
Evaluation of Sampling Methods for Discovering Facts from
Knowledge Graph Embeddings

Rama Widyadhana

Bhagaskoro

Technische Universität Berlin

Berlin, Germany

ramawidyadhana@gmail.com

Volker Markl

Technische Universität Berlin

DFKI GmbH

Berlin, Germany

volker.markl@tu-berlin.de

Zoi Kaoudi

IT University of Copenhagen

Copenhagen, Denmark

zoka@itu.dk

ABSTRACT

Knowledge graphs (KGs) are being used in many real-world ap-

plication domains, ranging from search engines to biomedical

data analysis. Even if there is a large corpus of KGs available,

they are inherently incomplete due to the incompleteness of the

sources based on which they were constructed. Knowledge graph

embeddings (KGEs) is a very popular technique to complete KGs.

However, they are only capable of answering true or false to a

given fact. Thus, users need to provide a concrete query or some

test data. Unfortunately, such queries or data are not always

available. There are cases where users want to discover all (or as

many as possible) missing facts from an input KG. Given a KGE

model, users should thus provide to the KGE model candidate

facts consisting of the complement of the KG. This is infeasible

even for small graphs simply due to the size of the complement

graph. In this paper, we define the problem of discovering miss-

ing facts from a given KGE model and refer to it as fact discovery.
We study sampling methods to get candidate facts and then using

KGEs to retrieve the most plausible ones. We extensively evaluate

different existing sampling methods and provide guidelines on

when each one of them is most suitable. We also discuss the chal-

lenges and limitations that we encountered when investigating

the different techniques. With these insights, we expect to shed

light and attract more researchers on this unexplored direction.

1 INTRODUCTION

Knowledge graphs (KGs) are an already established tool for many

real-world applications, such as question answering, web search,

and fact-checking. In addition, they are increasingly being used in

domain-specific fields, such as bioinformatics and healthcare for

precision medicine analysis and drug discovery among others [3,

10, 15, 26]. A knowledge graph consists of a set of facts (a.k.a.

true triples) in the form of (𝑠, 𝑟, 𝑜), where 𝑠 and 𝑜 are nodes in the

graph and represent entities, while 𝑟 is a labeled directed edge

from 𝑠 to 𝑜 and denotes the relation between these entities.

Despite the large scale of available KGs (e.g., Wikidata, DBpe-

dia, NELL), most of them are inherently incomplete, i.e., there

are a lot of missing facts. This leads to loss of information and

sub-optimal results in the aforementioned applications. A very

popular and successful way to tackle this problem is using knowl-

edge graph embeddings (KGEs). A KGE is a latent representation

of entities and relations in a low dimensional continuous space

which can be used for checking the plausibility of triples. In other

words, KGEs are models trained on a given KG (training data).

These models can be used to predict whether a triple is true

or false. Similar to other machine learning models, once a KGE

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the

27th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

model is built, the only way it can be used is by providing it with

some kind of inference or test data, i.e., a set of candidate facts in

the case of KGs. In the literature, when evaluating KGE models,

a given KG is split into training and test data, and the test data is

used to evaluate the accuracy of the model by asking it to reply

true or false (triple classification). In other cases, test data are

formed into specific queries, i.e., triples where one of the entities

is unknown, and are given to the evaluation process. The process

first imputes the unknown entity with all entities that exist in the

input KG and ranks the triples based on their plausibility. The

plausibility of a triple being true is provided by the KGE model.

This task is commonly referred to as link prediction.
However, there are cases where test data or specific queries

are not readily available, a common situation in real-world ap-

plications such as biomedical research [25] where new facts in a

KG need to be discovered. In such cases, a biomedical scientist

using KGEs to discover relations between drugs, diseases, and

proteins might not have specific queries to input into the model.

While the scientist could employ link prediction to identify the

disease that a specific drug targets, they may also want to un-

cover entirely new relationships or properties within the already

defined entities of the graph. Fact discovery, i.e., finding triples
that are true in a KG without any input, can be especially advan-

tageous in such scenarios where the primary goal is to explore

undiscovered connections, a common objective in fields such as

biomedical research. Starting without predefined queries allows

for a broader exploration of potential connections, facilitating

exploratory analysis and serendipitous discoveries, aligning with

the nature of scientific inquiry where investigations often pursue

knowledge expansion rather than hypothesis confirmation. Thus,

it becomes crucial for a biomedical scientist to use an existing KG

and enable the KGE model to autonomously infer missing facts,

which could lead to groundbreaking insights and innovations.

In this paper, we focus on the problem of fact discovery rather

than link prediction. Our approach leverages the inherent struc-

ture and properties of the KGs to infer missing information, even

in the absence of explicit queries. A naive way to achieve this is to

follow an exhaustive approach: compose all non-existing triples,

i.e., the complement of the KG, as candidate facts (generation
phase) and pass them to the KGE model (inference phase). In the

case of a very large KG, just constructing the complement of the

graph can be extremely expensive, especially because the graph

is directed and heterogeneous, i.e., different types of edges exist.

For instance, assume a KG G with E the set of entities, R the

set of relations, and |G| the total number of triples in G. Then,
the complement graph G′ contains |E |2 × |R| − |G| edges. For a
moderate size KG, such as YAGO3-10 [20] with approximately

120𝐾 entities and 37 relations, this number grows to 533 × 109
edges. Thus, enumerating all non-existing triples can take a sig-

nificant amount of time depending on the size of the graph. To

add to this, the invocation of the KGE model should happen for

Experiments & Analyses Paper

Series ISSN: 2367-2005 664 10.48786/edbt.2024.57

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.57

each edge in G′. Given that each call to a KGE model typically

requires more than a couple of seconds [34], the inference phase

for the YAGO3-10 would require thousands of years!

The problem of fact discovery from KGEs has been largely

ignored in the literature. The only work that touches upon this

matter is [6]. However, the authors in [6] assume an exhaustive

candidate generation process followed by a filtering step. This

may reduce the cost of the inference step but cannot scale the

generation phase, especially for large KGs. The only available

solution is AmpliGraph
1
, an open-source KGE library which

provides fact discovery strategies that leverage different sampling

algorithms for the generation phase. However, it is not clear

when each sampling method should be used as there has been

no comprehensive study on their performance, benefits, and

drawbacks.

In this paper, we present an extensive experimental evaluation

of existing sampling methods for fact discovery from KGEs. From

our analysis, we found that sampling methods based on entity

frequency or popularity yielded better results. Similarly, we were

able to discover more facts in KGs that were relatively dense.

Leveraging our insights, we also shed light on challenges and

open problems that remain to be solved, such as discovering facts

for long-tail entities.

2 PRELIMINARIES & PROBLEM DEFINITION

Let E = {𝑒1, 𝑒2, . . . , 𝑒𝑁 } be the set of entities andR = {𝑟1, 𝑟2, . . . , 𝑟𝐾 }
be the set of all relation types of a knowledge graph. A triple is of

the form (𝑠, 𝑟, 𝑜), where 𝑠 ∈ E is the subject, 𝑜 ∈ E is the object

and 𝑟 ∈ R is the relation between them. Let T = E×R×E be the

set of all possible triples. A knowledge graph G ⊆ T is a subset

of all possible triples with 𝑁 = |E | ≥ 2 entities, 𝐾 = |R | ≥ 1

relations, and𝑀 = |G| triples.

2.1 Knowledge Graph Completion

Given a KG G, the problem of knowledge graph completion or

missing link prediction has been defined as finding the probability

of any triple 𝑡 ∈ T to belong in G. By setting a threshold on the

probability, one can determine whether a triple is true or not and

label it by {−1, 1}.
KGE models learn an embedding of all entities and relations

in the graph in a low-dimensional space. These models predict

the existence of a triple 𝑡 = (𝑠, 𝑟, 𝑜) via a scoring function 𝑓 (𝑡 ;Θ)
which represents the model’s confidence that 𝑡 exists given the

model parameters Θ. Θ consists of the learned latent represen-

tations of the entities 𝑠 , 𝑜 and relation 𝑟 of 𝑡 . We denote these

representations as s ∈ R𝑙 , o ∈ R𝑙 , and r ∈ R𝑙 , respectively, where
𝑙 ∈ N is the embedding size of the model. KGEs aim to represent

the semantics of each entity and relation using its latent repre-

sentation and to use this representation to correctly predict the

scores of triples. Below, we outline the scoring functions of five

popular embedding models that we consider in this paper.

RESCAL. RESCAL [28] is a bilinear factorization-based model

that associates each entity with a vector and each relation with

a matrix to capture its latent semantics. Its scoring function is:

𝑓 𝑅𝐸𝑆𝐶𝐴𝐿𝑡 = sTro.

TransE. TransE [5] is a translation-based model inspired by

the Word2Vec algorithm [22]. It represents a relation as a trans-

lation operation on the entities and uses a scoring function that

measures the distance of the two entities with respect to the

1
https://docs.ampligraph.org

relation of the triple: 𝑓 𝑇𝑟𝑎𝑛𝑠𝐸𝑡 = −𝑑 (s + r, o) where 𝑑 (𝑥,𝑦) can
be any distance measure, e.g., L1 or L2 norm.

DistMult. DistMult [37] can be seen as a more compact and

less expressive variant of RESCAL [28]. It adds a diagonality con-

straint on the relation matrix and can thus, model only symmetric

relations. Its scoring function is: 𝑓 𝐷𝑖𝑠𝑡𝑀𝑢𝑙𝑡𝑡 = s𝑇𝑑𝑖𝑎𝑔(r)o.

HolE. Leveraging the idea of associative memory, HolE [27]

uses a circular correlation operation between the two entities’

vectors in its scoring function: 𝑓 𝐻𝑜𝑙𝐸𝑡 = r𝑇
𝑘
(e𝑖 ★ e𝑗) where

(e𝑖 ★ e𝑗)𝑘 =
𝑙∑
𝑡=1

𝑒𝑖𝑡𝑒 𝑗 ((𝑘+𝑡−2𝑚𝑜𝑑 𝑙)+1) .

ComplEx. ComplEx [33] extends DistMult by using complex

numbers and the Hermitian dot product. Its scoring function

is: 𝑓
𝐶𝑜𝑚𝑝𝐼𝐸
𝑡 = 𝑅𝑒𝑎𝑙 (s𝑇𝑑𝑖𝑎𝑔(r)o) where 𝑅𝑒𝑎𝑙 () is a function that

returns the real part of a complex number. ComplEx has been

proven to be equivalent to HolE.

Training. Using these embeddings, we can train a machine

learning model by optimizing a loss function min

Θ
L(Θ) depen-

dant on the embedding method. Among the various optimization

methods, the most widely-used ones include stochastic gradient

descent (SGD), Adagrad [14], and Adam [16]. In this paper, all

optimizations were done using Adam. Adam is one of the most

popular optimization methods as it is straightforward, compu-

tationally efficient, and has low memory requirements, among

many other advantages.

Testing. Typically, the performance of the embedding model

is evaluated on a test dataset. For each of the triples in the test

dataset, a list of corruption triples is generated: For a triple (𝑠, 𝑟, 𝑜),
we replace the 𝑜 entity in the triple with every other entity in the

dataset. The original triple is then ranked against its corruptions.

The performance is evaluated with the help of aggregate metrics

such as themean reciprocal rank (MRR), whichwe further explain

in Section 3.3.

2.2 Problem Definition

The goal of fact discovery is to find triples belonging to the

complement of the input KG having a high probability to be

true and, thus, it can be considered to be a fact. Having a high

probability can be defined in multiple different ways, e.g., setting

a probability threshold or getting triples that rank within the top

𝑘 of a ranked list. We formally define the problem as follows:

Definition 2.1. Given an incomplete KG G, find triples 𝑡 ∈ G′
belonging to the complement KG G′ having a probability 𝑃 (𝑡) >
𝑏 to be true based on a KGE model built from G, where 𝑏 is a

pre-defined probability threshold.

3 FACTS DISCOVERY

We detail on the fact discovery process, the different strategies we

use, and the evaluation procedure we followed. We then present

the metrics we used to conclude the different strategies.

3.1 Fact Discovery Process

We now provide a detailed explanation of the facts discovery

algorithm and the different sampling methods used. In general,

the algorithm works as follows. For each relation 𝑟 existing in a

given KG G, it generates new fact candidates (𝑠 , 𝑟 , 𝑜) by sampling
entities 𝑠 and 𝑜 existing in G. It then ranks the newly generated

665

candidates using a KGEmodel against its corruptions. Candidates

ranking within the top 𝑛 and do not already belong to G are then

returned as facts.

Algorithm 1: Discover Facts

Input:𝑀 : a trained KGE model

𝐺 : KG data used to train the model M

𝑡𝑜𝑝_𝑛: max rank of candidates

𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 : max number of facts generated

per relation

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠: relations to discover facts for

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦: sampling strategy of choice

Output: 𝑓 𝑎𝑐𝑡𝑠 : an array of discovered facts

𝑟𝑎𝑛𝑘𝑠: the ranks of all triples in 𝑓 𝑎𝑐𝑡𝑠

1 𝑓 𝑎𝑐𝑡𝑠 ← [];
2 𝑟𝑎𝑛𝑘𝑠 ← [];
3 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ← All unique relations in𝑀 ;

4 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 ←
√
𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 + 10

5 for 𝑟 in 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 do
6 𝑙𝑜𝑐𝑎𝑙_𝑓 𝑎𝑐𝑡𝑠 ← []
7 𝑠_𝑤,𝑜_𝑤 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦) ;

/* subject, object weights */

8 while len(𝑙𝑜𝑐𝑎𝑙_𝑓 𝑎𝑐𝑡𝑠) < 𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 | | a
maximum of 5 iterations do

9 Select 𝑠_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 of 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 with 𝑠_𝑤 as

sampling probability

10 Select 𝑜_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 of 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 with 𝑜_𝑤 as

sampling probability

11 Generate triples using NumPy mesh grid of

𝑠_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑟, 𝑜_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

12 Filter out seen entities in 𝐺 out of generated

triples

13 Append generated triples to 𝑙𝑜𝑐𝑎𝑙_𝑓 𝑎𝑐𝑡𝑠

14 𝑙𝑜𝑐𝑎𝑙_𝑟𝑎𝑛𝑘𝑠 ← ranks of each triple in 𝑙𝑜𝑐𝑎𝑙_𝑓 𝑎𝑐𝑡𝑠

based on𝑀

15 Filter out triples from 𝑙𝑜𝑐𝑎𝑙_𝑓 𝑎𝑐𝑡𝑠 with rank > 𝑡𝑜𝑝_𝑛

and the corresponding ranks from 𝑙𝑜𝑐𝑎𝑙_𝑟𝑎𝑛𝑘𝑠

16 Append 𝑙𝑜𝑐𝑎𝑙_𝑓 𝑎𝑐𝑡𝑠 to 𝑓 𝑎𝑐𝑡𝑠

17 Append 𝑟𝑎𝑛𝑘𝑠_𝑖𝑡𝑒𝑟 to 𝑟𝑎𝑛𝑘𝑠

18 return 𝑓 𝑎𝑐𝑡𝑠 , 𝑟𝑎𝑛𝑘𝑠

3.1.1 Discover Facts Algorithm. Algorithm 1 shows the pseu-

docode of the DiscoverFactsmethod. It receives as input a KGE

model𝑀 , the input KG 𝐺 used to build the model𝑀 , the hyper-

parameters 𝑡𝑜𝑝_𝑛 and𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , and a sampling method.

Note that the algorithm is independent of the sampling method.

Algorithm 1 starts by first iterating over all relations in 𝐺

(line 5). For each relation 𝑟 , it assigns sampling weights to all sub-

ject and object entities according to the chosen sampling strategy

(line 7). It then samples subjects and objects for 𝑟 (lines 9&10).

Given that the algorithm creates a mesh grid using the sampled

entities (subjects or objects), the sample size is approximately

equal to the square root of the𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (line 4). It then

generates a set of triples using a NumPymesh grid of the sampled

subject (𝑠_𝑠𝑎𝑚𝑝𝑙𝑒𝑠) and object (𝑜_𝑠𝑎𝑚𝑝𝑙𝑒𝑠) entities, and relation

𝑟 . The sampling probability is determined by the chosen strategy.

This generation phase is repeated until𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 facts are

generated or 5 iterations have passed, which is a default constant.

Although this could arguably be treated as another hyperparam-

eter, we did not explore it further and took the constant value

as is. Then, the algorithm filters out all the triples that model

𝑀 ranks lower than 𝑡𝑜𝑝_𝑛 (i.e., 𝑟𝑎𝑛𝑘 > 𝑡𝑜𝑝_𝑛) and stores the re-

maining triples and their ranks in 𝑓 𝑎𝑐𝑡𝑠 and 𝑟𝑎𝑛𝑘𝑠 . The algorithm

terminates once we have iterated through every relation.

It is important to note that𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 limits the amount

of facts generated for each relation and 𝑡𝑜𝑝_𝑛 sets the maximum

rank of the generated triples per relation. Also, as the algorithm

iterates over each existing relation in the KG, the runtime scales

with the number of relations used in the KG.

The differentiation among different fact discovery strategies

comes from the sampling method used. We discuss the existing

sampling methods in the following.

3.1.2 Sampling methods. We explain the implementation of

the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 () in the pseudocode and how the sam-

pling probabilities are defined by each of the strategies. The

𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 () function first retrieves all unique entities on

the subject side and all unique entities on the object side and,

then, assigns weights to each one of them. These weights denote

the sampling probability of the entities. We consider six different

sampling strategies, namely: Uniform Random, Entity Fre-

qency, Graph Degree, Clustering Coefficient, Clustering

Triangles, and Clustering Sqares.

Uniform Random Sampling. This sampling strategy assigns

all the weights among the entities equally. That means every

entity on each side has an equal probability of being sampled.

The weights of each entity can be formulated as:

𝑤𝑒𝑖𝑔ℎ𝑡uniform_random (𝑥, 𝑠𝑖𝑑𝑒) =
1

𝑙𝑒𝑛(𝑠𝑖𝑑𝑒) (1)

where x is an entity on the 𝑠𝑖𝑑𝑒 side of the triple with 𝑠𝑖𝑑𝑒 ∈
{𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡}. Note that the weights of an entity 𝑥 that exists

on both subject and object sides may not be equal.

Entity Freqency Sampling. This strategy sets the weight

of an entity by calculating its count relative to the total number

of entities present on the same side. Consequently, entities that

appear more frequently are assigned higher weights, increasing

their likelihood of being selected during the sampling process.

This can be formulated as:

𝑤𝑒𝑖𝑔ℎ𝑡entity_freqency (𝑥, 𝑠𝑖𝑑𝑒) =
𝑐𝑜𝑢𝑛𝑡 (𝑥, 𝑠𝑖𝑑𝑒)
𝑙𝑒𝑛(𝑠𝑖𝑑𝑒) (2)

where 𝑐𝑜𝑢𝑛𝑡 (𝑥, 𝑠𝑖𝑑𝑒) is the count of entity𝑥 as 𝑠𝑖𝑑𝑒 ∈ {𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑜𝑏 𝑗𝑒𝑐𝑡}.
Similar to Uniform Random, the weights of an entity 𝑥 that ex-

ists on both sides may not be equal.

Graph Degree Sampling. This strategy uses the degree of

the nodes, which is normalized by the sum of all node degrees,

as weights. The weights can be formulated as:

𝑤𝑒𝑖𝑔ℎ𝑡graph_degree (𝑥) =
𝑑𝑒𝑔(𝑥)∑
𝑣∈𝑉 𝑑𝑒𝑔(𝑣)

(3)

where 𝑑𝑒𝑔(𝑥) denotes the sum of in- and out-degree of node 𝑥

and 𝑉 is the set of nodes in the graph. This strategy does not dif-

ferentiate between the entity sides, i.e., the sampling probability

of an entity 𝑥 that appears both as a subject and object is equal.

This method prioritizes popular nodes in the graph, i.e., nodes

with many connections to other nodes regardless of the direction

of connections.

Clustering Triangles Sampling. This sampling method

leverages the number of triangles that an entity participates in.

666

It is defined as:

𝑤𝑒𝑖𝑔ℎ𝑡triangles (𝑥) =
𝑇 (𝑥)∑
𝑣∈𝑉 𝑇 (𝑣)

. (4)

where 𝑇 (𝑣) is the number of triangles that includes 𝑣 as a node

(local triangles count). 𝑇 (𝑣) is computed as:

𝑇 (𝑣) = | {𝑒𝑢𝑤 : 𝑢,𝑤 ∈ 𝑁𝑣, 𝑒𝑢𝑤 ∈ 𝐸} |
where 𝑢 and𝑤 are neighbour nodes of 𝑣 and 𝑒𝑢𝑤 represents an

edge between 𝑢 and𝑤 and 𝐸 is the set of all edges in the graph.

Note that triangles are computed as if the graph is homogeneous

and undirected. The more triangles an entity is part of the more

probability it has to be sampled. Local triangle counting forms

another measurement of node popularity.

Clustering Coefficient Sampling. This strategy assigns

weights based on the local clustering coefficient of a node. It is

defined as:

𝑤𝑒𝑖𝑔ℎ𝑡cluster_coefficient (𝑥) =
𝑐 (𝑥)∑
𝑣∈𝑉 𝑐 (𝑣)

(5)

where 𝑐 (·) is the local clustering coefficient defined as:

𝑐 (𝑣) = 2𝑇 (𝑣)
𝑑𝑒𝑔(𝑣) (𝑑𝑒𝑔(𝑣) − 1)

where 𝑇 (𝑣) is the local triangles count of node 𝑣 and 𝑑𝑒𝑔(𝑣) is
the degree of 𝑣 [36]. The clustering coefficient is a measure of

the density of nodes surrounding x. The higher the coefficient of

a node, the larger the probability that this node will be sampled.

Again, this sampling method assumes an undirected homoge-

neous graph.

Clustering Sqares Sampling. This method assigns weights

using the squares clustering coefficient 𝑐4 (¤). The weights are

defined as:

𝑤𝑒𝑖𝑔ℎ𝑡cluster_sqares (𝑥) =
𝑐4 (𝑥)∑
𝑣∈𝑉 𝑐4 (𝑣)

(6)

Unlike the clustering coefficient, the squares clustering coeffi-

cient calculates the fraction of possible squares (a cycle with 4

nodes) that goes through a node. The square clustering coefficient

is defined as [39]:

𝑐4 (𝑣) =
∑𝑘𝑣
𝑢=1

∑𝑘𝑣
𝑤=𝑢+1 𝑞𝑣 (𝑢,𝑤)∑𝑘𝑣

𝑢=1

∑𝑘𝑣
𝑤=𝑢+1 [𝑎𝑣 (𝑢,𝑤) + 𝑞𝑣 (𝑢,𝑤)]

where 𝑘𝑣 is the number of nodes adjacent to 𝑣 , 𝑞𝑣 (𝑢,𝑤) is the
number of common neighbours of 𝑢 and𝑤 excluding 𝑣 , and

𝑎𝑣 (𝑢,𝑤) = (𝑘𝑢−(1+𝑞𝑣 (𝑢,𝑤)+\𝑢𝑣))+ (𝑘𝑤−(1+𝑞𝑣 (𝑢,𝑤)+\𝑢𝑤))
is the number of non-existing squares around 𝑣 , where \𝑢𝑤 =

1 if 𝑢 and 𝑤 are connected, and 0 otherwise. Intuitively, the

squares clustering coefficient provides valuable insight into the

likelihood that two neighbors of a given node are connected

through a mutual neighbor, distinct from the given node itself.

This metric helps us understand the level of interconnectedness

within the local network structure and the potential for indirect

relationships between neighboring nodes.

3.2 Evaluation Process

Figure 1 illustrates the process we followed for our experimental

analysis. It consists of the following steps:

Dataset Selection. There is a wide variety of datasets for KGEs,

each with different amounts of entities, relations, and triples, as

well as distinct graph properties. During the dataset selection, we

consider these factors and strive to choose datasets with varying

sizes to test the scalability of the fact discovery algorithms. We

kept away from datasets with a common source to make the

results as general as possible and avoid bias towards a particular

dataset. Aside from the technical factors, we took into account

the popularity of a dataset, i.e., how often a certain dataset is

used by the research community as a benchmark. Choosing a

popular dataset would be more convenient as the community is

more accustomed to it, and comparisons to previous and future

works would also be more easier.

KGE Algorithm Selection. There is a multitude of KGE algo-

rithms each with their perks, some of which we have mentioned

in Section 2. We take into account their strengths, weaknesses,

and type of embeddingmethod (e.g., translation-based, geometric-

based, etc.) when choosing the methods for the experiments. We

strive to deliver a conclusion on the strategies pertaining to a

broad selection of embedding methods. Similar to the dataset

selection, we also considered the popularity of the embedding

methods within the research community.

Model Training. After the dataset and algorithm selection, we

conduct hyperparameter tuning on all possible combinations of

datasets and embedding algorithms to obtain the optimal em-

bedding models. Let 𝑚 and 𝑛 be the number of datasets and

embedding algorithms, respectively. We tune the parameters for

all𝑚 × 𝑛 embedding models. As evaluating embedding models

is not the focus of this paper, we do not pay particular attention

to the methodology of obtaining the optimal embedding models.

In this regard, we are open to hyperparameters used by prior

research as well as doing our own tuning, for instance through

grid search. We then use the trained embedding models with

optimal hyperparameters for the fact discovery algorithms.

Discover Facts. We use the fact discovery methods provided

by Ampligraph’s Discover Facts functionality
2
. This requires an

embedding model, the KG used to train the model, the relations

for which wewant to discover facts, a sampling strategy of choice,

and the hyperparameters 𝑡𝑜𝑝_𝑛 and 𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 . It then

delivers an array of discovered facts and their ranks evaluated

by the standard evaluation protocol as per [5].

3.3 Evaluation Metrics

To evaluate the different sampling methods for discovering new

facts we take the following steps. First, each method outputs a

set of discovered facts together with their ranks against their

corrupted triples. These ranks show the plausibility of the facts

and can thus be used for comparing the quality of the different

sampling method strategies. We thus leverage them to compute

the mean reciprocal rank (MRR) of each produced set of facts.

MRR is also one of the most important metrics used to evaluate

the performance of an embedding model. The MRR formula is as

follows:

𝑀𝑅𝑅 =
1

|𝑄 |

|𝑄 |∑︁
𝑖=1

1

𝑟𝑎𝑛𝑘𝑖
(7)

where 𝑄 is a set of triples and 𝑟𝑎𝑛𝑘𝑖 is the rank of the 𝑖𝑡ℎ triple

against its corrupted triples. MRR is usually more favored as

compared to the simple mean rank as it is more robust to outliers.

Apart from measuring the quality of the generated facts, we

are also interested in the efficiency, i.e., how fast a strategy can

output a certain amount of such facts. We evaluate the efficiency

2
https://docs.ampligraph.org/en/2.0.0/generated/ampligraph.discovery.discover_

facts.html

667

Figure 1: Experimental workflow.

of a strategy by dividing the amount of generated facts by the

total runtime of the algorithm, which is made up of fact discovery

(i.e., the sampling process) and fact evaluation (i.e., the filtering

of triples with a rank lower than 𝑛 in 𝑡𝑜𝑝_𝑛). In contrast to the

runtime which simply intuits how the algorithm of the strategies

behaves, efficiency represents the throughput of the algorithm.

4 EXPERIMENTAL STUDY

We examined a variety of fact discovery methods and KGEs

within an adaptable and robust framework. Central to this frame-

work’s design is its inherent flexibility, which allows for the

seamless integration of diverse datasets and an array of scorer

models, notably for the computation of metrics such as Mean

Reciprocal Rank (MRR). The framework’s capability to pair each

dataset with a corresponding fact discovery strategy is crucial,

as it significantly influences the sampling probability of each

node in the phase of triple construction. The code underpin-

ning these experiments is publicly accessible on GitHub
3
, and

while it is currently optimized to augment the LibKGE library [9]

and its associated models, the architecture of our framework is

not constrained to this setup. We deliberately design it to allow

straightforward modifications in the source code, thereby en-

abling the integration of alternative scoring models beyond those

provided by LibKGE. This level of customization and adaptability

offers researchers and practitioners the flexibility to explore new

datasets, sampling strategies, and scoring models.

We seek to answer the following questions: (i) What is the fact

discovery throughput and runtime of each method? (ii) How does

the quality of the discovered facts differ for different algorithms?

(iii) How do different KGE models interact with the different

sampling methods? Does the use of different KGE models affect

the quality and throughput of each method? (iv) How do the

algorithms are affected by the different KG datasets?

Before describing the experimental setup and results of our

study in detail, we briefly summarize our key findings:

• Sampling methods based on node frequency or popularity

yielded positive results.

• All sampling methods tend to yield better results with dense

datasets, i.e., measured by the global clustering coefficient.

• Entity Freqency and Graph Degree performed well in

runtime and excelled in discovering high-ranked triples.

• Uniform Random and Clustering Coefficient performed

poorly in the quality of discovered facts.

• Clustering Triangles was the top performer in terms of

throughput, consistently yieldingmore facts than othermeth-

ods.

3
https://github.com/ramesesz/fact_discovery

• Clustering Sqares was very inefficient in runtime so

it could not be compared with the other methods for the

datasets we considered.

4.1 Experimental Setup

In this section, we provide a detailed overview of the founda-

tional components underpinning our experimental design. Such

transparency is essential for ensuring the reproducibility and

robustness of our results. We initiate our discussion by outlin-

ing the specific hardware and software configurations employed,

offering insights into the computational environment that fa-

cilitated our research. Subsequently, we turn our attention to

the datasets we leveraged, elaborating on their origins and their

relevance to our study’s objectives.

4.1.1 Hardware and Software. Our experiments were carried

out on a robust hardware configuration, comprising an Intel(R)

Xeon(R) Gold 5115 CPU with 40 cores, an NVIDIA Tesla V100-

PCIE-16GB GPU, 188GB of RAM, and a 140GB SSD for storage,

all running on the Ubuntu 22.04 LTS operating system. We used

the open-source library LibKGE [9] to train our models. We chose

LibKGE for several reasons. First and foremost, LibKGE is incredi-

bly modular, allowing us to easily incorporate new elements (e.g.,

datasets) into the library. This is particularly important for our

study as we worked with a variety of data sources and needed

a library that could adapt to our needs. Furthermore, LibKGE

provides a yaml job-like definition of the experiments, which al-

lows for a simple and high degree of customization. This feature

made it easy to define and run experiments, helping to stream-

line the research process. Additionally, the library provides a

grid search syntax suitable for running multiple experiments

sequentially and testing parameters, which was important in

optimizing our models. Lastly, the library is actively maintained

and updated, which ensures that any bugs or issues encountered

will likely be addressed promptly. We adopted the fact discovery

strategies implemented in the Discovery API of Ampligraph
4
and

re-implemented them to suit LibKGE.

4.1.2 Datasets. For our evaluation, we used four diverse datasets
commonly used for the evaluation of knowledge graph embed-

dings: FB15K-237 [32],WN18RR [12], YAGO3-10 [20], and CoDEx-

L [30]. An overview of the metadata of the datasets can be found

in Table 1. For each dataset, the train, test, and validation splits

are available.

4
https://docs.ampligraph.org/en/1.4.0/ampligraph.discovery.html

668

Table 1: Metadata of the datasets.

Dataset Training Validation Test Entities Relations

FB15K-237 272,115 17,535 20,429 14,541 237

WN18RR 86,835 3,034 3,134 40,943 11

YAGO3-10 1,079,040 5,000 5,000 123,182 37

CoDEx-L 550,800 30,600 30,600 77,951 69

FB15K-237. The FB15K dataset was first created by Bordes

et al. [5] as a smaller-sized experimental dataset based on Free-

base [4], which is a vast collaborative knowledge base captur-

ing diverse real-world entities and relationships, spanning top-

ics from biographical data of individuals to detailed informa-

tion about media, places, organizations, and more. Later on,

Toutanova and Chen [32] pointed out that the dataset contains

test leakage through inverse relations. This means that a large

number of test triples can be obtained by inverting triples in

the training set. For instance, the test set contains (𝑡, 𝑟−1, ℎ),
whereas the train set contains (ℎ, 𝑟, 𝑡), where 𝑟−1 denotes the

inverse relation of 𝑟 . Such occurrences are detrimental when

evaluating KGE models, as they are very easily deducted. To get

rid of this property, FB15K-237 [32] was created by removing

inverse triples.

WN18RR. WordNet
5
[23], is a lexical database containing

semantic relations between words in over 200 languages. Nouns,

verbs, adjectives, and adverbs are grouped into synsets, a group of

words expressing a unique concept. Phrases that express the same

or similar concepts are grouped into the same synset. Synsets

are connected to other synsets through edges that illustrate their

relationship, including but not limited to hyponyms, hypernyms,

troponyms, meronyms, and entailments. WN18 was first intro-

duced by Bordes et al. [5] by scraping 18 relations fromWordNet.

Similar to FB15K, WN18 was later found to contain an inverse

relation test leakage. Dettmers et al. [12] then created WN18RR,

a subset of WN18, to fix this issue.

YAGO3-10. YAGO3-10[20] is a subset of YAGO3[20] (which

itself is an extension of YAGO[31]), a dataset composed of the

WordNet dataset and data extracted from Wikipedia
6
. The 10

in YAGO3-10 refers to the fact that this dataset only contains

entities of YAGO3 that have a minimum of 10 different relations,

resulting in a denser dataset. YAGO3-10 contains roughly 1.1

million triples, describing attributes of people, organizations,

places, and other general information.

CoDEx-L. CoDEx [30] is a KG extracted from Wikipedia and

Wikidata [35] created as an improvement to KG completion

benchmarks both in scope and level of difficulty. The dataset

includes multilingual descriptions of entities and relations, as

well as tens of thousands of hard negative triples, which are plau-

sible but proven to be false. CoDEx comprises three KGs differing

in size and structure, namely CoDEx-S, CoDEx-M, and CoDEx-L

with 36k, 206k, and 612k triples, respectively. All CoDEx versions

have a 90:5:5 ratio for train, validation, and test triples, created

such that there are no unseen triples on the validation and test set,

and inverse relations have been removed to prevent test leakage.

We used CoDEx-L for our experiments.

5
https://wordnet.princeton.edu/

6
https://www.wikipedia.org/

4.2 Sampling Methods Comparison

We analyzed the results of our experiments and compared the

performance of the different strategies. In this aspect, we ob-

served the strategies from three different dimensions: runtime,

fact quality, and fact discovery efficiency (i.e., the amount of dis-

covered facts per time unit). Due to Clustering Coefficient

being extremely inefficient in our preliminary experiments, we

exclude the strategy in our comparative experiments. We detail

the reason in Section 4.3.

4.2.1 Runtime. We define runtime as the total time it takes for

an execution of the discovery algorithm to terminate. As shown

in Figure 2, Uniform Random, Entity Freqency, and Graph

Degree had similar runtimes, as do Clustering Coefficient

and Clustering Triangles. This is particularly evident in the

datasets FB15K-237, YAGO3-10, and CoDEx-L (Figure 2a, c, and

d, where Clustering Coefficient and Clustering Triangles

took significantly longer to terminate than the other strategies.

Figure 2: Runtime of the discovery algorithm. The exper-

iments are grouped based on the strategies on the x-axis,

where Uniform Random, Entity Freqency, Graph De-

gree, Clustering Coefficient, and Clustering Trian-

gles are abbreviated, respectively from left to right.

The distinction between the two groups stemmed from their

complexity. Both the Clustering Coefficient and Clustering

Triangles calculate the number of triangles around each node

using 𝑇 (𝑣), which has a complexity of 𝑂 (𝑛3). This increased the

runtime of both strategies by a significant amount. In contrast,

Uniform Random assigns equal probability to all entities, and

Entity Freqency and Graph Degree retrieve their sampling

probabilities from graph properties which can be calculated in

linear time.

It is, however, noticeable that the distinction between the two

groups was somewhat blurred when dealing with the WN18RR

dataset in Figure 2(b). Furthermore, every single experiment on

WN18RR exhibited abnormally short runtimes, terminating in

under 10 minutes.

There are three main factors contributing to this phenomenon,

the first being the high sparsity of the dataset. Figure 3 shows that

WN18RR nodes have considerably lower clustering coefficients

(i.e., the average of the clustering coefficient of the nodes) than

in other datasets, indicating a higher sparsity. The dataset also

only has around 90k triples despite having over 40k entities. As

each triple has two entities, it can be inferred that entities of

WN18RR have an average of 4.5 relations. This is a significantly

lower count than the other three datasets.

669

(a) FB15K-237 (b) WN18RR

(c) YAGO3-10 (d) CoDEx-L

Figure 3: The distribution of the clustering coefficients

of all nodes across the datasets. The red line displays the

average clustering coefficient value of all nodes within the

dataset.

Figure 4:MRRof the discovery algorithm. The experiments

are grouped based on the strategies on the x-axis, where

Uniform Random, Entity Freqency, Graph Degree,

Clustering Coefficient, and Clustering Triangles

are abbreviated, respectively from left to right.

Secondly, triangles-based algorithms such as the Cluster-

ing Coefficient and Clustering Triangles in conjunction

with the sparsity of WN18RR demonstrate the effect of fixed-

parameter tractability [13], leading to a substantial reduction

in runtime duration. The third reason for which the WN18RR

dataset showed very short runtimes is the fact that the discov-

ery algorithm iterates over all relations. WN18RR consists of

only 11 different relations. While this leads to fewer triples being

discovered, the runtime in turn becomes very short.

Contrary to the strategies employed, the choice of the KGE

model has a negligible influence on the runtime of the discov-

ery algorithm. The margin in runtime across different models is

minimal, suggesting that the models have little to no substantial

impact on runtime.

4.2.2 Quality. This section describes the quality of the exper-

iments concerning the 𝑡𝑜𝑝_𝑛 parameter, which sets the quality

threshold for the discovered facts. To reiterate, the 𝑡𝑜𝑝_𝑛 pa-

rameter filters out triples that ranked lower than 𝑛 against its

corruptions. In the following experiments, we set 𝑡𝑜𝑝_𝑛 = 500.

This sets a theoretical MRR threshold of 0.002 in the case where

all discovered facts are exactly ranked 500.

Our baseline strategy, Uniform Random, performed relatively

poorly, being one of the bottom two strategies alongside Clus-

tering Coefficient. Uniform Random assigns equal sampling

probability to all nodes. This means that a ‘bad’ node has an equal

chance of being chosen as a ‘good’ node. A good node refers to

one that appears frequently in a KG, and a bad node the opposite.

When building triples, choosing a frequent node tends to result

in a high-scoring triple. In the case of KGs, bad entities vastly

outnumber the good ones, explaining why Uniform Random

delivered subpar triple quality.

Entity Freqency outperformed Uniform Random for al-

most every single model. This strategy assigns a higher sampling

probability to nodes that frequently appear, which more often

than not correlate to good nodes. Entity Freqency performed

outstandingly in FB15K-237 and showed especially high affinity

with ConvE, which is most apparent in Figure 6a, b, and d, out-

performing the other models within the same strategy group in

terms of quality.

We discovered that Entity Freqency performed exception-

ally, however abnormally well when paired with ConvE. While

this might simply mean that the ranking distribution of the facts

leanedmore towards high ranks, we hypothesized popularity bias

to play a role in exaggerating the results. Popularity bias refers to

a phenomenon where the score of triples containing popular en-

tities and relations is amplified way more than necessary. While

these deliver better results, popularity bias is undesirable as it

indicates that the model fails to capture the real-world semantics

within the KG.

In terms of quality, Entity Freqency outperformed its al-

gorithmically similar counterpart, Graph Degree, in Figure 4a,

while performing similarly well in the other datasets. This sig-

nifies that keeping the sampling weights of the head and tail

sides separate tends to result positively in small and medium-

sized datasets similar to FB15K-237. Despite that, Graph Degree

showed more stable results concerning the disparity within the

same strategy group, indicating a more evenly spread distribution

of the fact quality.

Clustering Triangles uses a more complex popularity met-

ric as compared to the ’naive‘ Entity Freqency and Graph

Degree. Clustering Triangles especially excelled in the dense

FB15K-237 (Figure 4(a)), while also showing consistent above-

average performance in the other datasets. Following the same

line of thought in the previous paragraph, Clustering Trian-

gles showed itself to be more stable than Graph Degree. This

also suggested that themore complex popularitymetric employed

by Clustering Triangles is more robust towards popularity

bias than the more naive Entity Freqency and Graph Degree.

It is also noteworthy that Clustering Triangles outperformed

its triangle algorithm-based counterpart, Clustering Coeffi-

cient, by a wide margin.

In the case of Clustering Triangles, the triangle value of

a node, and by extension its sampling probability, correlates

to the popularity or frequency of said node. In contrast, the

Clustering Coefficient strategy could potentially penalize

popular nodes. For example, in a star graph embedded within

a KG, the central node is highly popular (measured by node

degree) but has a clustering coefficient of 0. Due to the nature

670

(a) Triangle values

(b) Clustering coefficients.

Figure 5: The distribution of the clustering coefficients of

all nodes across the datasets. The x-axis shows the index

of the nodes within the dataset.

Figure 6: Efficiency of the discovery algorithm. The exper-

iments are grouped based on the strategies on the x-axis,

where Uniform Random, Entity Freqency, Graph De-

gree, Clustering Coefficient, and Clustering Trian-

gles are abbreviated, respectively from left to right.

of the Clustering Coefficient strategy, there is little to no

correlation between the popular nodes and sampling probability.

This resulted in the quality of the triples averaging in the lower

end of the spectrum, occasionally even lower than Uniform

Random. Figure 5 shows the clustering coefficient and triangle

values of all nodes in FB15K-237. By observing the same index

of the x-axis, we can compare the triangle value of a node in

Figure 5a with its clustering coefficient in Figure 5b. At large, the

clustering coefficient of a node tends to fluctuate regardless of its

triangle value. This lack of correlation between these two values

reinforces our prior argument.

4.2.3 Efficiency. This subsection elaborates on the discovery

output of the experiments we conducted, termed efficiency. Note
that the efficiency of an experiment is not unrelated to its fact

quality, as the fact discovery algorithm only allows fact candi-

dates ranking among the top 𝑛 (in our experiments 𝑛 = 500),

meaning a certain level of quality is required for a fact candidate

to be outputted as a fact.

Reflecting the results on the fact quality, Uniform Random

and Clustering Coefficient were the two bottom performers

concerning discovery efficiency.

In a similar trend to the Section 4.2.2, Entity Freqency

outperformed the baseline Uniform Random. However, contrary

to Figure 4, we did not observe the stark difference displayed

by the Entity Freqency and ConvE pair in Figure 6. This

suggested that Entity Freqency and ConvE resulted mostly

in facts in the higher end of the spectrum with regards to 𝑡𝑜𝑝_𝑛,

however in lower quantities. As opposed to this observation,

Entity Freqency and Graph Degree with ComplEx showed

similarly good performance both in Figure 4(c) and Figure 6(c).

This indicates that the Graph Degree-ComplEx combination

yielded high fact quality while also maintaining similarly high

throughput.

Overall, Graph Degree exhibited similar efficiency to Entity

Freqency, having a slightly better output in Figure 6(b) and

(c), while the latter has a slight advantage over the former in

Figure 6(a). Amongst all configurations, Clustering Triangles

delivered the most facts per hour on average. Despite performing

rather mediocrely in Figure 4, Clustering Triangles showed

strong efficiency, especially in Figure 6(a) and (b).

Size and sparsity were two traits that heavily affect efficiency.

We discovered that the density of a KG needs to scale together

with its size in order to deliver good efficiency. The smallWN18RR

had a clustering coefficient average of 0.059 (Figure 3b) but

showed exceptional efficiency. On the other hand, YAGO3-10

showed much lower efficiency despite having a higher density

(Figure 3(d)). Although its entities have a minimum of 10 differ-

ent relations, YAGO3-10 (Figure 6 (d)) showed the lowest effi-

ciency amongst the datasets due to its massive scale. The best-

performing model of YAGO3-10 delivered only 600 facts/hour,

a low number compared to the average efficiency of the other

datasets. In the contrary, the small WN18RR had a relatively

higher efficiency despite having fewer relations per node.

Sparsity is a classical problem of KGs which tends to get worse

the larger the graph. The more entities a KG contains, the more

likely the chance that we sample long-tail entities that are infre-

quent and score poorly.

4.2.4 Summary of Findings. Based on our experiments using

the Discovery algorithm, we have uncovered the following. The

runtime of fact discovery highly depends on the number of re-

lations a dataset contains and its sparsity. Fewer relations and

a sparser dataset yielded a shorter runtime. As for the strate-

gies, Clustering Coefficient and Clustering Triangles took

longer to terminate due to their complexity.

Clustering Triangles and Entity Freqency are top per-

formers with respect to fact quality. However when opting for

consistency across different models, Graph Degree and Clus-

tering Triangles are the most suitable options. We discovered

that it is imperative that a strategy assigns a probability to a node

that correlates with how frequently it appears in the dataset. Met-

rics or strategies that exhibit a strong positive correlation with

the frequency or popularity of a node tend to produce favorable

671

Figure 7: The runtime of the fact discovery algorithm on

FB15K-237 with TransE. The different lines represent dif-

ferent 𝑡𝑜𝑝_𝑛 values.

outcomes, benefiting both the quality of facts and the efficiency

of discovery. Notably, this correlation holds true for metrics such

as Entity Freqency, Graph Degree, and Clustering Trian-

gles. However, it is less evident in the case of Uniform Random

and Clustering Coefficient, as their sampling probabilities do

not align well with the popularity of nodes in the network.

4.3 Hyperparameter Analysis and Tuning

In this section, we elaborate on the tuning process of the param-

eters 𝑡𝑜𝑝_𝑛 and𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , demonstrate their effect, and

argue on the value we used for our experimentation in Section 4.2.

Recall that𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 determines the maximum number

of fact candidates that the discovery algorithm can generate and

𝑡𝑜𝑝_𝑛 sets the quality threshold, i.e., a fact candidate needs to

rank higher than 𝑛 against its corruption to be considered as a

fact and thus be outputted by the algorithm.

Each execution of Discover Facts is very time-consuming. Pre-

liminary experimentation of all strategies on FB15K-237 with

TransE took 2-3 hours on average, excluding the strategy Clus-

tering Sqares. Clustering Sqares took close to 54 hours

while only discovering a meager 5268 facts, translating to 98 facts

per hour. Due to being severely inefficient, we decided to exclude

this strategy from our experiments.

4.3.1 Hyperparameter Analysis. The scope of experiments in

this paper covers the combination of four datasets, five embed-

dings, and five strategies, resulting in a total of 100 experimental

configurations. As analyzing the entirety of the configurations in-

dividually would be exceedingly time-consuming, we conducted

hyperparameter analysis on two configurations: using the dataset

FB15K-237 on TransE using the baseline Uniform Random and

Clustering Triangles, which showed a promising amount of

triple output in our preliminary experiments. To uncover how

the𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 and 𝑡𝑜𝑝_𝑛 parameters affect the discovery

algorithm, we conducted a grid search on𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 , ex-

ploring the values {50, 100, 200, 300, 400, 500, 700} and examined

the values {100, 200, 300, 400, 500, 700} for the parameter 𝑡𝑜𝑝_𝑛.

We mainly observed the following metrics during the grid search:

The runtime of the algorithm, the number of discovered facts,

the quality of the discovered facts, and the discovery efficiency.

Figure 8: The quality of the fact discovery algorithm

on FB15K-237 with TransE on the Clustering Trian-

gles strategy. (a) Development of MRR with varying

𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 values and 𝑡𝑜𝑝_𝑛 = 500. (b) Development of

MRR with varying 𝑡𝑜𝑝_𝑛 values and𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 500.

Based on the runtime data collected, 𝑡𝑜𝑝_𝑛 had practically

no visible impact on the runtime of the algorithm, as visualized

by the overlapping line graphs in Figure 7. On the other hand,

𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 showed a linear increase in runtime as the value

increases. As can be seen from its role in the algorithm (Algorithm

1), 𝑡𝑜𝑝_𝑛 simply acts as a filter on a list of triples. Increasing its

value did not change the runtime in any way, as it is required to

iterate through all triples to apply the filter regardless of its value.

In contrast,𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 defines the amount of triple candi-

dates being generated by the algorithm, increasing the amount of

triples that have to be evaluated. A higher𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 value

increased the evaluation time, and by extension also the runtime

of the discovery algorithm. With respect to quality, Figure 8 re-

vealed that increasing the 𝑡𝑜𝑝_𝑛 value reduced the MRR of the

discovered facts, whereas𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 showed a stable MRR

within a certain range as its value increased.

To summarize, increasing𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 resulted in more

facts being discovered without compromising the quality of the

facts, however at the cost of a longer runtime. While increasing

𝑡𝑜𝑝_𝑛 yielded more facts without increasing runtime, it is impor-

tant to note that the general quality of the facts deteriorated as

the parameter value increased.

4.3.2 Hyperparameter Tuning. The experiments conducted

for the hyperparameter analysis also served to be a basis for

hyperparameter tuning. We analyzed the data, mainly with re-

spect to efficiency, to choose the most ideal values of 𝑡𝑜𝑝_𝑛 and

𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 to be used in the experimental evaluation of the

sampling strategies.

We first attempted to fix the 𝑡𝑜𝑝_𝑛 value. As shown in Figure

9a, the development of efficiency with Clustering Triangles

starts to plateau after 𝑡𝑜𝑝_𝑛 reaches 200, whereas the efficiency

increases more steeply after the same value in Figure 9b. While

it might be in our favor to take this elbow point as the fixed

parameter value, setting 𝑡𝑜𝑝_𝑛 = 200 generated too few triples

in our subsequent experiments, which could potentially lead to

higher variance within the results. We settled with 𝑡𝑜𝑝_𝑛 = 500

to ensure that the amount of facts discovered can capture the

essence of the experimental configuration.

We then set the 𝑡𝑜𝑝_𝑛 value as a pivot and observed how

𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 affected efficiency. The results are shown in Fig-

ure 10. The efficiency increase starts to level at 500 for Cluster-

ing Triangles and is rather unpredictable for Uniform Random.

At this junction, we leaned towards Figure 10a, as we considered

672

Figure 9: The impact of 𝑡𝑜𝑝_𝑛 to discovery efficiency. The

different lines represent varying𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 values.

Figure 10: The impact of𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 to discovery effi-

ciency, 𝑡𝑜𝑝_𝑛 = 500.

the fundamental randomness of Uniform Random to be less reli-

able when deciding the parameter values. Therefore, we decided

on 500 for the𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 value.

5 RELATEDWORK

In recent years, research on KGs is increasingly gaining support

due to their versatility in solving real-world problems in various

industries. Although there is vast literature on KGEs, there is a

pitifully low amount of research regarding fact discovery, and

this subtask of KG completion remains relatively unexplored. We

review the most important works on both areas in the following.

5.1 Fact Discovery

The only work that focused on fact discovery is CHAI [6], which

defines KG completion as a workflow consisting of three subtasks:

Candidate generation, candidate filtering, and fact-checking, with

them connected in a linear, iterative workflow. The workflow

begins with candidate generation, what we call fact discovery in

this paper. This step is an exhaustive one, i.e., the entire miss-

ing set of edges in a KG (the complement of the KG) has to be

generated.

Candidate generation is followed by candidate filtering, which

is the focus of Borrego et al. in [6]. Borrego et al. proposed a

rule-based filtering tool to remove unreasonable triples (e.g., a

person being a child of an object). After the filtering process,

the remaining triples are passed to a fact-checking model. The

authors suggest Ontological Graph Fact-checking (OGCF) [19],

a rule-based model which distinguishes the truthfulness of a

triple. Another notable alternative is SciCheck [8], a neural-based

classification model that accomplishes the same task as OGCF.

When observed as individual KG completion tasks, CHAI takes

arguably considerably less time than most fact-checking models

as no trained models are required. However, CHAI lacks the ca-

pability to capture the ontology of a KG, which can be addressed

through the intervention of KGE techniques. Also, CHAI as pre-

sented in [7] assumes the entire missing set as input, which may

pose challenges when dealing with large KGs.

The fact discovery method discussed in this paper combines

fact-checking with intelligent candidate generation. In contrast

to the exhaustive method, we evaluated sampling strategies to

generate candidates in a more efficient way. Furthermore, by

using a trained KGE model to filter the discovered facts, we

ensure that the remaining facts represent the ontology of the KG.

In conclusion, the rule-based filtering method CHAI [7] would

potentially be a good complement to the discussed fact discovery.

5.2 Link Prediction

The field of link prediction in knowledge graphs has seen a con-

siderable shift towards diverse application areas, highlighting the

adaptability and significance of this research in various domains.

Recent studies reflect a broad spectrum of applications, ranging

from social networks to predicting interactions between proteins

[11, 18, 21].

A prominent area of application is in social networks, as ex-

plored in several studies [11, 18]. This research highlights the

complexity of social structures and interactions that link predic-

tion models must navigate. In these networks, predicting links

goes beyond mere data analysis; it requires an understanding of

social dynamics, user behavior, and community structures. The

ability to accurately forecast social connections has profound

implications for areas such as social media analytics, recommen-

dation systems, and targeted advertising.

Another critical application is in scientific research domains,

such as bioinformatics, where predicting interactions between

proteins or genes can lead to significant breakthroughs [21]. In

such contexts, the accuracy and efficiency of link prediction

models are paramount, as they directly influence the potential for

scientific discovery and innovation. Furthermore, link prediction

techniques are increasingly being employed in more diverse and

complex scenarios, including e-commerce, cybersecurity, and

network analysis [18].

These varied application domains underscore the evolving

nature of link prediction research. While initial studies focused

on developing foundational models [5, 33, 38], current research

is increasingly application-driven, seeking to address the specific

needs and challenges of different domains. This shift towards

application-specific research underlines the growing importance

and impact of link prediction in a wide array of fields, extending

far beyond its traditional boundaries. Manyworks experimentally

evaluate different KGE models [1, 2, 17, 29] in various settings.

6 LESSONS LEARNED AND FUTURE

DIRECTIONS

During the implementation, evaluation, and analysis of the sev-

eral sampling methods for fact discovery, we have made several

observations that we believe are important for advancing this

research area. We discuss them in the following:

673

• Fact discovery focuses on dense areas of KGs. The metrics used in

the sampling methods we analyzed, such as entity frequency,

clustering coefficient, and graph degree, measure somehow

the density of the graph. Thus, all but the Uniform Random

sampling methods extract facts from the densely-populated

areas of a KG, i.e., entities that are highly popular with many

connections to other entities. Oddly, this leads to leaving out

long-tail entities where the need for discovering new facts is

higher. This is an issue that has also been discussed for KGEs

themselves [24], where popularity-aware metrics have been

proposed for the evaluation of KGEs.

• KGE models are assumed to be accurate. In our current setting,

the discovery algorithmfilters out all triples that are ranked low

by the corresponding KGE model (see line 15 in Algorithm 1).

Although the threshold, 𝑡𝑜𝑝_𝑛, used for filtering out is user-

specified, it still implicitly assumes that the KGE model is

correct in accurate in determining whether a triple is true or

false and thus, ranking the triples. This, however, is far from

reality. Typically current KGE models contain a large error:

if we observe their MRR or Hits@k values that are a bit over

50% [17].

• No evaluation protocols. Currently, there are no protocols for
how the evaluation of fact discovery methods can be done.

Following the standard training/validation/testing split proto-

col used for KGE models does not work for two main reasons.

First, the fact discovery process is not exhaustive as we cannot

extract all possible plausible facts which is computationally

expensive. Second, the fact that a triple does not exist in the

test dataset does not necessarily mean that it cannot be true.

Based on our above observations there are three future di-

rections that the research community should focus on. One is

the development of new fact discovery methods and sampling

strategies that explore the sparse areas of KGs. This resembles

the exploration vs. exploitation dilemma always encountered

in recommendation systems. In the current KGE and sampling

methods, the exploration part is undermined. Second, there is a

need for devising different pruning mechanisms for faster iterat-

ing through the exhaustive list of generated candidates. A first

attempt towards this direction has been done in [6] where the

authors devise rules for pruning ‘illogical’ triples. Last but not

least, new evaluation protocols and metrics need to be devised

for the fact discovery problem. Ideas can be drawn from the de-

ductive reasoning world which focuses on inferring new triples

based on a set of entailment rules.

7 CONCLUSION

In this paper, we evaluated sampling strategies for the prob-

lem of fact discovery from KGEs, i.e., extracting missing facts

from an incomplete KG based on a given KGE model. Our ex-

periments covered the datasets FB15K-237, WN18RR, YAGO3-10,

and CoDEx-L, as well as the KG embeddings ComplEx, ConvE,

DistMult, RESCAL, and TransE. We implemented the fact dis-

covery algorithm using the Discover Facts API of AmpliGraph

and investigated the performance of the algorithm on differ-

ent configurations, hyperparameter values, and strategies. Our

experiments showed that sampling strategies that assign proba-

bilities correlating to a node’s frequency or popularity yielded

more positive results. Uniform Random and Clustering Co-

efficient underperformed and thus are less suitable choices

to discover facts. Entity Freqency and Graph Degree are

strong options, performing well across the board and excelling

in discovering high-ranked triples. While slightly worse with

fact quality, Clustering Triangles was the top performer with

respect to discovery output, consistently yielding more facts than

the other strategies. There are still many open problems for the

fact discovery problem. We believe this paper to encourage more

researcher to further explore this direction.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the German Federal

Ministry of Education and Research under the grant BIFOLD23B.

REFERENCES

[1] Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and

Chengkai Li. [n.d.]. Realistic Re-evaluation of Knowledge Graph Completion

Methods: An Experimental Study. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai

Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). 1995–

2010.

[2] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail

Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann.

2022. Bringing Light Into the Dark: A Large-Scale Evaluation of Knowledge

Graph Embedding Models Under a Unified Framework. IEEE Trans. Pattern
Anal. Mach. Intell. 44, 12 (2022), 8825–8845.

[3] Mehdi Ali, Charles Tapley Hoyt, Daniel Domingo-Fernández, Jens Lehmann,

and Hajira Jabeen. 2019. BioKEEN: a library for learning and evaluating

biological knowledge graph embeddings. Bioinformatics 35, 18 (02 2019),

3538–3540. https://doi.org/10.1093/bioinformatics/btz117

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: A Collaboratively Created Graph Database for Structuring

Human Knowledge. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’08). Association for Computing

Machinery, New York, NY, USA, 1247–1250. https://doi.org/10.1145/1376616.

1376746

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and

Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-

relational Data. In Advances in Neural Information Processing Systems, C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (Eds.),

Vol. 26. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2013/

file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

[6] Agustín Borrego, Daniel Ayala, Inma Hernández, Carlos R. Rivero, and David

Ruiz. 2019. Generating Rules to Filter Candidate Triples for their Correctness

Checking by Knowledge Graph Completion Techniques. In Proceedings of the
10th International Conference on Knowledge Capture, K-CAP 2019, Marina Del
Rey, CA, USA, November 19-21, 2019. 115–122. https://doi.org/10.1145/3360901.

3364418

[7] Agustín Borrego, Daniel Ayala, Inma Hernández, Carlos R Rivero, and David

Ruiz. 2019. Generating rules to filter candidate triples for their correctness

checking by knowledge graph completion techniques. In Proceedings of the
10th International Conference on Knowledge Capture. 115–122.

[8] Agustín Borrego, Danilo Dessì, InmaHernández, Francesco Osborne, Diego Re-

forgiato Recupero, David Ruiz, Davide Buscaldi, and Enrico Motta. 2022. Com-

pleting Scientific Facts in Knowledge Graphs of Research Concepts. IEEE
Access 10 (2022), 125867–125880.

[9] Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, and Rainer

Gemulla. 2020. LibKGE - A Knowledge Graph Embedding Library for Re-

producible Research. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations. 165–174.
https://www.aclweb.org/anthology/2020.emnlp-demos.22

[10] Payal Chandak, Kexin Huang, andMarinka Zitnik. 2023. Building a knowledge

graph to enable precision medicine. Scientific Data 10, 1 (2023), 67. https:

//doi.org/10.1038/s41597-023-01960-3

[11] NurNasuhaDaud, Siti HafizahAbHamid,Muntadher Saadoon, Firdaus Sahran,

and Nor Badrul Anuar. 2020. Applications of link prediction in social networks:

A review. Journal of Network and Computer Applications 166 (2020), 102716.
[12] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.

2018. Convolutional 2D Knowledge Graph Embeddings. Proceedings of the
AAAI Conference on Artificial Intelligence 32, 1 (Apr. 2018). https://doi.org/10.

1609/aaai.v32i1.11573

[13] Rod G Downey and Michael R Fellows. 1995. Fixed-parameter tractability

and completeness I: Basic results. SIAM Journal on computing 24, 4 (1995),

873–921.

[14] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient

methods for online learning and stochastic optimization. Journal of machine
learning research 12, 7 (2011).

[15] Fan Feng, Feitong Tang, Yijia Gao, Dongyu Zhu, Tianjun Li, Shuyuan Yang,

Yuan Yao, Yuanhao Huang, and Jie Liu. 2022. GenomicKB: a knowledge graph

for the human genome. Nucleic Acids Research 51, D1 (11 2022), D950–D956.

https://doi.org/10.1093/nar/gkac957

674

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).
[17] Adrian Kochsiek and Rainer Gemulla. 2021. Parallel training of knowledge

graph embedding models: a comparison of techniques. Proceedings of the
VLDB Endowment 15, 3 (2021), 633–645.

[18] Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas.

2020. Link prediction techniques, applications, and performance: A survey.

Physica A: Statistical Mechanics and its Applications 553 (2020), 124289.
[19] Peng Lin, Qi Song, and Yinghui Wu. 2018. Fact checking in knowledge graphs

with ontological subgraph patterns. Data Science and Engineering 3, 4 (2018),

341–358.

[20] Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. 2014. Yago3: A

knowledge base from multilingual wikipedias. In 7th biennial conference on
innovative data systems research. CIDR Conference.

[21] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. 2016. A survey of

link prediction in complex networks. ACM computing surveys (CSUR) 49, 4
(2016), 1–33.

[22] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. http://arxiv.org/abs/

1301.3781

[23] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun.
ACM 38, 11 (nov 1995), 39–41. https://doi.org/10.1145/219717.219748

[24] Aisha Mohamed, Shameem Parambath, Zoi Kaoudi, and Ashraf Aboulnaga.

2020. Popularity agnostic evaluation of knowledge graph embeddings. In

Conference on Uncertainty in Artificial Intelligence. PMLR, 1059–1068.

[25] Sameh KMohamed, Vít Nováček, and Aayah Nounu. 2020. Discovering protein

drug targets using knowledge graph embeddings. Bioinformatics 36, 2 (2020),
603–610.

[26] David N. Nicholson and Casey S. Greene. 2020. Constructing knowledge

graphs and their biomedical applications. Computational and Structural
Biotechnology Journal 18 (2020), 1414–1428. https://doi.org/10.1016/j.csbj.

2020.05.017

[27] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic

embeddings of knowledge graphs. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 30.

[28] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way

model for collective learning on multi-relational data. In Icml.
[29] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. 2020. You CAN Teach

an Old Dog New Tricks! On Training Knowledge Graph Embeddings. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020.

[30] Tara Safavi and Danai Koutra. 2020. CoDEx: A Comprehensive Knowledge

Graph Completion Benchmark. CoRR abs/2009.07810 (2020). arXiv:2009.07810

https://arxiv.org/abs/2009.07810

[31] FabianM. Suchanek, Gjergji Kasneci, and GerhardWeikum. 2007. Yago: A Core

of Semantic Knowledge. In Proceedings of the 16th International Conference
on World Wide Web (WWW ’07). Association for Computing Machinery, New

York, NY, USA, 697–706. https://doi.org/10.1145/1242572.1242667

[32] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-

hury, and Michael Gamon. 2015. Representing text for joint embedding of

text and knowledge bases. In Proceedings of the 2015 conference on empirical
methods in natural language processing. 1499–1509.

[33] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guil-

laume Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In

Proceedings of The 33rd International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research), Maria Florina Balcan and Kilian Q.

Weinberger (Eds.), Vol. 48. PMLR, New York, New York, USA, 2071–2080.

https://proceedings.mlr.press/v48/trouillon16.html

[34] Angelica S Valeriani, Guido Walter Di Donato, and Marco D Santambrogio.

2021. Exploring the Runtime Performance of Knowledge Graph Embedding

Methods. In 2021 IEEE 6th International Forum on Research and Technology for
Society and Industry (RTSI). IEEE, 463–468.

[35] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative

knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[36] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440–442.
[37] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014.

Embedding entities and relations for learning and inference in knowledge

bases. arXiv preprint arXiv:1412.6575 (2014).
[38] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014.

Embedding Entities and Relations for Learning and Inference in Knowledge

Bases. https://doi.org/10.48550/ARXIV.1412.6575

[39] Peng Zhang, Jinliang Wang, Xiaojia Li, Menghui Li, Zengru Di, and Ying Fan.

2008. Clustering coefficient and community structure of bipartite networks.

Physica A: Statistical Mechanics and its Applications 387, 27 (2008), 6869–6875.
https://doi.org/10.1016/j.physa.2008.09.006

675

