the Sampled Graph

We evaluate the frameworks under varying sizes of the sampled

graph. Figure 12a for the static object count and Figure 11a for

the transient object count. The queries executed are lower bound

approximations, and the query regions are �xed at 1.08% (10:<2

in :<), de�ned as the percentage of the total sensing area. The

sizes are shown as a percentage of the size of the original sensing

graph � . Our sampling methods outperform the baselines, with

:3-tree and QuadTree having the lowest error. The submodular

43

0.1 1 10

Size of Sampled Graph (%)
(a)

0

0.2

0.4

0.6

0.8

1

R
el
at
iv
e
E
rr
or

20 40 60

Query Area (%)
(b)

0

0.2

0.4

0.6

0.8

1

R
el
at
iv
e
E
rr
or Baseline

Uniform
Systematic
Strati-ed
k-d tree
QuadTree
Submodular

20 40 60

Query Area (%)
(c)

0

200

400

600

800

1000

N
u
m
b
er
of
N
o
d
es
A
cc
es
se
d

Baseline
Sample Graph (6%)
Sample Graph (51:2%)
No Sample Graph

10 20 30 40 50

Query Area (%)
(d)

0

0.5

1

1.5

2

2.5

3

T
im
e
(m

s)

Non Sampled Graph
Sampled Graph

0 1000 2000 3000

Storage Cost Per Edge (Bytes)
(e)

0

1000

2000

3000

4000

5000

C
D

F
(x
)

Exact
Linear
Polynomial(d = 4)
SVR
Decision Tree
Random Forest

Figure 11: Lower bound relative error of transient range queries (a) w.r.t graph size. (b) w.r.t query sizes. (c) The number of

nodes accessed w.r.t query sizes. (d,e) Execution time and storage cost.

0.1 1 10

Size of Sampled Graph (%)
(a)

0

0.2

0.4

0.6

0.8

1

R
el
a
ti
ve

E
rr
o
r

5 10 15 20

Query Area (%)
(b)

0

0.2

0.4

0.6

0.8

1

R
el
a
ti
ve

E
rr
o
r

Baseline
Uniform
Systematic
Strati-ed
k-d tree
QuadTree
Submodular

Figure 12: Lower bound relative error of static queries. (a)

w.r.t graph size (b) w.r.t query sizes.

maximization method further decreases the error by considering

historical query distribution.

Our method can cover more area than the baseline, which

scatters sampled faces across the region. We consider the sensor

distribution and track moving objects based on edge movements

rather than keeping counts based on faces. Therefore, we can

achieve a lower error for the same size (if we have horizontal lines

on the graph). There is a lower limit to the relative error we can

achieve due to the inherent nature of approximations, shown as

the plateau at larger sizes. The submodular maximization method

has the lowest limit, while the baseline requires more samples to

reach the limit.

Interestingly, all methods were shown to have reasonably low

errors at the sampled size of 25%, suggesting that sampling is a

viable approach for aggregate queries without losing too much

error. However, we need su�cient samples in the 0.4% − 3.2%

range; all methods show poor performance. The highlight of our

method is that we can reduce the number of samples to achieve

a low relative error.

5.3 Query Region Size

Next, we show the relative error against varying query region

sizes. The area of the query region is shown as the percentage of

the total sensing area. Figure 12a shows the static object count,

and Figure 11a for the transient object count over an extended

query range. The size of the sampled graph is kept constant at

the median graph size of 6%; other sample sizes show a similar

trend.

The relative error decreases with increasing query regions

as the likelihood of the query region containing a sampled face

increases, with the submodular maximization method scaling

exceptionally well with query size. This likelihood heavily im-

pacts the e�ectiveness of the sampling methods, as smaller query

regions generate substantial errors. On the other hand, the base-

line only depends on the number of samples, as the area of the

sampled faces predetermines the maximum coverage.

5.4 Communication Cost & Speed up

We evaluate the communication cost with the number of nodes

accessed for the sampled graph, unsampled graph, and baseline

in Figure 11c. We show results with a sampled graph size of 6%

and 51.2%. Note that the nodes accessed di�er with query sizes,

but larger query sizes do not mean more nodes are accessed. E.g.,

in Figure 6c, the number of nodes accessed is �ve if the query

region covers the entire perimeter or only the left triangle.

We show that sampled graphs achieve near-constant node

access when averaged over graph sizes. The actual shape follows

more of a logarithmic shape, which agrees with our theoretical

cost in Section 4.9. The number of node access is very low for

small areas, which also explains the high relative error. On the

other hand, the number of access for the baseline and the unsam-

pled graph linearly increases with the query area as we need to

access all nodes within the query region.

Even though the node access is near constant for the sam-

pled graphs, we show that the average querying time increases

with query size in Figure 11d. This is because the planar graph

represents the underlying sensor network. Data has to be aggre-

gated to the sampled nodes. Larger query regions mean longer

distances between the nodes, and the aggregation may need to

route through more nodes. Additionally, the sampled graph re-

duces the processing time of queries, with a shallower slope for

larger query regions.

5.5 Queries missed

We investigate the cause of the high relative error for smaller

query regions and graph sizes by evaluating the number of

queries missed. Query misses occur when the query region does

not intersect with the sampled graph. Figure 13a & b shows the

number of queries missed against the graph size and the query

area. The results show that query misses rarely occur for our

method, which suggests the high relative error is mainly caused

by the sampled graph not covering enough area.

5.6 Upper bound approximation

We then look at the relative error for upper bound queries in

Figure 13c & d. The upper bound count is given by the minimal

region �̃ that contains the query region &' . The count is larger

or equal to the actual count since it contains objects not in the

query region (hence y-axis is greater than 1). The results show a

similar trend as the lower bound count – with increasing query

region and size of �̃ , the error reduces.

44

0.1
Size of Sampled Graph (%)

(a)

0

0.5

1

1.5

2

Q
u
er
ie
s
M
is
se
d
(%

)

20 40 60
Query Area (%)

(b)

0

0.5

1

1.5

2

Q
u
er
ie
s
M
is
se
d
(%

)

Baseline
Uniform
Systematic
Strati-ed
k-d tree
QuadTree

0.1
Size of Sampled Graph (%)

(c)

0

1

2

3

4

5

R
el
a
ti
v
e
E
rr
o
r

k-d tree
QuadTree

20 40 60
Query Area (%)

(d)

0

1

2

3

R
el
a
ti
v
e
E
rr
o
r

k-d tree
QuadTree

Figure 13: (a,b) The number of queries missed over the total number of queries. (c,d) The upper bound relative error.

2 4 6 8 10
Query Area (%)

(a)

0

0.2

0.4

0.6

0.8

1

R
el
at

iv
e
E
rr
or

Triangulation
k = 5
k = 10
k = 50
k = 100

2 4 6 8 10
Query Area (%)

(b)

0

0.2

0.4

0.6

0.8

1

R
at

io
of

A
cc

es
se

d
E
d
ge

s
(w

.r
.t

G
)

Triangulation
k = 5
k = 10
k = 50
k = 100

0.1
Size of Sampled Graph (%)

(c)

0

0.2

0.4

0.6

0.8

1

R
el
at

iv
e
E
rr
or

(w
.r
.t

ex
p
li
ci
t)

Linear
Polynomial(d = 4)
SVR
Decision Tree
Random Forest

20 40 60
Query Area (%)

(d)

0

0.2

0.4

0.6

0.8

1

R
el
at

iv
e
E
rr
or

(w
.r
.t

ex
p
li
ci
t)

Linear
Polynomial(d = 4)
SVR
Decision Tree
Random Forest

Figure 14: (a) The lower bound relative error of using :-NN-based connectivity. (b) The number of edges accessed in the

sampled graph w.r.t to � . (c,d) The additional error generated by the regression models.

5.7 :-NN based connectivity

We also investigate if generating edges using :-NN after sam-

pling would improve the error for smaller query areas since :-NN

typically generates many smaller faces. Figure 14a shows the rel-

ative error of using :-NN compared to triangulation for sampling

with a QuadTree. The error decreases with increasing : for the

same query region. However, if we look at Figure 14b, we see

that the number of edges accessed increases, which means more

nodes need to be communicated. : = 5 is shown to be able to

decrease the error and have less edge access compared to the

triangulation method. This suggests that having more faces, each

with smaller areas, e�ectively reduces error for smaller query

areas but may be wasteful for larger query areas.

5.8 Performance of regression model

Lastly, we evaluate the error generated from the regression model

and its space-saving. Figure 14c & d shows the error relative to

storing counts explicitly (not to be confused with the count from

unsampled graph�) for di�erent regression models. The results

suggest that simple regressors generate low error overhead. On

average, the regression models add a 2.5% error penalty, greatly

outweighed by the query speedup and storage reduction from

these models.

Speci�cally, Figure 11e shows the storage-saving from the

models. The y-axis shows the CDF of the number of timestamps

stored in each edge with storage size in the x-axis. The CDF of the

exact method shows there are more edges with smaller sizes and

fewer edges with larger sizes. At around 500, there is a dramatic

decrease in edges with storage costs > 500. On the other hand,

the size of regression models is independent of the number of

items on each edge. The maximum size of the leaned sampled

graph can be calculated by =4364B × B8I4<>34; × 2 regardless of

the number of targets.

6 CONCLUSION

This paper presents a framework to e�ciently answer privacy-

aware aggregate spatiotemporal range queries within the sensor

network. A planar graph representation of the sensor network

allows our framework to be aware of the sensor distribution.

We propose sensor placement techniques to select a subset of

sensors to reduce communication based on query distribution.

Additionally, we support queries with arbitrary temporal ranges

with regression models to accelerate the query performance and

reduce storage. Experimental results show the e�ciency and

accuracy of our system on real-world tra�c data.

Notably, this work led to two important �ndings: 1) consider-

ing the sensor distribution greatly increases the e�ectiveness of

sampling approaches compared to directly breaking down the

problem with space partitioning methods. 2) Sampling (including

submodular maximization) can signi�cantly reduce communi-

cation without losing too much accuracy over communicating

with the entire sensor network. However, the performance sig-

ni�cantly depends on the number of samples, distribution of

samples, and query region size, and they struggle when the sam-

pled region does not cover enough of the query region. Based

on these two �ndings, we believe that our framework bridges

the gap between privacy-aware data aggregation with sensor

placements. In future work, we can potentially address the data

compression problem with data privacy guarantees and sensor

placements with guaranteed query accuracy bounds.

45

REFERENCES
[1] Ittai Abraham, Danny Dolev, and Dahlia Malkhi. 2004. LLS: a locality aware

location service for mobile ad hoc networks. In Proceedings of the 2004 joint
workshop on Foundations of mobile computing. 75–84.

[2] Pankaj K Agarwal, Jie Gao, and Leonidas J Guibas. 2002. Kinetic medians and
kd-trees. In European Symposium on Algorithms. Springer, 5–17.

[3] Xu Bao, Haijian Li, Lingqiao Qin, Dongwei Xu, Bin Ran, and Jian Rong. 2016.
Sensor Location Problem Optimization for Tra�c Network with Di�erent
Spatial Distributions of Tra�c Information. Sensors 16, 11 (2016). https:
//doi.org/10.3390/s16111790

[4] Geo� Boeing. 2017. OSMnx: New methods for acquiring, constructing, ana-
lyzing, and visualizing complex street networks. Computers, Environment and
Urban Systems 65 (2017), 126–139. https://doi.org/10.1016/j.compenvurbsys.
2017.05.004

[5] Fernando Braz, Salvatore Orlando, Renzo Orsini, Alessandra Ra�aeta, Alessan-
dro Roncato, and Claudio Silvestri. 2007. Approximate aggregations in tra-
jectory data warehouses. In 2007 IEEE 23rd international conference on data
engineering workshop. IEEE, 536–545.

[6] Mengchu Cai and Peter Revesz. 2000. Parametric R-tree: An index struc-
ture for moving objects. In In Proc. 10th COMAD International Conference on
Management of Data. Tata McGraw-Hill, 57–64.

[7] Yixi Cai, Wei Xu, and Fu Zhang. 2021. ikd-Tree: An Incremental K-D Tree for
Robotic Applications. arXiv:cs.RO/2102.10808

[8] Chih-Yung Chang, Yao-Wen Kuo, Pei Xu, and Haibao Chen. 2018. Monitoring
quality guaranteed barrier coverage mechanism for tra�c counting in wireless
sensor networks. IEEE Access 6 (2018), 30778–30792.

[9] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. 2004. Querying
Imprecise Data in Moving Object Environments. IEEE Trans. on Knowl. and
Data Eng. 16, 9 (sep 2004), 1112–1127. https://doi.org/10.1109/TKDE.2004.46

[10] Rama Cont and Emily Tanimura. 2008. Small-world graphs: characterization
and alternative constructions. Advances in Applied Probability 40, 4 (2008),
939–965.

[11] Teddy Cunningham, Graham Cormode, Hakan Ferhatosmanoglu, and Di-
vesh Srivastava. 2021. Real-World Trajectory Sharing with Local Di�er-
ential Privacy. Proc. VLDB Endow. 14, 11 (jul 2021), 2283–2295. https:
//doi.org/10.14778/3476249.3476280

[12] Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen, and Vin-
cent D Blondel. 2013. Unique in the crowd: The privacy bounds of human
mobility. Scienti�c reports 3, 1 (2013), 1–5.

[13] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. In Proceedings of the International Conference on Management of Data
(SIGMOD). 969–984.

[14] Yichen Ding, Yanhua Li, Xun Zhou, Zhuojie Huang, Simin You, and Jun
Luo. 2019. Sampling Big Trajectory Data for Traversal Trajectory Aggregate
Query. IEEE Transactions on Big Data 5, 4 (December 2019), 550–563. https:
//doi.org/10.1109/TBDATA.2018.2830780

[15] Maryam Fanaeepour, Lars Kulik, Egemen Tanin, and Benjamin I P Rubinstein.
2015. The CASE histogram: privacy-aware processing of trajectory data using
aggregates. GeoInformatica 19, 4 (2015), 747–798.

[16] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-
dynamic compressed learned index with provable worst-case bounds. Pro-
ceedings of the VLDB Endowment (PVLDB) 13, 8 (2020).

[17] Sorelle A Friedler and David M Mount. 2010. Spatio-temporal range searching
over compressed kinetic sensor data. In European Symposium on Algorithms.
Springer, 386–397.

[18] J. Gao and L. Guibas. 2012. Geometric algorithms for sensor networks. Philo-
sophical transactions.Series A, Mathematical, physical, and engineering sciences
370, 1958 (Jan 13 2012), 27–51. https://doi.org/10.1098/rsta.2011.0215[doi]
LR: 20130424; JID: 101133385; 2011/11/30 06:00 [entrez]; 2011/11/30 06:00
[pubmed]; 2011/11/30 06:01 [medline]; ppublish.

[19] Soheila Ghane, Lars Kulik, and Kotagiri Ramamohanarao. 2018. Publishing
spatial histograms under di�erential privacy. In Proceedings of the 30th Inter-
national Conference on Scienti�c and Statistical Database Management. 1–12.

[20] Abhirup Ghosh, Jiaxin Ding, Rik Sarkar, and Jie Gao. 2020. Di�erentially
Private Range Counting in Planar Graphs for Spatial Sensing. In IEEE IN-
FOCOM 2020 - IEEE Conference on Computer Communications. 2233–2242.
https://doi.org/10.1109/INFOCOM41043.2020.9155480

[21] David Lee Hall and Sonya AH McMullen. 2004. Mathematical techniques in
multisensor data fusion. Artech House.

[22] Zaobo He, Zhipeng Cai, Siyao Cheng, and XiaomingWang. 2015. Approximate
aggregation for tracking quantiles and range countings in wireless sensor
networks. Theoretical Computer Science 607 (2015), 381–390.

[23] Ziyue Huang and Ke Yi. 2021. Approximate Range Counting Under Di�erential
Privacy. In 37th International Symposium on Computational Geometry (SoCG
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[24] L Christine Kinsey. 1997. Topology of surfaces. Springer Science & Business
Media.

[25] Tim Kraska, Alex Beutel, Ed H. Chi, Je�rey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 489–504. https://doi.org/10.1145/3183713.
3196909

[26] Andreas Krause and Daniel Golovin. 2014. Submodular function maximization.
Tractability 3 (2014), 71–104.

[27] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
VanBriesen, and Natalie Glance. 2007. Cost-E�ective Outbreak Detection in
Networks. In Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’07). New York, NY, USA, 420–429.
https://doi.org/10.1145/1281192.1281239

[28] Francesco Lettich, Salvatore Orlando, Claudio Silvestri, and Christian S Jensen.
2017. Manycore GPU processing of repeated range queries over streams of
moving objects observations. Concurrency and Computation: Practice and
Experience 29, 4 (2017), e3881.

[29] Yanhua Li, Chi-Yin Chow, Ke Deng, Mingxuan Yuan, Jia Zeng, Jia-Dong Zhang,
Qiang Yang, and Zhi-Li Zhang. 2015. Sampling Big Trajectory Data. In Proceed-
ings of the 24th ACM International on Conference on Information and Knowledge
Management (CIKM ’15). Association for Computing Machinery, New York,
NY, USA, 941–950. https://doi.org/10.1145/2806416.2806422

[30] Negar Mehr and Roberto Horowitz. 2018. A Submodular Approach for Opti-
mal Sensor Placement in Tra�c Networks. In 2018 Annual American Control
Conference (ACC). 6353–6358. https://doi.org/10.23919/ACC.2018.8431678

[31] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An
analysis of approximations for maximizing submodular set functions—I. Math-
ematical programming 14, 1 (1978), 265–294.

[32] Mark EJ Newman and Duncan J Watts. 1999. Renormalization group analysis
of the small-world network model. Physics Letters A 263, 4-6 (1999), 341–346.

[33] OpenStreetMap contributors. 2017. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org.

[34] Rik Sarkar and Jie Gao. 2010. Di�erential Forms for Target Tracking and
Aggregate Queries in Distributed Networks. In Proceedings of the Sixteenth An-
nual International Conference on Mobile Computing and Networking (MobiCom
’10). Association for Computing Machinery, New York, NY, USA, 377–388.
https://doi.org/10.1145/1859995.1860038

[35] Wenhuan Shi, Qing-Jie Kong, and Yuncai Liu. 2008. A GPS/GIS Integrated
System for Urban Tra�c Flow Analysis. In 2008 11th International IEEE Con-
ference on Intelligent Transportation Systems. 844–849. https://doi.org/10.1109/
ITSC.2008.4732569

[36] Yufei Tao, George Kollios, Je�rey Considine, Feifei Li, and Dimitris Papa-
dias. 2004. Spatio-temporal aggregation using sketches. In Proceedings. 20th
International Conference on Data Engineering. IEEE, 214–225.

[37] Yufei Tao and Dimitris Papadias. 2005. Historical spatio-temporal aggregation.
ACM Transactions on Information Systems (TOIS) 23, 1 (2005), 61–102.

[38] Manolis Terrovitis, Giorgos Poulis, Nikos Mamoulis, and Spiros Skiadopoulos.
2017. Local suppression and splitting techniques for privacy preserving publi-
cation of trajectories. IEEE Transactions on Knowledge and Data Engineering
29, 7 (2017), 1466–1479.

[39] Haojun Wang and Roger Zimmermann. 2011. Processing of Continuous
Location-Based Range Queries on Moving Objects in Road Networks. IEEE
Transactions on Knowledge and Data Engineering 23, 7 (2011), 1065–1078.
https://doi.org/10.1109/TKDE.2010.171

[40] Yuni Xia and Sunil Prabhakar. 2003. Q+ Rtree: E�cient indexing for moving
object databases. In Eighth International Conference on Database Systems for
Advanced Applications, 2003.(DASFAA 2003). Proceedings. IEEE, 175–182.

[41] Guang Yang, Liang Liang, Ali Hadian, and Thomas Heinis. 2023. FLIRT: A
Fast Learned Index for Rolling Time frames. In Proceedings of the International
Conference on Extending Database Technology (EDBT). 234–246.

[42] Frank Yeong-Sung, Cheng-Ta, and Yen-Yi Hsu. 2010. An energy-e�cient
algorithm for object tracking in Wireless Sensor Networks. In 2010 IEEE Inter-
national Conference on Wireless Communications, Networking and Information
Security. 424–430. https://doi.org/10.1109/WCINS.2010.5544123

[43] Frank Yeong-Sung, Yen-Yi Hsu, et al. 2010. An energy-e�cient algorithm
for object tracking in Wireless Sensor Networks. In 2010 IEEE international
conference on wireless communications, networking and information security.
IEEE, 424–430.

[44] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong
Sun, and Yan Huang. 2010. T-Drive: Driving Directions Based on Taxi Trajec-
tories. ACM SIGSPATIAL GIS 2010.

[45] Yu Zheng, Xing Xie, and Wei-Ying Ma. 2010. GeoLife: A Collaborative Social
Networking Service among User, location and trajectory. IEEE Data(base)
Engineering Bulletin (June 2010).

46

