
Efficient Proximity Search in Time-accumulating
High-dimensional Data using Multi-level Block Indexing

Changhun Han

Kookmin University

Republic of Korea

codingnoye@kookmin.ac.kr

Suji Kim

Kookmin University

Republic of Korea

suji2924@kookmin.ac.kr

Ha-Myung Park

Kookmin University

Republic of Korea

hmpark@kookmin.ac.kr

ABSTRACT
How can we efficiently index extensive high-dimensional vector

data increasing over time, enabling quick and accurate proxim-

ity searches within designated time windows? A time-restricted

𝑘-nearest neighbor (T𝑘NN) query aims to identify the 𝑘-nearest

vectors to a query vector within a specified time window. While

high-dimensional and time-accumulating data are ubiquitous

and managing such data efficiently is becoming increasingly

significant, T𝑘NN search within this context has not received

much attention so far. In this paper, we propose Multi-level Block

Indexing (MBI), a tailored indexing method for efficient approx-

imate T𝑘NN search. MBI employs an incremental hierarchical

index structure that divides the data into multiple blocks based

on timestamps. This structure ensures efficient query processing,

irrespective of the length of the query time window, and facil-

itates the addition of new data over time. Experimental results

highlight MBI’s superiority over conventional methods, achiev-

ing query processing speeds up to 10.88 times faster and offering

logarithmic scaling in data insertion time as the data volume

grows.

1 INTRODUCTION
How can we index extensive and time-accumulating vector data

to enable fast and accurate proximity search in specific time win-

dows? Time-accumulating data, which grow over time fastly,

are ubiquitous. For example, GK2A, a weather satellite of South

Korea, takes 30 high-resolution pictures of the Korean Penin-

sula every hour for weather observation
1
; more than 60,000 new

tracks are ingested by Spotify every day
2
; more than 500 hours

of new video content is uploaded to YouTube every minute
3
; and

95 million photos and videos are shared on Instagram per day
4
.

Proximity search is a well-known classical problem of finding

data close (or similar) to a query. One popular proximity search

is 𝑘-nearest neighbor (𝑘NN) search, which aims to find the 𝑘

data points closest to the query point. In 𝑘-nearest neighbor

search, data is typically represented as a set of points in a high-

dimensional space, where the proximity properties of the original

data are maintained to enable efficient distance computation. One

way to perform 𝑘NN search is to compute the distances to all

data points from the query point and select the 𝑘 closest ones

exactly.With large datasets, this exhaustive distance computation

becomes impractical. To overcome this challenge, several recent

1
https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.g

k2a.intro

2
https://www.musicbusinessworldwide.com/over-60000-tracks-are-now-uploade

d-to-spotify-daily-thats-nearly-one-per-second/

3
https://www.globalmediainsight.com/blog/youtube-users-statistics/

4
https://earthweb.com/how-many-pictures-are-on-instagram/

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the

27th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

studies [10, 14, 16, 19, 27] have proposed indexing methods for

fast and approximate 𝑘NN search.

However, the aforementioned studies do not consider the tem-

poral information of the data, and therefore do not support time-

restricted 𝑘NN (T𝑘NN) search, such as “Which 5 movies released

between 1980 and 1995 are most similar to Zootopia?” or “Which

10 photos you took between January 2010 and May 2011 are

most similar to the one you just took?” One way to handle T𝑘NN

queries using the above indexing methods is to perform 𝑘NN

search on the entire dataset and filter the results to include only

those within the time window. However, this method cannot

guarantee that the number of search results is 𝑘 and may even

output nothing. Searching can continue until the desired number

of results is obtained, but this approach may be time-consuming

when the time window is short because most of the results have

to be filtered out.

In this paper, we propose Multi-level Block Indexing (MBI), a

novel indexing method for efficient approximate T𝑘NN search

on time-accumulating data with timestamps. MBI aims to ensure

efficient processing of any T𝑘NN query, regardless of whether

its time window is long or short, and to ensure efficient addition

of new data that continuously occurs over time to the index.

For this purpose, we devise an expandable hierarchical indexing

structure where the data is divided into multiple blocks based on

timestamps. Then, MBI efficiently processes queries by selecting

blocks that match the query time window. Our contributions are

summarized as follows:

• Method. We propose MBI, a new indexing algorithm for

efficient approximate T𝑘NN search on time-accumulating

data with timestamps.

• Analysis. We theoretically analyze the efficiency of MBI

in terms of index size, indexing time complexity and query

time complexity.

• Experiments. The experimental results show that query

processing of MBI is up to 10.88 times faster than that

of the simple methods, and the data insertion time scales

logarithmically with the total size of the data.

The codes and datasets used in this paper are available at

https://github.com/tknn2023/mbi. Frequently used symbols are

listed in Table 1.

2 RELATEDWORK
The problem of approximate k-nearest neighbor (𝑘NN) search

has been widely studied in the literature, and various approaches

have been proposed to tackle it. However, the problem of approx-

imate time-restricted 𝑘NN (T𝑘NN) search has not received much

attention so far. In this section, we review some of the relevant

works on approximate 𝑘NN search and T𝑘NN search.

 

 

Series ISSN: 2367-2005 547 10.48786/edbt.2024.47

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.47


Table 1: Table of symbols

Symbol Definition

T Set of timestamps

D Spatio-temporal database

(𝑣, 𝑡) Timestamped vector where 𝑣 ∈ R𝑑 is a vector

and 𝑡 ∈ T is a timestamp

𝑑 Spatial dimension of D
D[𝑡𝑎 : 𝑡𝑏 ] Subset of D

𝑆𝐿 Leaf block size in MBI

𝜏 Threshold for selecting blocks in MBI

B𝑖 = (D𝑖 ,G𝑖 ) Block of index 𝑖 in MBI where D𝑖 is its the

timestamped vector set and G𝑖 is its graph
based index for T𝑘NN queries.

B𝑖 .𝑡𝑠 ,B𝑖 .𝑡𝑒 The earliest and the latest timestamp of vec-

tors in 𝐵𝑖
𝑞 = (𝑤,𝑘, 𝑡𝑠 , 𝑡𝑒 ) T𝑘NN query where𝑤 is a vector, 𝑘 is the num-

ber of query results, and 𝑡𝑠 and 𝑡𝑒 are the start

and the end timestamps of the query time win-

dow.

2.1 Approximate 𝑘NN Search
As exact 𝑘NN search can be computationally intensive, especially

when dealing with high-dimensional datasets, various approxi-

mate 𝑘NN search methods have been studied and developed to

overcome this challenge. These methods aim to find an approxi-

mation of the k-nearest neighbors of a given query point, while

minimizing the computational cost. One key idea behind these

methods is to build a data structure that allows efficient and fast

search of the k-nearest neighbors.

We categorize these methods based on their underlying struc-

tures and approaches: tree-based, graph-based, hashing-based,

and quantization-based methods. Tree-based methods includ-

ing KD-Tree [11], R*-Tree [6], Balltree [31], Cover trees [7],

RPTree [9], and VP-Tree [43] use recursive partitioning to or-

ganize the data. RPForest [42] and FLANN [30] utilize multi-

ple trees to improve the search efficiency and reduce the ef-

fects of data distribution or randomization on the accuracy of

the search results. Graph-based methods connect nearby data

points using various types of graph structures, such as k-nearest

neighbor graphs (𝑘NN graph) [32], Delaunay graphs (DG) [4],

relative neighborhood graphs (RNG) [36], and minimum span-

ning trees (MST). Examples of the graph-based methods in-

clude NSW [26], HNSW [27], NGT [19], NNDescent [10], OL-

Graph [45], FANNG [18], and Efanna [12]. A comprehensive

survey that covers various graph-based methods is available

in [40]. Hashing-based methods, such as LSH [15] and PUFFINN

[3], groups close points together using locality sensitive hash

functions. Quantization-based methods, including IVFADC [23],

QuickADC [1], and ScaNN [16], represent each data point as a

low-dimensional, discretized vector, which allows for fast dis-

tance computations by comparing the discretized vectors. Mean-

while, some studies improve the search performance through

modern hardware support. SPANN [8] and DiskANN [20] use

external memory to address the issue of memory shortage that

can occur when processing large datasets. Faiss [22], PQT [41],

and SONG [44] exploit GPUs to accelerate the search process.

QuickerADC [2] increases the search speed of QuickADC by

using SIMD instruction sets.

As such, a wide range of approximate 𝑘NN search methods

have been developed, amongwhich graph-based and quantization-

based methods have demonstrated the state-of-the-art perfor-

mance
5
. However, applying thesemethods directly to time-restricted

𝑘NN search is challenging. Creating indices for the entire dataset

without considering timestamps, existing approximate𝑘NNmeth-

ods are hard to efficiently filter data that falls within a specific

time window, which is exactly what T𝑘NN requires. Meanwhile,

those methods could be modified to address the T𝑘NN problem

by continuing the search process until the query results within

the query time window reach 𝑘 entries. However, this approach

leads to a significant performance degradation when the query

time window is short, as it requires exploring a large portion of

the data. We discuss this modification further in Section 3.2.2.

In this paper, we propose a novel method that empowers these

methods to efficiently perform time-restricted 𝑘NN search, irre-

spective of the length of the query time window. We note that

our method uses existing approximate 𝑘NN search methods as a

module.

2.2 Time-Restricted 𝑘NN (T𝑘NN) Search
In the context of time-restricted 𝑘NN search, the problem be-

comes more complex since we need to take into account both the

spatial and temporal dimensions of the data. T𝑘NN search has

been studied mainly in the fields of geoinformatics and databases

with the purpose of performing queries on objects moving over

time. Accordingly, most existing research assumes low dimen-

sions, such as two or three. A simple approach is to treat time as

a new spatial axis and apply tree structures such as R*-Tree or

Quadtree [24, 35, 38]. In this approach, T𝑘NN search can be per-

formed by conducting the range search on the time axis and the

𝑘NN search on the remaining axes. Similarly, PPR-Tree [17, 24]

is specifically designed for moving objects and links ephemeral

R-Trees in a directed acyclic graph (DAG) format over time for

T𝑘NN search. DISTIL+ [29] is based on the Quadtree structure

and utilizes distributed clusters to process large datasets. How-

ever, none of the aformentioned methods are well-suited for

T𝑘NN search in high-dimensional data, as the underlying tree

structures become inefficient due to the curse of dimensional-

ity [28]. Consequently, it becomes inevitable to explore almost all

vectors within the query time window when dealing with high-

dimensional data. Meanwhile, T𝑘NN search in high-dimensional

data is becoming essential with the advancement of artificial

intelligence as various types of data such as photos, music, and

documents are represented as high-dimensional data [25, 37, 39].

In this paper, we propose a new method that performs approxi-

mate T𝑘NN search efficiently even in high-dimensional data.

3 PRELIMINARIES
In this section, we provide a formal definition of the time-restricted

𝑘-nearest neighbor (T𝑘NN) search, which is the problem we ad-

dress in this paper. Following that, we introduce two straightfor-

ward approaches for T𝑘NN and show their limitations.

3.1 Problem Definition
Before defining the T𝑘NN search, let us first introduce several

necessary terms and symbols. A timestamped vector (𝑣, 𝑡) is a
pair consisting of a vector 𝑣 ∈ R𝑑 and a timestamp 𝑡 ∈ T where 𝑑

is the dimension of the vector space and T is a set of timestamps.

Any two timestamps in T are comparable; for 𝑡𝑎, 𝑡𝑏 ∈ T , 𝑡𝑎 < 𝑡𝑏

5
https://github.com/erikbern/ann-benchmarks

548



Algorithm 1: BSBF Query Process

Input: A T𝑘NN query 𝑞 = (𝑤,𝑘, 𝑡𝑠 , 𝑡𝑒 ), a database D in

order of increasing timestamp, a distance function

𝜎

Output: T𝑘NNs of 𝑞
1 D[𝑡𝑠 : 𝑡𝑒 ] ← BinarySearch(𝑡𝑠 , 𝑡𝑒 , D)

2 return BruteForce(𝑤 , 𝑘 , 𝜎 , D[𝑡𝑠 : 𝑡𝑒 ])

indicates that 𝑡𝑎 precedes 𝑡𝑏 . A database D ⊆ R𝑑 × T is a set of

timestamped vectors. For 𝑡𝑎, 𝑡𝑏 ∈ T such that 𝑡𝑎 < 𝑡𝑏 , we denote

by D[𝑡𝑎 : 𝑡𝑏 ] a subset of D whose vectors have timestamps

between 𝑡𝑎 and 𝑡𝑏 , i.e., D[𝑡𝑎 : 𝑡𝑏 ] = {(𝑣, 𝑡) ∈ D | 𝑡𝑎 ≤ 𝑡 < 𝑡𝑏 }.
The proximity of two vectors is defined as a distance function

𝜎 : R𝑑×R𝑑 → R+, and we denote by𝜎 (𝑢, 𝑣) the distance between
vectors 𝑢 and 𝑣 . Any distance measure including the euclidean

distance can be used for 𝜎 depending on datasets and applications.

Then, we define a T𝑘NN query as follows:

Definition 3.1. A T𝑘NN query 𝑞 = (𝑤,𝑘, 𝑡𝑠 , 𝑡𝑒 ) on database D
is to identify a subset 𝐴 of D such that:

𝐴 = argmin

𝑋 ⊆D[𝑡𝑠 :𝑡𝑒 ], |𝑋 |=𝑘

∑︁
(𝑣,𝑡 ) ∈𝑋

𝜎 (𝑤, 𝑣)

where𝑤 ∈ R𝑑 is the query vector,𝑘 is the number of timestamped

vectors to identify, and 𝑡𝑠 , 𝑡𝑒 ∈ T are the start and end timestamps

of the query time window.

To measure the quality of an approximate answer𝐴 compared

to the true answer 𝐴, we use recall@k that is defined as follows:

recall@k(𝐴,𝐴) = |𝐴 ∩𝐴|
𝑘

For the sake of simplicity, we assume that all vectors have

distinct timestamps. Even if there are vectors with identical

timestamps, as in real-world datasets, our approach can be easily

adapted. For vectors sharing the same timestamp, we arbitrarily

assign an order. During the query process, we set the query range

from the earliest ordered vector with the start timestamp to the

last ordered vector with the end timestamp.

3.2 Two simple approaches for T𝑘NN search
We introduce two straightforward approaches to handle T𝑘NN

queries and their limitations.

3.2.1 Binary Search and Brute-Force (BSBF). Binary Search

and Brute-Force, shortly BSBF, is a method that combines binary

search and brute-force methods for T𝑘NN search. Algorithm 1

shows the pseudocode for BSBF’s query process. BSBF sorts

all timestamped vectors in database D in order of increasing

timestamp and uses the sorted database as its index structure.

Given a T𝑘NN query 𝑞 = (𝑤,𝑘, 𝑡𝑠 , 𝑡𝑒 ), BSBF identifies D[𝑡𝑠 : 𝑡𝑒 ]
by performing binary search process and finds the 𝑘 vectors

in D[𝑡𝑠 : 𝑡𝑒 ] that are closest to 𝑤 using a brute-force method.

The query process of BSBF is very fast when the query time

window is short. Let 𝑛 and𝑚 be the sizes of D and D[𝑡𝑠 : 𝑡𝑒 ],
respectively. The query process of BSBF requires 𝑂 (log𝑛) to
identify D[𝑡𝑠 : 𝑡𝑒 ] and 𝑂 (𝑚 log𝑘) to find 𝑘 nearest points if

a max-heap of size 𝑘 is used for the brute-force method. This

suggests that when𝑚 is close to𝑛, BSBF is significantly inefficient

because it needs to examine nearly all the timestamped vectors

in D.

Algorithm 2: Graph-based SF Query Process

Input: A T𝑘NN query 𝑞 = (𝑤,𝑘, 𝑡𝑠 , 𝑡𝑒 ), a graph G of a

database D, a distance function 𝜎 , a maximum

candidate set size𝑀𝐶 , a parameter 𝜖 for

controlling the search range

Output: Approximate T𝑘NNs of 𝑞

1 𝑠 ← a randomly sampled timestamped vector from D
2 Initialize a candidate set 𝐶 ← {𝑠}
3 Initialize a visited set 𝑉 ← ∅
4 Initialize a result set 𝑅 ← ∅
5 while 𝐶 \𝑉 ≠ ∅ do
6 𝑝′ = (𝑣 ′, 𝑡 ′) ← argmin(𝑣,𝑡 ) ∈𝐶\𝑉 𝜎 (𝑣,𝑤)
7 𝑉 ← 𝑉 ∪ {𝑝′}
8 if |𝑅 | < 𝑘 then
9 𝐶 ← 𝐶 ∪ { neighbors (𝑣 ′′, 𝑡 ′′) of 𝑝′ in G}

10 else
11 𝐶 ← 𝐶 ∪ { neighbors (𝑣 ′′, 𝑡 ′′) of 𝑝′ in G such

that 𝜎 (𝑣 ′′,𝑤) < 𝜖 ·max(𝑣,𝑡 ) ∈𝑅 𝜎 (𝑣,𝑤) }
12 if 𝑡𝑠 ≤ 𝑡 ′ < 𝑡𝑒 then
13 𝑅 ← 𝑅 ∪ {𝑝′}
14 if |𝑅 | > 𝑘 then
15 update 𝑅 to retain 𝑘 nearest timestamped

vectors to𝑤

16 if |𝐶 | > 𝑀𝐶 then
17 update 𝐶 to retain𝑀𝐶 nearest timestamped

vectors to𝑤

18 return 𝑅

3.2.2 Search and Filtering (SF). Another approach for han-

dling T𝑘NN queries is Search-and-Filtering, or SF, which uses an

existing approximate 𝑘NN method [19] with the following minor

modification: it continues searching until it identifies 𝑘 or more

vectors within the query time window. Algorithm 2 provides the

pseudocode for handling a T𝑘NN query in a proximity graph

G using SF. Lines 12-15 are mainly different from the existing

algorithm. The proximity graph G is built using any proximity

based indexing techniques like NNDescent to connect spatially

close vertices, where each vertex corresponds to a vector in D
without timestamps. This algorithm starts at a random vertex 𝑠

and traverses the graph towards the query vector𝑤 . During the

traversal, it filters and builds a result set 𝑅 from vectors that fall

within the query time window. SF is effective when the query

time window is long enough to cover almost all vectors in the

databaseD. However, it becomes inefficient when the query time

window is short. This is because a short query time window only

includes a few vectors, and most of the vectors identified during

the search do not make it into the results, which significantly

expands the search area.

4 PROPOSED METHOD
In this section, we propose Multi-level Block Indexing (MBI), a

new incremental indexing method for T𝑘NN queries that works

efficiently for queries of any time windows. The technical chal-

lenges to efficiently implement MBI and our key ideas to resolve

them are as follows:

C1. How can we make the query process remain efficient
regardless of the length of the query time window?
When the query time window is long, BSBF is inefficient

549



D[𝑡0 : 𝑡15 ]

D[𝑡0 : 𝑡7 ] D[𝑡8 : 𝑡15 ]

D[𝑡0 : 𝑡3 ] D[𝑡4 : 𝑡7 ] D[𝑡8 : 𝑡11 ] D[𝑡12 : 𝑡15 ]

Past Future

Vectors:
Timestamps: 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15

B0 B1

B2

B3 B4

B5

B6

Figure 1: An example of the hierarchical index structure
of MBI.

because it needs to check all the vectors in the timewindow.

On the other hand, when the query time window is short,

SF becomes inefficient as it must expand the search area

until the targeted number of vectors within the time win-

dow is detected. To ensure the efficiency for queries
of any time window, we divide the database into mul-
tiple blocks based on timestamps and organize them
in a hierarchical structure (Section 4.1). Accordingly,
MBI operates like BSBF when the query time window is

short, and like SF when the query time window is long.

C2. How can we efficiently add new vectors that occur
over time to MBI? Data containing timestamps usually

accumulates continuously over time. Meanwhile, it’s not

straightforward to insert new data while maintaining the

sophisticated hierarchical structure of MBI. We enable
efficient incremental construction of MBI by bottom-
up block merging and postorder block numbering
(Section 4.2).

C3. How should we select a set of blocks to process the
query most efficiently? The query processing of MBI

involves finding a set of time-disjoint blocks that covers all

vectors within the query time window, performing TkNN

queries independently in each block, and then combining

the results. The performance of the query processing de-

pends on the selected set of blocks; if we only select small

blocks, it becomes inefficient when the query time win-

dow is long, similar to BSBF, and if we only select large

blocks, it becomes inefficient when the query time window

is short, similar to SF. We propose a top-down block
selection method that efficiently finds a mixed set of
both large and small blocks suitable for each query
(Section 4.3).

In the following subsections, we first provide an overview of

MBI in Section 4.1 and describe the details of the construction and

the query process of MBI in Section 4.2 and 4.3, respectively. We

also provide several theoretical analyses on MBI in Section 4.4.

4.1 Overview
MBI is a binary tree of blocks, each containing all vectors of a

specific time window and an index to efficiently handle T𝑘NN

queries on these vectors. While any index structure for efficient

𝑘NN search can be used for the index, we employ one of the

graph based indexing methods, as they have shown the best

search performance. Each block in MBI has the left and right

children, each having half of the vectors in the parent block. The

left child has the half with earlier timestamps, while the right

child does the half with later timestamps. The root block holds all

vectors, and each leaf block holds 𝑆𝐿 or fewer vectors. Figure 1

shows an example of MBI. The databaseD = D[𝑡0 : 𝑡15] contains
16 vectors, each with a timestamp from 𝑡0 to 𝑡15. If 𝑖 < 𝑗 , then

𝑡𝑖 < 𝑡 𝑗 . The leaf size 𝑆𝐿 is 4. The vectors are color-coded based

on the order of their timestamps.

MBI enables efficient query processing by searching only in a

few selected blocks that overlap with the query’s time window.

For example, in Figure 1, a query with time window (𝑡𝑠 = 𝑡5, 𝑡𝑒 =

𝑡7) can be efficiently processed by considering only block B1
whose vector set is D[𝑡4 : 𝑡7]. Similarly, a query with time

window (𝑡𝑠 = 𝑡1, 𝑡𝑒 = 𝑡15) can be efficiently processed with B6.
Meanwhile, a query with time window (𝑡𝑠 = 𝑡4, 𝑡𝑒 = 𝑡14) can be

processed with different sets of blocks: {B1,B5}, {B1,B3,B4},
or {B6}. We will explain our strategy for finding a set of blocks

for efficient query processing in Section 4.3.

4.2 Multi-level Block Indexing
Multi-level Block Indexing (MBI) incrementally appends vectors

in the order of increasing timestamps, that is, a new vector has

a later timestamp than all existing vectors in MBI. When a new

vector arrives, MBI inserts the vector into the latest leaf block.

If the leaf block is full (i.e., it contains 𝑆𝐿 vectors already), MBI

creates a new leaf block and inserts the vector into it. In this

case, MBI also creates virtual blocks to maintain the perfect

binary tree structure. Figure 2 shows an example of adding a

new vector 𝑣9 into MBI that contains 8 vectors and the leaf size

𝑆𝐿 is 4. Because the latest leaf block B1 is full, MBI creates a

new leaf block B3 and inserts 𝑣9 into it. The virtual blocks are

created to maintain the perfect binary tree structure. If a new

vector arrives again, it is added into B3 as B3 is the latest and
not full. If the new vector makes the latest leaf block full, then

MBI builds the graph-based 𝑘NN index for the leaf block and

performs bottom-up block merging to build the graph-based

𝑘NN indices for ancestor blocks of the leaf block. Figure 3 shows

an example of the bottom-up block merging process that occurs

when 𝑣15 is added to MBI with vectors 𝑣0 to 𝑣14. 𝑆𝐿 is 4. In this

example, 𝑣15 is added to B4 as B4 is the latest and not full. As 𝑣15

B2

B0 B1

B2

B0 B1 B3 B4

B5

B6

Adding 𝑣9

𝑣9

Virtual
Block

Virtual
Block

Virtual
Block

Figure 2: An example of adding a new vector into MBI
whose leaf blocks are full.

550



Algorithm 3:MBI’s Vector Insertion

Input:MBI, a timestamped vector (𝑣, 𝑡)
1 Let 𝑖 be the index of the first non-full leaf block in MBI

2 Let B𝑖 = (D𝑖 ,G𝑖 ) be the block at index 𝑖 where D𝑖 is the

vector set and G𝑖 is the graph-based 𝑘NN index, which is

initially empty.

3 D𝑖 ← D𝑖 ∪ {(𝑣, 𝑡)}
4 if |D𝑖 | = 𝑆𝐿 then
5 G𝑖 ← BuildKNNIndex(D𝑖 )

6 Let 𝑗 be the number of leaf blocks in MBI

7 ℎ ← 1

8 while 𝑗 is even do
9 D𝑖+1 ← D𝑖+1−2ℎ ∪ D𝑖

10 G𝑖+1 ← BuildKNNIndex(D𝑖+1)
11 B𝑖+1 ← (D𝑖+1,G𝑖+1)
12 𝑖 ← 𝑖 + 1
13 𝑗 ← 𝑗/2
14 ℎ ← ℎ + 1

B2

B0 B1 B3 B4

B2

B0 B1 B3 B4

B5

B6

Adding 𝑣15

𝑣15

B6

B5

Virtual
Block

Virtual
Block

Figure 3: An example of MBI’s bottom-up block merging
process.

makes B4 full, a 𝑘NN index is created, and the bottom-up block

merging proceeds: B5 is built from the vectors of B3 and B4, and
subsequently, B6 is built from the vectors of B2 and B5.

Algorithm 3 lists the pseudo-code to insert a new timestamped

vector (𝑣, 𝑡) into MBI. Let 𝑖 be the index of the first non-full

leaf block in MBI and B𝑖 = (D𝑖 ,G𝑖 ) be the block at index 𝑖

where D𝑖 is the vector set and G𝑖 is the graph-based 𝑘NN index,

which is initially empty (lines 1, 2). Then, the timestamped vector

(𝑣, 𝑡) is added to D𝑖 (line 3). If D𝑖 becomes full (i.e., |D𝑖 | = 𝑆𝐿),

we construct a graph-based 𝑘NN index G𝑖 for D𝑖 and perform

bottom-up block merging that involves consecutively creating
ancestor blocks of B𝑖 (lines 4-14). Bottom-up block merging for

B𝑖 proceeds as follows: If B𝑖 is the right child of the prospective
parent, we create the parent at index 𝑖 + 1, i.e., B𝑖+1 is the parent
block of B𝑖 . The vector set of B𝑖+1 is the union of children’s vector
setsD𝑖+1−2ℎ andD𝑖 and we build a 𝑘NN index G𝑖+1 where ℎ is the
height of the parent block in the tree. This process is repeated in the
parent block. Note that B𝑖 ’s sibling block is at index 𝑖 + 1 − 2ℎ as

the blocks are numbered sequentially as they are created, which

corresponds to the visiting sequence in a postorder traversal of

MBI.

Parallelization of MBI. The bottom-up block merging process

is easily parallelizable because it builds each block independently.

For example, when 𝑣15 is added, MBI independently identifies

the vector sets of B4, B5, and B6 by combining the vector sets of

B2, B3, and B4, then, the 𝑘NN indices G4, G5, and G6 are built
in parallel.

Algorithm 4:MBI Query Process

Input: A T𝑘NN query 𝑞 = (𝑤,𝑘, 𝑡𝑠 , 𝑡𝑒 ), MBI, a distance

function 𝜎

Output: An approximate T𝑘NNs of 𝑞

1 Let B𝑟 be the root block of MBI

2 𝑅 ← ∅
3 𝑆 ← BlockSelection(B𝑟 , 𝑡𝑠 , 𝑡𝑒 )
4 foreach B′ ∈ 𝑆 do
5 if B′ is a non-full leaf block then
6 𝑅 ← 𝑅 ∪ BSBFQuery(𝑤 , 𝑘 , 𝑡𝑠 , 𝑡𝑒 , B′, 𝜎)

// Algorithm 1

7 else
8 𝑅 ← 𝑅 ∪ SFQuery(𝑤 , 𝑘 , 𝑡𝑠 , 𝑡𝑒 , B′, 𝜎)

// Algorithm 2

9 𝑅 ← 𝑘 neighbors nearest to𝑤 in 𝑅

10 return R

11 Function BlockSelection(B𝑐 , 𝑡𝑠 , 𝑡𝑒 ):
12 Let B𝑐 .𝑡𝑠 and B𝑐 .𝑡𝑒 be the earliest and the exclusive

upper timestamps of vectors in B𝑐 , respectively.
13 𝑟𝑜 ← max(0,𝑚𝑖𝑛 (B𝑐 .𝑡𝑒 ,𝑡𝑒 )−𝑚𝑎𝑥 (B𝑐 .𝑡𝑠 ,𝑡𝑠 ) )

B𝑐 .𝑡𝑒−B𝑐 .𝑡𝑠
14 if 𝑟𝑜 = 0 then
15 return ∅
16 else if B𝑐 is a leaf block or 𝑟𝑜 > 𝜏 then
17 return {B𝑐 }
18 else
19 Let 𝑐 and ℎ be the index and the height of B𝑐 ,

respectively.

20 return BlockSelection(B𝑐−2ℎ , 𝑡𝑠 , 𝑡𝑒 ) ∪
BlockSelection(B𝑐−1, 𝑡𝑠 , 𝑡𝑒 )

4.3 Query Processing on MBI
Algorithm 4 lists the pseudo-code of query processing on MBI.

Given a T𝑘NN query 𝑞 = (𝑤,𝑘, 𝑡𝑠 , 𝑡𝑒 ), we first find a set of blocks,
referred to as a search block set, that cover all vectors whose
timestamps are between 𝑡𝑠 and 𝑡𝑒 (line 3). We then perform T𝑘NN

search for each block in the search block set and combine the

results to derive the final T𝑘NN result (lines 4-7). To choose

the best search block set among all possible ones, we propose

a top-down block selection approach. Let B𝑐 .𝑡𝑠 and B𝑐 .𝑡𝑒 be
the earliest and the exclusive upper timestamp of vectors in

the current block B𝑐 , respectively. We define the overlap ratio
𝑟𝑜 (𝑞,B𝑐 ) of the query 𝑞 in B𝑐 as follows:

𝑟𝑜 (𝑞,B𝑐 ) =
max(0,𝑚𝑖𝑛(B𝑐 .𝑡𝑒 , 𝑡𝑒 ) −𝑚𝑎𝑥 (B𝑐 .𝑡𝑠 , 𝑡𝑠 ))

B𝑐 .𝑡𝑒 − B𝑐 .𝑡𝑠
Then, the top-down block selection starts from the root block

and proceeds according to the following three cases (lines 9-17):

Case 1. If 𝑟𝑜 (𝑞,B𝑐 ) is 0, B𝑐 is not included in the search block

set.

Case 2. If B𝑐 is a leaf block or 𝑟𝑜 (𝑞,B𝑐 ) exceeds a threshold 𝜏 ,
the block is included in the search block set.

Case 3. If B𝑐 is a non-leaf block and 𝑟𝑜 (𝑞,B𝑐 ) is less than 𝜏 , the
block is not included in the search block set, and this

process is repeated for its child blocks.

The value of 𝜏 determines the composition of the search block

set. As 𝜏 approaches 0, blocks closer to the root are more likely to

be selected, whereas as 𝜏 approaches 1, the selection criteria for

blocks becomes stricter, increasing the probability of selecting

551



Past Future
Query Time Window

B0

B2

B1 B3 B4 B7 B8 B10 B11 B15 B16 B18 B22 B23 B25 B26

B5 B9 B12 B17 B20 B24 B27

B6 B13 B21 B28

B29

B30

𝜏 = 0 𝜏 = 0.5 𝜏 = 1

B19

B14

𝑡𝑠 𝑡𝑒

Figure 4: Examples of search block sets when 𝜏 is 0, 0.5, and
1, respectively.

leaf blocks. Figure 4 illustrates examples of search block sets

corresponding to different 𝜏 values. In this example, when 𝜏 is

0, 0.5, and 1, the search block sets are {B30}, {B14,B21}, and
{B4,B13,B17,B18,B19}, respectively. A 𝜏 value that is too low

makes the query process performed only on the root block, signif-

icantly degrading the performance when the query time window

is short as in the case of SF. On the other hand, a 𝜏 value that is

too high makes the query process performed on too many blocks,

increasing the overhead, especially when the query time window

is long. The optimal value of 𝜏 varies according to the dataset. In

Section 4.4.3, we prove that the number of blocks in which MBI

performs a query is at most two if 𝜏 ≤ 0.5. Also, in Section 5.4,

we experimentally show how 𝜏 affects the search performance.

In the incremental process of adding vectors to MBI, it may not

always form a complete tree as in the left tree of Figure 3. In such

cases, to conduct the search as described above, we complete the

tree with virtual blocks whose time window extends from −∞
to ∞. Throughout the top-down block selection process, these

virtual blocks always fall into case 3 due to their infinite time

window size. Consequently, they are never included in the search

block set, providing opportunities for their descendants to be

potentially included instead.

4.4 Analysis
This section provides analytic results of MBI. The indexing meth-

ods employed for each block significantly influence the analytical

results. Let Φ(𝑛) be the time complexity and Ψ(𝑛) the index size
of the indexing method for 𝑛 vectors.

4.4.1 Index size of MBI. The total index size of MBI is the

sum of each block:

log
|D|
𝑆𝐿∑︁

𝑖=0

2
𝑖Ψ( |D|/2𝑖 )

where |D| is the number of vectors in database D, and 𝑆𝐿 is the

leaf block size. The index size of a graph-based 𝑘NN index for 𝑛

vectors is𝑂 (𝑛𝑘′), where 𝑘′ is the average number of neighbors in

the graph. Meanwhile, 𝑘′ is usually set to be a constant value, so

the required space can be seen as𝑂 (𝑛). Thus, indexing each block
with a graph-based 𝑘NN index in MBI results in the following

total index size:

log
|D|
𝑆𝐿∑︁

𝑖=0

2
𝑖𝑂 ( |D|/2𝑖 ) =

log
|D|
𝑆𝐿∑︁

𝑖=0

𝑂 ( |𝐷 |) = 𝑂 ( |D| log |D|)

4.4.2 Indexing time complexity of MBI. Since MBI indexes

each block independently, the total indexing time is the sum of

the time required to build each block, as follows:

log
|D|
𝑆𝐿∑︁

𝑖=0

2
𝑖Φ( |D|/2𝑖 )

Accordingly, the average time required to add a single vector

to MBI, i.e., the amortized time complexity of inserting |D|-th
vector, is as follows:

1

|D| ×
log

|D|
𝑆𝐿∑︁

𝑖=0

2
𝑖Φ( |D|/2𝑖 )

NNDescent, an approximate𝑘NNgraph build algorithm, is known

to require 𝑂 (𝑛1.14) time to index 𝑛 vectors by empirical analy-

sis [10, 34]. Indexing each block as a𝑘NN graph using NNDescent,

the total index time is as follows:

log
|D|
𝑆𝐿∑︁

𝑖=0

2
𝑖𝑂 (( |D|/2𝑖 )1.14) ≤

log
|D|
𝑆𝐿∑︁

𝑖=0

𝑂 ( |D|1.14) = 𝑂 ( |D|1.14 log |D|)

Similarly, the amortized vector insertion time for inserting |D|-th
vector is then 𝑂 ( |D|0.14 log |D|).

4.4.3 Query time complexity of MBI. We analyze the query

time complexity of MBI by dividing it into two cases: when 𝜏 ≤
0.5 and when 𝜏 > 0.5. The following lemma is for analyzing

the query time complexity when 𝜏 ≤ 0.5, indicating that the

maximum number of blocks processed in this case is two.

Lemma 4.1. In MBI, if 𝜏 ≤ 0.5, the maximum number of blocks
processing a query is 2.

Proof. Consider a query with a time window of (𝑡𝑠 , 𝑡𝑒 ). Let
B𝑝 be the first block such that its left child block B𝑙 and right

child block B𝑟 partition the query time window into two. If the

ratio of the query time window to the total time window of B𝑝
exceeds 𝜏 , the query is processed in the single block B𝑝 , thereby
satisfying the lemma trivially. If the ratio is less than 𝜏 , the query

time window is divided into two, (𝑡𝑠 , 𝑡𝑚) and (𝑡𝑚, 𝑡𝑒 ), by B𝑙 and
B𝑟 respectively. We first show that, for the time window (𝑡𝑚, 𝑡𝑒 ),
the query is processed either in B𝑟 or in precisely one of its

descendants. We define 𝛼 as the ratio of the query time window

(𝑡𝑚, 𝑡𝑒 ) to the total time window of B𝑟 . If 𝛼 ≥ 𝜏 , the query is

processed in B𝑟 . If 𝛼 < 𝜏 , the query time window (𝑡𝑚, 𝑡𝑒 ) does
not overlap with the right child of B𝑟 . This is because the right
child of B𝑟 ’s time window starts from the midpoint of B𝑟 , and
𝜏 < 0.5. In such cases, we repeat this process in the left child

of B𝑟 . Accordingly, for the time window (𝑡𝑚, 𝑡𝑒 ), the query is

processed either in B𝑟 if 𝛼 ≥ 𝜏 or in the 𝑖-th left child block of

B𝑟 if 𝜏/2𝑖 ≤ 𝛼 < 𝜏/2𝑖−1 for any integer 𝑖 ≥ 0. As the query time

window (𝑡𝑠 , 𝑡𝑚) is symmetric to (𝑡𝑚, 𝑡𝑒 ), it is processed in B𝑙 or
in precisely one of its descendants in a similar manner, and the

lemma holds. □

Now, we prove the query time complexity inMBI when 𝜏 ≤ 0.5

in the following theorem.

Theorem 4.2. The query time complexity inMBI is𝑂 (log |D[𝑡𝑠 :

𝑡𝑒 ] |/𝜏 + 𝑘/𝜏) when 𝜏 ≤ 0.5 and the query time window is (𝑡𝑠 , 𝑡𝑒 )
where |D[𝑡𝑠 : 𝑡𝑒 ] | is the number of vectors in D[𝑡𝑠 : 𝑡𝑒 ].

Proof. For𝑛 vectors, the time complexity of graph-based 1NN

search is 𝑂 (log𝑛) [13], and for 𝑘NN search, the time complexity

is 𝑂 (log𝑛 + 𝑘) considering that 𝑘 searches are performed. Let

𝑚 be the number of vectors within the query time window. We

552



assume that both𝑚 and𝑛 are significantly larger than𝑘 . Then, the

time complexity of Search and Filtering (SF) for T𝑘NN query is

𝑂 (log𝑛+𝑘𝑛/𝑚) as the expected number of vectors to be checked

is 𝑘𝑛/𝑚.

The query timewindow covers at least 𝜏 of every block process-

ing the query in MBI. The number of vectors in each block is less

than or equal to |D[𝑡𝑠 : 𝑡𝑒 ] |/𝜏 . Consequently, the time complex-

ity to process a query using SF in a single block is 𝑂 (log |D[𝑡𝑠 :
𝑡𝑒 ] |/𝜏 + 𝑘/𝜏). According to Lemma 4.1, if 𝜏 ≤ 0.5, the number of

blocks processing the query is at most 2. Therefore, the query

time complexity of MBI is 𝑂 (log |D[𝑡𝑠 : 𝑡𝑒 ] |/𝜏 + 𝑘/𝜏). □

The following lemma is for the analysis of the query time

complexity of MBI when 𝜏 > 0.5. For this lemma, we first define

an internal left-aligned query (ILAQ) block of a query as a block

satisfying the following conditions: (1) it is not a leaf block, (2) this

block covers the query time window, (3) the earliest timestamp

of the block is identical to the start timestamp of the query. We

also define the level of a block as the number of edges on the

path from the root block to that block, with the root block itself

being at level 0.

Lemma 4.3. MBI with an ILAQ block at the root processes the
query using only one block per level, except at the leaf level where
up to two blocks are used.

Proof. We prove the lemma by induction. Consider a query

with time window (𝑡𝑠 , 𝑡𝑒 ) and an ILAQ block B𝑝 = (D𝑝 ,G𝑝 )
of the query. As the base case, assume the level of B𝑝 is 1, i.e.,

the children of B𝑝 are leaf blocks. If |D[𝑡𝑠 : 𝑡𝑒 ] |/|D𝑝 | > 𝜏 ,

MBI processes the query on B𝑝 , and the child blocks are not

used. In the other case, the two children are used for the query

instead of B𝑝 . Thus, the lemma is true in the base case. We now

prove that the lemma is true when the level of B𝑝 is 𝑖 + 1 with
the following inductive hypothesis: the lemma holds for every

ILAQ block having level 𝑖 or less. If |D[𝑡𝑠 : 𝑡𝑒 ] |/|D𝑝 | > 𝜏 , the

lemma is trivially true because the query is wholly processed

on B𝑝 . Let B𝑙 and B𝑟 be the left and right child blocks of B𝑝 . If
0.5 < |D[𝑡𝑠 : 𝑡𝑒 ] |/|D𝑝 | ≤ 𝜏 , the query is divided into two whose

time windows are (𝑡𝑠 , 𝑡𝑚) and (𝑡𝑚, 𝑡𝑒 ), respectively, where 𝑡𝑚 is

the earliest timestamp of B𝑟 . The query of (𝑡𝑠 , 𝑡𝑚) is processed
by B𝑙 as D𝑙 = D[𝑡𝑠 : 𝑡𝑚], and no descendants of B𝑙 are used.
B𝑟 satisfies the conditions to be an ILAQ block for the query

of (𝑡𝑚, 𝑡𝑒 ), thus, the subtree having B𝑟 as the root follows the

lemma. Meanwhile, B𝑟 itself is not used, as it is not a leaf block
and |D[𝑡𝑚 : 𝑡𝑒 ] |/|D𝑟 | < |D[𝑡𝑠 : 𝑡𝑒 ] |/|D𝑝 | ≤ 𝜏 , where |D𝑟 | is
the number of vectors in B𝑟 . Thus, the lemma follows as only

one block is used at level 𝑖 . If |D[𝑡𝑠 : 𝑡𝑒 ] |/|D𝑝 | ≤ 0.5, the lemma

also trivially holds because B𝑟 is not used as it doesn’t have any

vector belong to the query time window and B𝑙 is an ILAQ block

of the query. Finally, by the base case and the induction step, the

lemma is proven to be true. □

Using this lemma, we analyze the query time complexity of

MBI when 𝜏 > 0.5 in the following theorem.

Theorem 4.4. When 𝜏 > 0.5 and the query time window is
(𝑡𝑠 , 𝑡𝑒 ), the query time complexity in MBI is𝑂 (log2 |D[𝑡𝑠 : 𝑡𝑒 ] |/𝜏+
(𝑘/𝜏) · log |D[𝑡𝑠 : 𝑡𝑒 ] |/𝜏) where |D[𝑡𝑠 : 𝑡𝑒 ] | is the number of
vectors in D[𝑡𝑠 : 𝑡𝑒 ].

Proof. Let B𝑝 be the first block such that its left child block

B𝑙 = (D𝑙 ,G𝑙 ) and right child block B𝑟 = (D𝑟 ,G𝑟 ) divide the
query timewindow into (𝑡𝑠 , 𝑡𝑚), and (𝑡𝑚, 𝑡𝑒 ). Then,B𝑟 is an ILAQ

block for the query of time window (𝑡𝑚, 𝑡𝑒 ). Among B𝑟 and its

descendants, the largest block used for the query of (𝑡𝑚, 𝑡𝑒 ) is not
larger than |D[𝑡𝑠 , 𝑡𝑒 ] | · 𝜏 . By Lemma 4.3, the worst case is that

the descendants of the largest block are used for every level. As

𝑘NN search requires𝑂 (log𝑛 +𝑘/𝜏) for 𝑛 vectors and threshold 𝜏 ,

we calculate the complexity for the query of (𝑡𝑚, 𝑡𝑒 ) as follows:

log
|D [𝑡𝑠 :𝑡𝑒 ] |

𝑆𝐿𝜏∑︁
𝑖=1

log

|D[𝑡𝑠 : 𝑡𝑒 ] |
2
𝑖𝜏

+ 𝑘
𝜏

and this is bounded by𝑂 (log2 |D[𝑡𝑠 : 𝑡𝑒 ] |/𝜏 + (𝑘/𝜏) · log |D[𝑡𝑠 :

𝑡𝑒 ] |/𝜏). Finally, since the queries for the time windows (𝑡𝑠 , 𝑡𝑚)
and (𝑡𝑚, 𝑡𝑒 ) have a symmetrical structure, the overall query time

complexity remains as the same, i.e., 𝜏 > 0.5 is 𝑂 (log2 |D[𝑡𝑠 :

𝑡𝑒 ] |/𝜏 + (𝑘/𝜏) · log |D[𝑡𝑠 : 𝑡𝑒 ] |/𝜏). □

When 𝜏 ≤ 0.5, MBI theoretically shows a better query time

complexity compared to when 𝜏 > 0.5, which is well demon-

strated in Figure 9. Meanwhile, since the above analyses are

about worst-cases, in some cases, the performance can be better

when 𝜏 > 0.5 in practice.

5 EXPERIMENTS
In this section, we experimentally evaluate MBI to show its effec-

tiveness for T𝑘NN query. We focus on answering the following

questions:

Q1. Search Performance. Does MBI provide the best search

perfomance (Section 5.2)?

Q2. Scalability. How well does MBI scale up in terms of the

data size (Section 5.3)?

Q3. Data Insertion time. How efficiently can new data be in-

serted into MBI (Section 5.4)?

Q4. Effect of parameters. How does MBI’s parameters 𝑆𝐿 and

𝜏 affect the performance of MBI (Section 5.4)?

5.1 Experimental Setting
5.1.1 Machine. All experiments in this paper are performed

on amachine equippedwith AMDRyzen 7 3800XT 8-Core Proces-

sor and 128GB of DDR4 RAM. Ubuntu 20.04.1 LTS is installed as

the operating system. All codes are written in Rust, and compiled

using Cargo v1.66.1 with option ‘--release’.

5.1.2 Datasets. We use two real-world datasets and four syn-

thetic datasets, summarized in Table 2. The two real-world datasets

are MovieLens and COMS. MovieLens is a set of movies, each

represented as a 32-dimensional vector with its release year as

the timestamp. The vectors are generated from users’ ratings

by a matrix factorization method. COMS consists of weather

satellite images captured by the Communication, Ocean and Me-

teorological Satellite (COMS), which is the first geostationary

multi-purpose satellite of South Korea. We represent each image

as a 128-dimensional vector using an autoencoder. The date and

time each image is captured is used as the timestamp. We also

use four public large datasets that originally do not have times-

tamps: GloVe-100, SIFT1M, GIST1M, and DEEP1B. We consider

the index of each item as its virtual timestamp. GloVe-100 is a

large word embedding dataset where each word is represented

as a 100-dimensional vector. SIFT1M, GIST1M, and DEEP1B are

large image descriptor datasets, where images are represented as

128-dimensional, 960-dimensional, and 96-dimensional vectors,

respectively.

553



1% 10% 30% 80%

103

104

105

M
ov

ie
Le

ns

5.61x

k = 10

= 0.5

1% 10% 30% 80%

103

104 3.00x

k = 50

= 0.5

1% 10% 30% 80%

103

104
2.34x

k = 100

= 0.5

1% 10% 30% 80%
101

102

103

104

CO
M

S

2.95x 3.89x

= 0.4
= 0.2

1% 10% 30% 80%
101

102

103

104

2.28x
5.53x

= 0.4
= 0.2

1% 10% 30% 80%
101

102

103

104

2.02x 4.77x

= 0.4
= 0.2

1% 10% 30% 80%

102

103

Gl
oV

e-
10

0 2.53x

= 0.7
= 0.2

1% 10% 30% 80%

102

103

1.85x

= 0.7
= 0.2

1% 10% 30% 80%
101

102

103

1.77x

= 0.7
= 0.2

1% 10% 30% 80%

102

103

SI
FT

1M

5.40x

= 0.5
= 0.3

1% 10% 30% 80%

102

103 4.51x

= 0.5
= 0.3

1% 10% 30% 80%

102

103

3.48x

= 0.5
= 0.3

1% 10% 30% 80%

101

102

GI
ST

1M

3.41x

= 0.5
= 0.3

1% 10% 30% 80%

101

102 4.08x

= 0.5
= 0.3

1% 10% 30% 80%

101

102

3.09x

= 0.5
= 0.3

1% 10% 30% 80%

101

102

103

DE
EP

1B

7.05x

= 0.5
= 0.2

1% 10% 30% 80%

101

102

103

10.88x

= 0.5
= 0.2

1% 10% 30% 80%

101

102

103

9.66x

= 0.5
= 0.2

0.0 0.2 0.4 0.6 0.8 1.0

The Ratio of the Vectors Within the Query Time Window to the Entire Database (| [ts : te]| / | |)

0.0

0.2

0.4

0.6

0.8

1.0

Qu
er

ie
s P

er
 S

ec
on

d

SF BSBF MBI MBI (Lower )

Figure 5: The ratio of the query time window vs. the number of queries per second when recall@𝑘 is set to 0.995 and 𝑘 is set
to 10, 50, and 100.

554



MBI SF BSBF

0.70 0.75 0.80 0.85 0.90 0.95 1.00
  

0

5000

10000

15000

Qu
er

ie
s P

er
 S

ec
on

d

(a) |D[𝑡𝑠 : 𝑡𝑒 ] |/|D | = 10%

0.80 0.85 0.90 0.95 1.00
Recall

0

5000

10000

15000

(b) |D[𝑡𝑠 : 𝑡𝑒 ] |/|D | = 30%

0.6 0.7 0.8 0.9 1.0
  

0

5000

10000

15000

20000

25000

30000

(c) |D[𝑡𝑠 : 𝑡𝑒 ] |/|D | = 80%

Figure 6: The recall@10 vs. queries per second on COMS dataset. The ratios of the query time window are set to 10%, 30%,
and 80%.

Table 2: The summary of datasets.

Datasets

# items

Dim. Distance Source

Train Test

MovieLens 57,571 200 32 Angular GroupLens
6

COMS 291,180 200 128 Angular KMA
7

GloVe-100 1,183,514 10,000 100 Angular Pennington et al.
8
[33]

SIFT1M 1,000,000 10,000 128 Euclidean

Jégou et al.
9
[21]

GIST1M 1,000,000 1,000 960 Euclidean

DEEP1B 9,990,000 10,000 96 Angular Babenko et al.
10
[5]

Table 3: Default parameters

Datasets

Graph Search Parameters MBI Parameters

# neighbors 𝑀𝐶 𝜖 𝑘 𝜏 𝑆𝐿

MovieLens 96 192

1 − 1.4

(by 0.02)

10 (default),

50, 100

0.5 3550

COMS 256 256 0.2, 0.4 1000

GloVe-100 256 256 0.2, 0.7 36000

SIFT1M 128 128 0.3, 0.5 15625

GIST1M 512 512 0.3, 0.5 15625

DEEP1B 64 64 0.2, 0.5 78000

5.1.3 Parameter Settings. For each block of MBI and SF, 𝑘NN

graph based index structure, which is constructed by NNDes-

cent, and the graph search algorithm in Algorithm 2 are used

for T𝑘NN queries. As the number of neighbors in the graph and

the number 𝑀𝐶 of max candidates in the search algorithm sig-

nificantly affect the search performance, we find the optimal

values for each dataset by grid search and use them for our ex-

periments. The search algorithm employed by both SF and MBI

has another parameter 𝜖 , which is involved in how far the can-

didate is extended during the search. The parameter 𝜖 balances

the trade-off between query speed and recall. We vary the value

of 𝜖 in increments of 0.02, ranging from 1 to 1.4, and present the

optimal based on the Pareto frontier. We set the parameter 𝑘 ,

representing the number of nearest neighbors to find, to different

values (10, 50, and 100) to see how 𝑘 affects the performance.

If not specified, the default value for 𝑘 is 10. MBI has two own

parameters: the threshold 𝜏 used for selecting blocks and the leaf

size 𝑆𝐿 . We use different 𝜏 values for each dataset; the values are

6
https://grouplens.org/datasets/movielens/

7
https://www.data.go.kr/data/15043600/fileData.do

8
https://nlp.stanford.edu/projects/glove/

9
http://corpus-texmex.irisa.fr/

10
https://sites.skoltech.ru/compvision/noimi/

Table 4: Index sizes of MBI and SF

Datasets Input Data Size (GB)

Index Sizes (GB)

MBI SF

MovieLens 0.01 0.06 (6.08x) 0.02 (1.90x)

COMS 0.15 0.91 (6.35x) 0.27 (1.74x)

GloVe-100 0.48 3.95 (8.72x) 1.21 (2.49x)

SIFT1M 0.53 2.09 (4.28x) 0.80 (1.53x)

GIST1M 3.85 7.73 (2.15x) 4.64 (1.21x)

DEEP1B 3.92 18.24 (5.00x) 6.10 (1.56x)

selected to have the best query speed from a range of 0.1 to 0.9

(see Section 5.4.2). The default values for 𝑆𝐿 are set according to

the scale of each dataset considering the index size. The effect of

𝑆𝐿 to the performance of MBI is studied in Section 5.4.1 in detail.

The default parameters are summarized in Table 3.

5.2 Search Performance
Figure 5 shows the query speed of MBI, BSBF, and SF according

to the size of the query time window when recall@𝑘 is 0.995

with 𝑘 set to values of 10, 50, and 100. We sample 200 vectors

randomly for each dataset to form queries. These queries are

excluded during the indexing process. The start and end times

(i.e., 𝑡𝑠 and 𝑡𝑒 ) of the query timewindow are randomly determined

to cover a fraction of the entire data. This process is repeated 5

times for fractions ranging from 1% to 95%. The x-axis represents

the fraction, i.e., D[𝑡𝑠 : 𝑡𝑒 ] |/|D|, and the y-axis represents the

number of queries per second. For MBI, we choose the values of 𝜏

that result in the highest queries per second (see Section 5.4). MBI

demonstrates superior query speed compared to BSBF and SF in

all datasets regardless of the length of the query time window.

MBI even outperforms a hypothetical method that selects the

faster of BSBF and SF in most cases, showing up to 10.88 times

faster speed. The tendency is similar for all datasets and the three

values of 𝑘 , while the query speed decreases as 𝑘 increases. This

figure also clearly shows that BSBF gets slower when the query

time window gets longer, and SF gets slower when the query time

window gets shorter, as mentioned in Sections 3.2.1 and 3.2.2.

Figure 6 shows the recall@10 and queries per second of MBI,

BSBF, and SF with various 𝜖 values from 1 to 1.4 when |D[𝑡𝑠 :

𝑡𝑒 ] |/|D| is 10%, 30%, and 80%. COMS is used. Just like when

recall@10 is 0.995, we observe that similar patterns mentioned

above exist across other recall@10 values as well.

555



SF MBI MBI (parallelized)

105 106

Data Size

102

103

104

In
de

xi
ng

 T
im

e 
(s

)

5.08xSlope = 1.29

Slope = 1.13

Slope = 1.08

(a) Data Size vs. Indexing Time

105 106

Data Size

102

103

In
de

x 
Si

ze
 (M

B) 3.34x

Slope = 1.06

Slope = 1.29

(b) Data Size vs. Index Size

Figure 7: The scalability of MBI and SF on SIFT1M dataset.

5.3 Scalability
Figure 7 shows the data scalability of MBI. SIFT1M dataset is used.

The slope in the plot indicates the scalabilty as both axes are on

a log scale. Figure 7a shows the indexing time of MBI and SF

according to the data size. The slope of MBI gradually decreases

as the data size increases, showing a value of 1.29. This implies

that to index double the data in MBI, it requires 2
1.29 = 2.45

times the indexing time. This result is natural because, compared

to SF, MBI exhibits a logarithmic increase in its indexing time

complexity due to its hierarchical structure. We note that MBI

trades off a slight increase in indexing time to significantly im-

prove the speed of queries, which are more frequently executed.

Besides, since each block in MBI is independently created, it is

easily parallelized. By generating blocks in parallel, the indexing

time of MBI is comparable to that of SF, resulting in a decrease of

the indexing time by up to 5.08 times. Figure 7b shows the index

sizes of MBI and SF according to the data size. Similarly to the

indexing time results, the slope of MBI gradually decreases to

1.29 as the size of the data increases. This result matches the the-

oretical analysis in Section 4.4.1. The index sizes of other datasets

are listed in Table 4. The number in a parenthesis indicates the

relative index size compared to the input data size.

5.4 Effect of Parameters
MBI has two own parameters: an indexing parameter 𝑆𝐿 of the

leaf block size and a query parameter 𝜏 for choosing the search

block. We examine the effect of each parameter on the perfor-

mance of MBI.

5.4.1 Effect of leaf size 𝑆𝐿 . As the leaf size 𝑆𝐿 affects the in-

dex size, the indexing time, and the query speed, we compare

them in Figure 8. MovieLens is used. Figure 8a shows the cu-

mulative indexing time measured when data are incrementally

inserted into MBI. A lower 𝑆𝐿 tends to require a higher indexing

time, although the difference is not significant. As analyzed in

Section 4.4.2, the results approximate 𝑛1.14 log𝑛 with respect to

the number of inserted data 𝑛. Figure 8b shows the query speed

measured each time a vector is appended to MBI. The queries

are conducted with the size of the time window randomly set

from 5% to 95% of the current data size. The query speed tends

to decrease slightly as 𝑆𝐿 increases, but the difference is almost

negligible. The query speed exhibits a kind of zigzag patterns

but shows a steady decrease in the overall trend, which matches

well with the results analyzed in the Section 4.4.3. The sudden

increase in query speed occurs when MBI creates a complete

tree.

SL = 100 SL = 200 SL = 300 SL = 400

103 104

# Inserted Data

100

101

102

In
de

xi
ng

 T
im

e 
(s

) 0| |1.14log | |
100 + 1

0| |1.14log | |
400 + 1

(a) Indexing time

0 10000 20000 30000 40000 50000 60000
# Inserted Data

105

3 × 104

4 × 104

6 × 104

Qu
er

ie
s P

er
 S

ec
on

d

1 / ( 2log(| | + 3) + 5)

1 / ( 2log(| | + 3) + 4)

(b) Queries per second

Figure 8: The indexing time and queries per second with
different leaf sizes on MovieLens dataset. C0 to C5 are set
as follows: 1.2 · 10−3, 0.5, 2.61 · 10−5, 45000, −2.74 · 10−4, and
−2.655 · 10−4.

5.4.2 Effect of threshold 𝜏 . Figure 9 shows the query speed

of MBI with various 𝜏 values from 0.1 to 0.9 according to the

size of the query time window when recall@10 is 0.995. BSBF

and SF are also displayed for reference. When 𝜏 > 0.5, the query

speed tends to decrease as 𝜏 increases. This is because the search

is performed in many blocks if 𝜏 values is high. When 𝜏 ≤ 0.5,

MBI performs well with a high 𝜏 when the query time window is

low, and conversely, performs well with a low 𝜏 when the query

time window is high. This is because it is guaranteed that queries

are processed in two or fewer blocks when 𝜏 is 0.5 or less as

we prove it in Lemma 4.1, and the lower the 𝜏 value, the more

likely it is to be processed in larger blocks. The results show that

the performance is satisfactory when 𝜏 is around 0.5 across all

datasets. Therefore, we recommend these values when no prior

information is available. If possible, one can compute the optimal

𝜏 for each query interval experimentally beforehand, and use the

pre-computed 𝜏 at run-time.

6 CONCLUSION
In this paper, we propose Multi-level Block Indexing (MBI), a

novel and efficient indexing method for T𝑘NN queries on high-

dimensional and time-accumulating dataset. We devise an in-

cremental hierarchical index structure, which organizes data

into several blocks according to their timestamps so that query

556



1% 10% 30% 80%

103

104

105
MovieLens

1% 10% 30% 80%
101

102

103

104
COMS

1% 10% 30% 80%

102

103

GloVe-100

1% 10% 30% 80%

102

103

SIFT1M

1% 10% 30% 80%

101

102

GIST1M

1% 10% 30% 80%

101

102

103

DEEP1B

The Ratio of the Vectors Within the Query Time Window to the Entire Database (| [ts : te]| / | |)

Qu
er

ie
s P

er
 S

ec
on

d

SF
BSBF

MBI ( = 0.1)
MBI ( = 0.2)

MBI ( = 0.3)
MBI ( = 0.4)

MBI ( = 0.5)
MBI ( = 0.6)

MBI ( = 0.7)
MBI ( = 0.8)

MBI ( = 0.9)

Figure 9: The ratio of the query time window vs. the number of queries per second when recall@10 is set to 0.995. MBI
with different 𝜏 from 0.1 to 0.9 is used.

processing in MBI remains efficient, regardless of the length

of the query time window. In our theoretical analysis of MBI’s

efficiency, we find that the index size is 𝑂 ( |D| log |D|), and it

requires𝑂 ( |D|1.14 log |D|) time to index the data, suggesting an

amortized data insertion time of 𝑂 ( |D|0.14 log |D|) where |D|
is the number of timestamped vectors in database D. The query

time is𝑂 (log |D| + 𝑘/𝜏), where 𝑘 is the number of query results,

and 𝜏 is a constant parameter of MBI used for selecting blocks.

Experimental results show that MBI is up to 10.88 times faster

than a hypothetical method that selects the faster of conventional

methods: Binary Search and Brute-Force (BSBF) and Search and

Filtering (SF). Also, the index size and the time required to create

the index in experiments corresponds to the theoretical results.

ACKNOWLEDGMENTS
This work was funded by the Korea Meteorological Administra-

tion Research and Development Program "Developing Intelligent

Assistant Technology and Its Application for Weather Forecast-

ing Process" under Grant (KMA2021-00123). Ha-Myung Park is

the corresponding author.

REFERENCES
[1] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2017. Accel-

erated Nearest Neighbor Search with Quick ADC. In ICMR. ACM, 159–166.

https://doi.org/10.1145/3078971.3078992

[2] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2021.

Quicker ADC : Unlocking the Hidden Potential of Product Quantization

With SIMD. IEEE Trans. Pattern Anal. Mach. Intell. 43, 5 (2021), 1666–1677.
https://doi.org/10.1109/TPAMI.2019.2952606

[3] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Michael Vesterli. 2019.

PUFFINN: Parameterless and Universally Fast FInding of Nearest Neighbors. In

ESA, Vol. 144. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:16.

[4] Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. 2013. Voronoi diagrams
and Delaunay triangulations. World Scientific Publishing Company.

[5] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale

datasets of deep descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2055–2063.

[6] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and

Rectangles. In SIGMOD. ACM, 322–331. https://doi.org/10.1145/93597.98741

[7] Alina Beygelzimer, Sham M. Kakade, and John Langford. 2006. Cover trees

for nearest neighbor. In ICML, Vol. 148. ACM, 97–104. https://doi.org/10.114

5/1143844.1143857

[8] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong

Li, Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-

scale Approximate Nearest Neighbor Search. CoRR abs/2111.08566 (2021).

arXiv:2111.08566 https://arxiv.org/abs/2111.08566

[9] Sanjoy Dasgupta and Yoav Freund. 2008. Random Projection Trees and Low

Dimensional Manifolds. In STOC. ACM, 537–546. https://doi.org/10.1145/13

74376.1374452

[10] Wei Dong, Moses Charikar, and Kai Li. 2011. Efficient k-nearest neighbor

graph construction for generic similarity measures. In WWW. ACM, 577–586.

https://doi.org/10.1145/1963405.1963487

[11] Jerome H. Friedman, Jon Louis Bentley, and Raphael A. Finkel. 1977. An

Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM
Trans. Math. Softw. 3, 3 (1977), 209–226. https://doi.org/10.1145/355744.355745

[12] Cong Fu and Deng Cai. 2016. EFANNA : An Extremely Fast Approximate Near-

est Neighbor Search Algorithm Based on kNN Graph. CoRR abs/1609.07228

(2016). arXiv:1609.07228 http://arxiv.org/abs/1609.07228

[13] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. VLDB
12, 5 (2019), 461–474. https://doi.org/10.14778/3303753.3303754

[14] Jianyang Gao and Cheng Long. 2023. High-Dimensional Approximate Nearest

Neighbor Search: with Reliable and Efficient Distance Comparison Operations.

Proceedings of the ACM on Management of Data 1, 2 (2023), 1–27.
[15] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In VLDB. Morgan Kaufmann, 518–529.

[16] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,

and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic

Vector Quantization. In ICML, Vol. 119. PMLR, 3887–3896.

[17] Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, and Dimitrios

Gunopulos. 2002. Efficient Indexing of Spatiotemporal Objects. In EDBT,
Vol. 2287. Springer, 251–268. https://doi.org/10.1007/3-540-45876-X_17

[18] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest

Neighbour Graphs. In 2016 (IEEE) Conference on Computer Vision and Pattern
Recognition,(CVPR). IEEE Comput. Soc., 5713–5722. https://doi.org/10.1109/

CVPR.2016.616

[19] Masajiro Iwasaki and Daisuke Miyazaki. 2018. Optimization of Indexing Based

on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data.

CoRR abs/1810.07355 (2018). arXiv:1810.07355

[20] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravis-

hankar Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accurate

Billion-point Nearest Neighbor Search on a Single Node. In NIPS, Vol. 32.
Curran Associates, Inc.

[21] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

557



[22] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity

Search with GPUs. IEEE Trans. Big Data 7, 3 (2021), 535–547. https://doi.org/

10.1109/TBDATA.2019.2921572

[23] Herve Jégou,Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128. https://doi.org/10.1109/TPAMI.2010.57

[24] George Kollios, Vassilis J. Tsotras, Dimitrios Gunopulos, Alex Delis, andMarios

Hadjieleftheriou. 2001. Indexing Animated Objects Using Spatiotemporal

Access Methods. IEEE Trans. Knowl. Data Eng. 13, 5 (2001), 758–777. https:

//doi.org/10.1109/69.956099

[25] Quoc V. Le and TomásMikolov. 2014. Distributed Representations of Sentences

and Documents. In ICML, Vol. 32. JMLR, 1188–1196. http://proceedings.mlr.

press/v32/le14.html

[26] YuryMalkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.

2014. Approximate nearest neighbor algorithm based on navigable small world

graphs. Inf. Syst. 45 (2014), 61–68. https://doi.org/10.1016/j.is.2013.10.006

[27] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[28] Rosalind B Marimont and Marvin B Shapiro. 1979. Nearest neighbour searches

and the curse of dimensionality. IMA J. Appl. Math. 24, 1 (1979), 59–70.
[29] Puya Memarzia, Maria Patrou, Md. Mahbub Alam, Suprio Ray, Virendra C.

Bhavsar, and Kenneth B. Kent. 2019. Toward Efficient Processing of Spatio-

Temporal Workloads in a Distributed In-Memory System. In MDM. IEEE,

118–127. https://doi.org/10.1109/MDM.2019.00-66

[30] Marius Muja and David G. Lowe. 2009. Fast Approximate Nearest Neighbors

with Automatic Algorithm Configuration. In VISAPP. INSTICC, 331–340.
[31] Stephen M Omohundro. 1989. Five balltree construction algorithms. Interna-

tional Computer Science Institute Berkeley.

[32] Rodrigo Paredes and Edgar Chávez. 2005. Using the k-Nearest Neighbor
Graph for Proximity Searching in Metric Spaces. In SPIRE, Vol. 3772. Springer,
127–138. https://doi.org/10.1007/11575832_14

[33] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In EMNLP. 1532–1543. http://www.

aclweb.org/anthology/D14-1162

[34] Larissa Capobianco Shimomura, Rafael Seidi Oyamada, Marcos R. Vieira,

and Daniel S. Kaster. 2021. A survey on graph-based methods for similarity

searches in metric spaces. Inf. Syst. 95 (2021), 101507. https://doi.org/10.1016/

j.is.2020.101507

[35] Yufei Tao and Dimitris Papadias. 2001. MV3R-Tree: A Spatio-Temporal Access

Method for Timestamp and Interval Queries. In VLDB. Morgan Kaufmann,

431–440. http://www.vldb.org/conf/2001/P431.pdf

[36] Godfried T. Toussaint. 1980. The relative neighbourhood graph of a finite

planar set. Pattern Recognit. 12, 4 (1980), 261–268. https://doi.org/10.1016/00

31-3203(80)90066-7

[37] Trieu H. Trinh, Minh-Thang Luong, and Quoc V. Le. 2019. Selfie: Self-

supervised Pretraining for Image Embedding. CoRR abs/1906.02940 (2019).

arXiv:1906.02940 http://arxiv.org/abs/1906.02940

[38] Theodoros Tzouramanis, Michael Vassilakopoulos, and Yannis Manolopoulos.

2000. Overlapping Linear Quadtrees and Spatio-Temporal Query Processing.

Comput. J. 43, 4 (2000), 325–343. https://doi.org/10.1093/comjnl/43.4.325

[39] DongjingWang, ShuiGuang Deng, Xin Zhang, and Guandong Xu. 2016. Learn-

ing Music Embedding with Metadata for Context Aware Recommendation. In

ICMR. ACM, 249–253. https://doi.org/10.1145/2911996.2912045

[40] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A

Comprehensive Survey and Experimental Comparison of Graph-Based Ap-

proximate Nearest Neighbor Search. VLDB 14, 11 (2021), 1964–1978. https:

//doi.org/10.14778/3476249.3476255

[41] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and Hendrik

P. A. Lensch. 2016. Efficient Large-Scale Approximate Nearest Neighbor Search

on the GPU. In CVPR.
[42] Donghui Yan, Yingjie Wang, Jin Wang, Honggang Wang, and Zhenpeng Li.

2018. K-nearest Neighbor Search by Random Projection Forests. In Big Data.
IEEE Computer Society, Los Alamitos, CA, USA, 4775–4781. https://doi.org/

10.1109/BigData.2018.8622307

[43] Peter N. Yianilos. 1993. Data Structures and Algorithms for Nearest Neighbor

Search in General Metric Spaces. In SODA. SIAM, 311–321.

[44] Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest

Neighbor Search on GPU. In ICDE. IEEE, 1033–1044. https://doi.org/10.1109/

ICDE48307.2020.00094

[45] Wan-Lei Zhao, Hui Wang, and Chong-Wah Ngo. 2021. Approximate k-NN

Graph Construction: A Generic Online Approach. IEEE Transactions on Multi-
media 24 (2021), 1909–1921. https://doi.org/10.1109/TMM.2021.3073811

558


