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ABSTRACT

Many applications relying on cloud storage services typically

encrypt their data to ensure data privacy. However, serving client

requests by reading or writing the encrypted data reveals the type

of client operation to a potentially untrusted cloud. An adversary

can exploit this information leak to compromise a user’s privacy

by tracking read/write access patterns. Existing approaches such

as Oblivious RAM (ORAM) schemes hide the type of client access

by always reading and then writing the data sequentially for

both reads and writes, rendering one of these rounds redundant

with respect to a client request. To mitigate this redundancy, we

propose ORTOA- a family of protocols enabling single-round

data access on remote storage without revealing the operation
type. Specifically, we propose three protocols, two using existing

cryptographic primitives of fully homomorphic encryption and

trusted execution environments (TEEs), and a new primitive

inspired by garbled circuits. Each of these protocols has different

trust assumptions, allowing an application to choose the option

best suited for its needs. To our knowledge, ORTOA is the first to

propose generalized protocols to obfuscate the type of access in

a single round, reducing communication overhead by half. The

proposed techniques can pave the way for novel ORAM schemes

that hide both the type of access and the access pattern in a

single round. Our experimental results show ORTOA achieving

throughput gains of 1.7x-3.2x compared to a baseline requiring

two rounds for access type hiding, with the baseline incurring

latency 1.5-1.9x that of ORTOA for 160B-sized objects.

1 INTRODUCTION

Many modern applications, seeking to reduce the high costs asso-

ciated with owning and maintaining on-premise storage, opt to

outsource data storage to third-party cloud providers like Ama-

zon AWS or Microsoft Azure. However, storing an application’s

data on the cloud in plaintext poses a risk of exposing sensitive

information to potentially untrustworthy providers. To mitigate

this, many applications employ data encryption techniques. En-

crypted databases, such as CryptDB [41] or Arx [40], typically

utilize a trusted front-end, often termed a proxy, to store the en-

cryption key and direct all client requests to the untrusted storage.

In a simple design for an encrypted key-value store supporting

single-object GET/PUT requests, the proxy handles read requests

by retrieving the appropriate encrypted value from storage, de-

crypting it, and responding to the client. For write requests, the

proxy encrypts the value provided by the client and stores it in

the storage.
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This common approach of reading and writing encrypted data

allows an adversary controlling the cloud to distinguish between

read and write requests, since only write requests update the

database. Revealing the type of access – read vs. write – can

violate an end user’s or an application’s privacy, as explained

next.

At an individual user’s level, consider a banking application

example where a user either views their balance or updates it

upon a purchase. Even with the balance information encrypted,

an adversary learns when a user updates their balance. This

information combined with location data, which many mobile

applications track implicitly, can reveal with a high probability

when (and where) a user transacted for goods or services, violat-

ing the user’s privacy. In fact, a recent attack by John et al. [30]

utilized observing only write accesses to perform a privacy attack.

The core idea of such attacks is to uncover sensitive information

by taking multiple snapshots of the memory (or a database) and

observing all entries modified between snapshots. Hiding reads

and writes by modifying data even for reads can help mitigate

or at least weaken the accuracy of such attacks. Hiding reads

and writes can also add potential protection against multiple

snapshot adversaries (e.g., [14]).

At an application level, an application is incentivized to hide

the type of service it provides because side channel attacks such

as [29] exploit these meta-data to reveal sensitive information.

However, an application cannotmaintain anonymity of its service

even while encrypting its data because the read vs. write pattern

of an application often reveals the type of service it provides.

For example, social network applications tend to be extremely

read-heavy [9], whereas IoT applications lean write-heavy [12].

Essentially, revealing the type of access on encrypted data

poses privacy challenges both at an individual and an applica-

tion level. A straightforward approach to address this privacy

challenge is to hide the type of operation by always reading an

object followed by writing it, irrespective of the type of client

request. Oblivious datastores that use either Oblivious RAM [25]

or other techniques [27, 34] utilize two rounds to hide the type

of operation.

This sequential two round solution doubles the end-to-end

latency for each user access compared to plaintext datastores. The

trusted proxy often communicates with the untrusted storage

server over WAN, aggravating the latency problem. For compa-

nies such as Amazon and Google, end-to-end latency directly im-

pacts revenue: Amazon loses 1% revenue (worth $3.8 billion!) for

every 100𝑚𝑠 lag in loading its pages [2]; Google’s traffic drops by

20% if search results take an additional 500𝑚𝑠 to load [26]. Given

the substantial financial implications of increased latency, we

advocate for new protocols that prioritize trading larger amounts

of data for a reduced number of communication rounds.

Rooted in this motto, this work proposes ORTOA, a family of

one round trip data access protocols addressing the above privacy
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challenges by concealing the type of client access. Specifically, we

propose three different single-round access type hiding protocols,

two using existing cryptographic primitives of fully homomor-

phic encryption (FHE) [22] (§3) and trusted execution environ-

ments (TEEs) such as Intel SGX [28] or ARM TrustZone [4] (§4),

and a new primitive inspired by garbled circuits [31, 58] (§5).

These protocols, each with different trust assumptions, empower

applications to choose the most suitable option. They effectively

hide both the type of individual client access and the read/write

distribution of an application. ORTOA protocols hide the type

of access and not the objects accessed by the clients. These pro-

tocols are designed to be a stepping stone for building novel

single-round ORAM and other oblivious schemes that hide both

types of sensitive information.

1.1 Challenges with designing a one round

access-type hiding protocol

To illustrate the challenges of designing a one-round protocol

to hide the type of access, we present two naive solutions. For

both read and write requests to be indistinguishable, it is essen-

tial for each operation to involve both reading and writing at a

given physical location. The two-round protocol achieves this by

fetching the requested data, decrypting it, and either encrypting

a new value for writes or re-encrypting the fetched value for

reads before writing it back to the server. Note that standard non-

deterministic encryption schemes such as AES guarantee that an

adversary cannot distinguish between new value encryptions or

same value re-encryptions.

Although reducing the two rounds of this protocol to a single

round is straightforward for write requests by just updating the

value without reading it, it proves challenging for reads: a client

cannot re-encrypt an object’s value without fetching the value

first, rendering the one-round approach impractical.

Another naive solution is to treat all client requests as read-

modify-write transactions. In typical read-modify-write trans-

actions, a client interactively reads an object, modifies the read

value, and writes back the updated value. The non-interactive

version involves modifying the server to support this operation

without client interaction. In this naive solution, the client sends

an encrypted new value for writes or an encrypted dummy value

for reads and the server performs a non-interactive read-modify-

write by writing the (encrypted) value sent by the client and re-

sponding to the client with the read value. But the challenge here

is that any subsequent reads after the first read operation will

fetch a dummy value, permanently losing an application’s data!

If the server’s logic is enhanced to handle read-modify-write

transactions differently for read and write requests, it reveals the

type of client query to the server. Therefore, such a single-round

solution is not viable without compromising privacy or losing

data.

1.2 Intuitions for ORTOA

The above discussed challenges exist primarily because of the

server’s inability to securely perform any checks or computations.

Cryptographic primitives such as fully homomorphic encryption

(FHE), trusted enclaves (TEEs), or multi-party computation (MPC)

allow computing on encrypted data. MPC schemes either involve

multiple communication rounds for secure computation [31, 58]

or require multiple non-colluding servers [48], making them in-

compatible with the goals of ORTOA. Therefore, we leverage

FHE and TEEs to design one round access-type hiding protocols.

The core idea is to formulate a computation whose execution

either retains the old value for reads or updates the value for

writes. However, FHE has limitations in ciphertext computations

involving multiplication, and TEEs require specialized hardware

with potential side-channel leakage. The solutions and their lim-

itations are discussed in detail in §3 and §4, after a primer on

their backgrounds.

To overcome the limitations in FHE-based (FHE-ORTOA) and

TEE-based (TEE-ORTOA) protocols, we introduce a novel label-
based solution termed LBL-ORTOA. Unlike FHE-ORTOA and

TEE-ORTOA, which encrypt and store data values using homo-

morphic encryption and symmetric encryption, LBL-ORTOA

represents plaintext values in a binary format, encoding each

bit with a secret label generated using pseudo-random functions.

These encoded labels, rather than encrypted values, are stored

at the server. LBL-ORTOA updates labels after each access to an

object, both for reads and writes, in a single round, to prevent

revealing the type of operation. The details are discussed in §5.

1.3 Discussion on related work

To the best of our knowledge, ORTOA is the only solution that

tackles the problem of hiding the type of operation in a general-

ized manner. While Oblivious RAM (ORAM) schemes (or other

oblivious mechanisms [27, 34]) provide stronger privacy by hid-

ing both the operation type and the specific object accessed, they

often require two rounds for access. Some specialized ORAM

solutions achieve single-round online communication complex-

ity [16, 20, 21, 23, 24, 32, 57]. Many of these solutions are based

on Garbled-RAM or Garbled-circuits, which require the server to

store and evaluate a garbled program per request [21, 23, 24, 32].
Garbled-RAMs do not take fixed length inputs and their execution

time varies based on the input size as well as the data size. Specifi-

cally, evaluating garbled programs incur𝑂 (𝑝𝑜𝑙𝑦𝑙𝑜𝑔𝑁 ) or𝑂 (𝑁 𝑒 )
complexity (where 𝑁 is the data size and 𝑒 is a constant > 0)

[21, 23, 32]. Importantly, these schemes cannot handle adaptively

chosen queries, i.e., all client queries must be known a priori,

and also require an offline pre-processing step to construct and

outsource the garbled program. This necessary pre-processing

step marks these as multi-round protocols, unlike ORTOA. Other

ORAM-based datastores without Garbled-RAM also feature sin-

gle online rounds but involve offline rounds per request to evict

data, i.e., write the data back, rendering them multi-round solu-

tions [16, 20, 57]. Note that although offline eviction can reduce

the latency in the critical, ‘online’ step of serving a request, this

limits concurrency by allowing either only a read or a write to oc-

cur, to avoid read-write or write-write conflicts. ORTOA’s focus

on concealing access type in a generalized manner distinguishes

it from solutions primarily targeting access patterns. ORTOA can

be adapted to construct novel ORAM schemes or be integrated

with oblivious schemes such as [27, 34]. To show the possibility

of designing such schemes, we briefly outline a sketch of a novel

PathORAM [53]-like access pattern hiding scheme that executes

operations in one round using ORTOA in §8.

Contributions and roadmap:
This work proposes ORTOA, a family of one round trip access-

type hiding protocols. Particularly, we make the following con-

tributions:

1. A homomorphic encryption based protocol, FHE-ORTOA (§3).

2. A trusted hardware based protocol, TEE-ORTOA (§4).

3. A novel technique of label based protocol, LBL-ORTOA (§5).
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4. An extensive evaluation of the proposed protocols and a com-

parison with the two round trip baseline protocol (§6).

5. A security analysis of the proposed protocols (§7).

2 SYSTEM AND SECURITY MODEL

2.1 System Model

ORTOA protocols are designed for key-value stores where a

unique key identifies a given data object, and the datastore sup-

ports single key GET and PUT operations. The data is stored on an

external server(s) managed by a third party, analogous to renting

storage servers from third party cloud providers.

We assume the external server that stores the data to be un-

trusted. Furthermore, LBL-ORTOAuses a proxymodel commonly

deployed in many privacy preserving data systems [13, 27, 33,

41, 45, 52]. The proxy is assumed to be trusted and the clients

interact with the external server by routing requests through the

proxy. The proxy is a stateful entity and remains highly avail-

able; ensuring high availability of the proxy is orthogonal to the

protocol presented here. Although stateful, the state stored at

the proxy is an order of magnitude smaller (i.e., megabytes) than

the state at the external server (i.e., giga to tera bytes).

All communication channels – between clients, proxy, and

server – are asynchronous, unreliable, and insecure. The adver-

sary can view (encrypted) messages, delay message deliveries, or

reorder messages. All communication channels use encryption

mechanisms such as transport layer security [54] to mitigate

message tampering.

2.2 Data and Storage Model

Each object consists of a unique key and a value, where all values

are of equal length – an assumption necessary to avoid any leaks

based on the length of the values (equal length can be achieved

by padding). Neither an object’s key nor its value is stored in

the clear at the server. For a given key-value object < 𝑘, 𝑣 >,

the keys are always encoded using pseudorandom functions

(PRFs). A PRF’s determinism permits a client to encode a given

key multiple times while resulting in the same encoding; this

encoding can then be used to access the value of a given key

from the server. We use a procedure 𝐸𝑛𝑐 to encode the values

(this procedure differs across the three versions of ORTOA). For a

key k and its corresponding value 𝑣 , the server essentially stores

< 𝑃𝑅𝐹 (𝑘), 𝐸𝑛𝑐 (𝑣) >.

2.3 Threat Model

As mentioned earlier, this work focuses on hiding the type of

access generated by clients. We assume an honest-but-curious

adversary that wants to learn the type of client accesses with-

out deviating from executing the designated protocol correctly.

The adversary can control the external server as well as all the

communication channels between any sender and receiver. We

further assume the adversary can access (encrypted) queries to

and from a sender and can inject queries (say by compromising

clients), a commonly used adversarial model [15, 36, 45, 52].

Non-goals: ORTOA does not hide the actual physical locations

accessed by client requests and hence is vulnerable to attacks

based on access patterns, similar to encrypted databases such as

CryptDB [41] or Arx [40] (however, ORTOA protects encrypted

databases from attacks based on exposing the type of operation).

ORTOA does not aim to protect an application from timing based

side channel attacks or implementation based backdoor attacks.

3 FHE BASED SOLUTION: FHE-ORTOA

After discussing a few non-private or incorrect one round naive

solutions in §1, this section presents FHE-ORTOA, a one round

mechanism to hide the type of accesses using an existing crypto-

graphic primitive, Fully Homomorphic Encryption (FHE) [7, 19,

22].

Homomorphic encryption is a form of encryption scheme that

allows computing on encrypted data without having to decrypt

the data, such that the result of the computation remains en-

crypted [6, 18, 22, 39]. These schemes add a small random term,

called noise, to the encryption process to guarantee security. A

homomorphic encryption functionHE takes a secret-key 𝑠𝑘 , a

message 𝑚, and a noise value 𝑛 as input and produces the ci-

phertext, 𝑐𝑡 , as output. An important property of a homomorphic

encryption scheme is that the noise must be small; in fact, the

decryption function fails if the noise becomes greater than a

threshold value, a value that depends on a given FHE scheme.

Unlike partial homomorphic encryption [6, 18, 39], fully ho-

momorphic encryption supports both adding and multiplying

encrypted data [7, 19, 22], with the results remaining encrypted.

Conceptually, for two values, 𝑣1 and 𝑣2, encrypted with FHE,
decrypting the output of FHE(𝑣1) + FHE(𝑣2) results in plain-

text addition of 𝑣1 and 𝑣2. Similarly, decrypting the output of

FHE(𝑣1) ∗ FHE(𝑣2) results in the product of plaintext 𝑣1 ∗ 𝑣2.

3.1 Hiding access type using FHE

We propose FHE-ORTOA, a mechanism that uses FHE to execute

read and write operations in a single round of communication to

the external key-value store. Specifically, this section uses an FHE

scheme as the encoding procedure 𝐸𝑛𝑐 specified in Section 2.2

to encrypt the values of the key-value store. For a given key-

value pair, the server stores < 𝑃𝑅𝐹 (𝑘), FHE(𝑣) >. Note that

this version is considered to be proxy-less by assuming that all

clients share the secret-key used for data encryption; if clients do

not share the secret key, an application will need a light-weight

‘gateway’ proxy to encrypt and decrypt data or queries on behalf

of clients.

Let 𝑣𝑜𝑙𝑑 be the current value of a given data object, which is

stored only at the server (stored after encryption FHE(𝑣𝑜𝑙𝑑 )),
and let 𝑣𝑛𝑒𝑤 be the updated value of the object, for a write op-

eration (and an ‘empty’ value for a read). The challenge is to

develop a procedure ProcessClientRequest, or Pcr for short, with
parameters FHE(𝑣𝑜𝑙𝑑 ) and FHE(𝑣𝑛𝑒𝑤) such that:

𝐹𝑜𝑟 𝑟𝑒𝑎𝑑𝑠 : Pcr(FHE(𝑣𝑜𝑙𝑑 ) , FHE(𝑣𝑛𝑒𝑤)) = FHE(𝒗𝒐𝒍𝒅 )
𝐹𝑜𝑟 𝑤𝑟𝑖𝑡𝑒𝑠 : Pcr(FHE(𝑣𝑜𝑙𝑑 ) , FHE(𝑣𝑛𝑒𝑤)) = FHE(𝒗𝒏𝒆𝒘)

The external server can execute the same procedure Pcr for both

read and write requests but the result of Pcr would vary depend-

ing on the type of access. If we can design such a procedure, since

the server already stores FHE(𝑣𝑜𝑙𝑑 ), a client only needs to send
FHE(𝑣𝑛𝑒𝑤) in a single round and expect the correct result for

either type of operations.

To develop such a procedure, the client creates a two-dimensional

binary vector C = [𝑐𝑟 , 𝑐𝑤] where 𝑐𝑟 is 1 for read operations (oth-

erwise 0) and 𝑐𝑤 is a 1 for write operations (otherwise 0). To

see how the vector can be helpful, briefly disregard any data

encryption and consider the data in the plain. We construct a

procedure Pcr
′
:

Procedure Pcr
′ (𝑣𝑜𝑙𝑑 , 𝑣𝑛𝑒𝑤 , [𝑐𝑟 , 𝑐𝑤]):

return (𝑣𝑜𝑙𝑑 ∗ 𝑐𝑟 ) + (𝑣𝑛𝑒𝑤 ∗ 𝑐𝑤 )

3
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For reads, when 𝑐𝑟 = 1 and 𝑐𝑤 = 0, the result of Pcr
′
is 𝑣𝑜𝑙𝑑 ;

otherwise, for writes when 𝑐𝑟 = 0 and 𝑐𝑤 = 1, the result of Pcr
′

is 𝑣𝑛𝑒𝑤 . The above procedure gives us the desired functionality,

albeit with no encryption. Given that FHE encrypted values can

be added and multiplied, Pcr
′
can be transformed to procedure

Pcr to include FHE encrypted inputs:

Procedure

Pcr(FHE(𝑣𝑜𝑙𝑑 ), FHE(𝑣𝑛𝑒𝑤), [FHE(𝑐𝑟 ), FHE(𝑐𝑤)]):
return FHE(𝑣𝑜𝑙𝑑 ) ∗ FHE(𝑐𝑟 ) + FHE(𝑣𝑛𝑒𝑤) ∗ FHE(𝑐𝑤)

With Procedure Pcr that results in the desired outcomes, the

next steps elaborate on the specific operations of a client and the

server:

(1) Upon deciding to perform either a Read(𝑘) or a Write(𝑘, 𝑣𝑛𝑒𝑤)
request, a client creates vector C such that for reads, C =

[1, 0] and for writes, C = [0, 1].
(2) The client then sendsFHE(C), i.e. [FHE(𝑐𝑟 ),FHE(𝑐𝑤)],

along with FHE(𝑣𝑛𝑒𝑤), where 𝑣𝑛𝑒𝑤 = ⊥ for reads. It also

sends 𝑃𝑅𝐹 (𝑘) so that the server can identify the location

to access.

(3) While at rest, we assume the server stores the encrypted

key-value pairs in any standard key-value store such as

Redis [43] or Apache Cassandra [3]. The server, upon re-

ceiving the client request, reads the value currently stored

at key 𝑃𝑅𝐹 (𝑘) from the key-value store. It then executes

Procedure Pcr by using the stored value FHE(𝑣𝑜𝑙𝑑 ) and
the 3 entities sent by the client. The server then updates its

stored value to the output of the computation and sends

the output back to the client.

(4) Given that either 𝑐𝑟 or 𝑐𝑤 is 0, Procedure Pcr’s output will

either be FHE(𝑣𝑜𝑙𝑑 ) for reads or FHE(𝑣𝑛𝑒𝑤) for writes.
Since FHE schemes produce different ciphertexts even if

the same value is encrypted multiple times, an adversary

cannot distinguish between updated value encryptions or

same value re-encryptions. For reads, the client decrypts

FHE(𝑣𝑜𝑙𝑑 ) using FHE’s secret-key to retrieve the data

object’s value. For writes, the client ignores the returned

value.

Thus, by leveraging FHEs to compute on encrypted data,

specifically executing Procedure ProcessClientRequest, or Pcr
for short, we theoretically showed how to read or write data in

one round without revealing the type of access.

3.2 Complexity Analysis

3.2.1 Space Analysis. In FHE-ORTOA, the server stores all

keys encoded using a PRF and all values encrypted using FHE. If

𝑟 is the output size (in bits) of the PRF that generates encoded

key, 𝐹𝐻𝐸𝑙𝑒𝑛 is the length of the FHE encrypted ciphertexts, and

𝑁 the database size, then the server’s storage space in bits can

be calculated as:

𝑟 · 𝑁︸︷︷︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑘𝑒𝑦𝑠

+ 𝐹𝐻𝐸𝑙𝑒𝑛 · 𝑁︸        ︷︷        ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠

Note that the plaintext to ciphertext length expansion factor for

most FHE schemes is quite large (∼225x for the library we used,

as will be explained in the next section).

3.2.2 Communication Analysis.
To access an object, each client sends three FHE encrypted ci-

phertexts, one each of 𝑐𝑟 and 𝑐𝑤 , and one for 𝑣𝑛𝑒𝑤 , rendering the

bits of data communicated from a client to the server as:

3 · 𝐹𝐻𝐸𝑙𝑒𝑛

3.3 Challenges with FHE based solution

Although FHE allows hiding the type of access in one round, this

solution is impractical primarily due to the noise (𝑛) associated

with FHE. The noise increases with each homomorphic compu-

tation, the increase being substantial for multiplications, which

is required in both read and write accesses, as seen in Procedure

Pcr.

To assess the practicality of FHE-ORTOA, we developed and

evaluated a prototype utilizing the Microsoft SEAL [35] FHE

library with the BFV [19] scheme. The evaluation employed BFV

coefficients set to the following: degree=32768, default coefficient

modulus, and default plain modulus with 20 bits. With these

setting, we could encrypt a plaintext value of up to 32768 bytes

into a ciphertext of size 7404922 bytes (7.4 MB), which has a

∼225x length expansion factor.

Our experiments revealed that within about 10 accesses to a

specific object, the noise value grew too large for the FHE decryp-

tion to succeed, essentially rendering this solution impractical

for any use in real deployments. Due to this limitation, we do not

perform any more experimental analysis or evaluations of this

approach. However, we believe that our proposed FHE solution

can be used in the future when better performing FHE schemes

are invented that control the amount of noise amplification.

4 TEE BASED SOLUTION: TEE-ORTOA

This section proposes an alternate one round trip solution to

hide the type of access using trusted execution environments

(TEEs) such as Intel SGX [28] and ARM TrustZone [4]. TEEs

are secure areas within a main processor that protect the code

and data loaded inside it by ensuring data confidentiality and

integrity. TEEs provide isolation for code and data from the op-

erating system using CPU hardware-level isolation and memory

encryption. Many existing data systems utilize TEEs to provide

data confidentiality guarantees [42, 51, 59]. If a cloud vendor can

provide hardware enclaves (i.e., TEEs), an application can deploy

its entire system on the cloud, which enables the data and the

trusted component to reside together, significantly reducing the

communication latency compared to a trusted proxy-based sys-

tem. Note that, similar to FHE-ORTOA, we consider this version

of ORTOA to be proxy-less by assuming that clients share the

encryption-key.

4.1 Hiding access type using TEEs

The core idea of TEE-ORTOA is to execute the ProcessClien-
tRequest function described in Procedure Pcr

′
of §3 within a

trusted enclave rather than using FHE. However, utilizing TEEs

require careful partitioning of a program into trusted and un-

trusted components. Any sensitive portion of a program should

belong to the trusted component to be executed within the en-

clave, whereas non-sensitive code can be executed outside the

enclave.

Similar to §3, a client that wants to read or write an object con-

structs a two-dimensional binary vector C = [𝑐𝑟 , 𝑐𝑤] where 𝑐𝑟 is
1 for read operations and 𝑐𝑤 is a 1 for write operations. For reads,

the client sets 𝑣𝑛𝑒𝑤 = ⊥; and otherwise, to an updated value.

However, instead of encrypting the vector and 𝑣𝑛𝑒𝑤 using homo-

morphic encryption, the client encrypts them using a standard

symmetric key encryption scheme such as AES. It then sends the

encrypted vector and 𝑣𝑛𝑒𝑤 , along with the PRF-encoded key, to

the server.
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The server’s task upon receiving a client request is to first

fetch 𝑣𝑜𝑙𝑑 from the underlying key-value store (e.g., Redis [43])

and then execute the computation in Procedure Pcr
′
. Since

retrieving encrypted values from the underlying data store is non-

sensitive, TEE-ORTOA executes this portion of the code outside

the enclave. It then sends all 3 encrypted entities,𝐶, 𝑣𝑜𝑙𝑑 , and 𝑣𝑛𝑒𝑤
to the enclave, which decrypts them all, executes Procedure Pcr

′

within the enclave, and finally encrypts the result using standard

encryption scheme. The result is sent outside the enclave and

the server then updates the key-value store with this result, as

well as forwards it to the client. In fact, we simplify this protocol

further wherein the client only sends a one-dimensional vector,

𝑐𝑟 , which is set to 1 for reads and 0 for writes. The enclave code

decrypts 𝑐𝑟 and depending on its value, re-encrypts either 𝑣𝑜𝑙𝑑
or 𝑣𝑛𝑒𝑤 . Since the server cannot distinguish if the output of the

enclave code has re-encrypted the old value or has updated the

value, this solution hides the type of client request using TEEs in

a single round of client-server communication.

4.2 Complexity Analysis

4.2.1 Space Analysis. The space and communication com-

plexity analysis of TEE-ORTOA are similar to that of FHE-ORTOA.

However, since the data values are encrypted using standard li-

braries such as AES, this version does not suffer from as high a

length-expansion-factor from plaintext to ciphertext as in FHE.

If 𝑟 is the output size (in bits) of the PRF that generates encoded

keys, 𝐸𝑙𝑒𝑛 is the length of the encrypted ciphertext, and 𝑁 the

database size, then the server’s storage space in bits can be cal-

culated as:

𝑟 · 𝑁︸︷︷︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑘𝑒𝑦𝑠

+ 𝐸𝑙𝑒𝑛 · 𝑁︸   ︷︷   ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠

4.2.2 Communication Analysis.
To access an object, each client sends two encrypted ciphertexts,

one for 𝑐𝑟 and one for 𝑣𝑛𝑒𝑤 , rendering the bits of data communi-

cated from a client to the server as:

2 · 𝐸𝑙𝑒𝑛

4.3 Challenges with TEE based solution

While TEE-ORTOA avoids severe performance limitations seen

in FHE-ORTOA, it faces two primary challenges. First, it relies on

specialized hardware support from cloud providers. While many

popular cloud vendors currently provide some form of TEE sup-

port, they lack uniformity, which makes it challenging for appli-

cations to migrate their system from one cloud vendor to another.

The second, and more pressing of the challenges, is the vulner-

ability exposed by side-channel leakages in TEEs [8, 37, 47, 56].

These attacks at a high level track behaviours such as memory

access patterns, page faults, or cache accesses to successfully

reconstruct encryption keys, severely limiting the guarantees of

TEEs. Solutions that protect against these side-channel attacks

incur significant performance overheads and often require com-

plex program redesigning [46, 49, 50]. Despite these challenges,

TEE-backed deployments are quite popular today. We implement

TEE-ORTOA without these expensive protection mechanisms

and evaluate its performance in §6; we leave as future work, de-

veloping a TEE-based one round protocol that protects against

side-channel attacks.

5 LABEL BASED SOLUTION: LBL-ORTOA

Having shown that using existing cryptographic primitives, FHE,

as-is is impractical to provide the desired one round trip oblivious

access approach, while the TEE-based solution requires unique

hardware and may suffer from side-channel attacks, we propose a

novel technique that uses encoded labels to build ORTOA, called

LBL-ORTOA.

In designing this version of ORTOA, we take a step further and

define a rather unique way of encoding the data values stored

at the external server. We first consider the plaintext value in

its binary format. For each binary bit of the plaintext, the server

stores a secret label generated by the proxy using pseudorandom

functions. This idea of encoding bits using secret labels is inspired

by garbled circuit constructions [31, 58]. More precisely, if 𝑘 is

a data object’s key and 𝑣 its plaintext value in binary, then the

server stores:

< 𝑃𝑅𝐹 (𝑘), (𝑠𝑙 (1)
𝑏1
, . . . , 𝑠𝑙

( 𝑗 )
𝑏 𝑗
, . . . , 𝑠𝑙

(ℓ )
𝑏ℓ
) >

where ℓ = |𝑣 |, 𝑠𝑙 ( 𝑗 )
𝑏 𝑗

is a secret label corresponding to the 𝑗𝑡ℎ

index of 𝑣 from the left (indicated as the superscript) where 𝑗

goes from 1 to ℓ , and ∀𝑗 , 𝑏 𝑗 ∈ {0, 1} represents bit value 0 or 1
(indicated as the subscript). For example if ℓ = 3 and 𝑣 = 101 (in

binary notation) , then the server stores (𝑠𝑙 (1)
1
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
1
). The

proxy generates secret labels using a pseudorandom function of

the form 𝑃𝑅𝐹 (𝑘, 𝑗, 𝑏, 𝑐𝑡) that takes as input the key 𝑘 , position
index 𝑗 from left, the corresponding bit value 𝑏, and an access

counter 𝑐𝑡 . Because PRFs are deterministic functions, invoking

the chosen PRF with the same inputs any number of times will

result in the same output label.

Since the goal of ORTOA of hiding reads from writes can only

be achieved if every access to an object writes the data, LBL-

ORTOA updates the secret labels of an object whenever a client

accesses the object – be it for a read or a write. We use notation

𝑜𝑙 to represent the old secret label currently stored at the server

and 𝑛𝑙 to represent the new label that would replace the old label.

To be able to regenerate the last array of secret labels for a given

object, the system needs to maintain an access counter per object

indicating the total access count of an object. For this solution

to be proxy-less, this access counter should be maintained by

all clients. But ensuring that after a client updates a counter, it

propagates the update to all other clients requires some notion of

consensus across clients, complicating the system design. Hence,

LBL-ORTOA relies on a trusted proxy to maintain such stateful

information and all clients route their requests through the proxy.

5.1 An Illustrative Example

For ease of exposition, we first explain how LBL-ORTOA executes

reads and writes using a simple example and formally present

the protocol in the next section. Recall that all data values are

of the same length, ℓ bits, indexed 1 to ℓ . In this example, let

ℓ = 1, and let 𝑘 be the specific key accessed by a client and

let its plaintext value be 0. The server stores the corresponding

encoded tuple < 𝑃𝑅𝐹 (𝑘), 𝑜𝑙 (1)
0

> where 𝑜𝑙
(1)
0

is a secret label for

bit value 0 (indicated as the subscript) at index 1 (indicated as

the superscript).

1. Proxy:The proxy, upon receiving a Req(Read, 𝑘) or a Req(Write,
𝑘, 𝑣 ′=1) request from a client, executes the following steps:

1.1 The proxy generates two old secret labels < 𝑜𝑙
(1)
0
, 𝑜𝑙
(1)
1

>

both for index 1 by calling 𝑃𝑅𝐹 (𝑘, 1, 𝑏, 𝑐𝑡) where 𝑏 ∈ {0, 1}
and 𝑐𝑡 is𝑘’s access counter. For each index, the proxy needs
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to generate labels for both bit values 0 and 1 since it does
not know the actual value, which is stored only at the server.

1.2 The proxy next generates two new labels < 𝑛𝑙
(1)
0
, 𝑛𝑙
(1)
1

>

both for index 1 by calling 𝑃𝑅𝐹 (𝑘, 1, 𝑏, 𝑐𝑡 + 1) where 𝑏 ∈
{0, 1} and it updates 𝑘’s access count to 𝑐𝑡 + 1.

1.3 The details of this step depend on the type of access:

for reads, the proxy encrypts each new secret label with

its corresponding old secret label, thus generating two

encryptions for index 1:

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝑛𝑙 (1)
1
) >]

Whereas for writes, assuming the updated value 𝑣 ′ = 1,

the proxy encrypts only the new label corresponding to

the updated value 𝑣 ′ = 1 using the old labels, i.e.:

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝒏𝒍 (1)1 ), 𝐸𝑛𝑐𝑜𝑙 (1)
1

(𝒏𝒍 (1)1 ) >]
1.4 The proxy next shuffles 𝐸 pairwise, i.e, randomly reorders

the two encryptions, to ensure that the first encryption

does not always refer to bit 0 and the second to bit 1, and

sends 𝐸 to the external server.

2. Server: The server, upon receiving 𝐸 does the following:

2.1 The server tries to decrypt both encryptions it received

using its locally stored label. But since it stores only one

old label at index 1, it succeeds in decrypting only one of

the two encryptions. In this example, the server decrypts

𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
) for reads or 𝐸𝑛𝑐

𝑜𝑙
(1)
0

(𝑛𝑙 (1)
1
) for writes using

the stored 𝑜𝑙
(1)
0

.

2.2 The server then updates index 1’s secret label to the newly

decrypted value, in this case, 𝑛𝑙
(1)
0

for reads or 𝑛𝑙
(1)
1

for

writes. For writes, since both encryptions for an index

encrypt only one new label 𝑛𝑙
(1)
1

, either decryptions will

result in the desired, updated label that reflects the new

value of < 𝑘, 1 >. Whereas for reads, the server ends up

with 𝑛𝑙
(1)
0

, reflecting the existing value of < 𝑘, 0 >. The

server sends the output of the decryption to the proxy.

Since the proxy knows the mapping of secret labels to

plaintext bit values, it learns the value of 𝑘 to be 0 for

reads and ignores the output for writes.

5.2 Hiding access types using LBL-ORTOA

This section formally presents the protocol, described in the two

functions depicted in Figure 1. Table 1 defines the variables used

in the protocol.

The Init(kv) procedure describes the data initialization process

in LBL-ORTOA. Upon receiving the plaintext key-value pairs

as input, for each pair (line 3), the procedure generates PRF la-

bels at each of the ℓ indexes corresponding to bit 𝑏 of the value

(represented in binary form) (line 7). All the labels appended

together represent the value (line 11) and the procedure returns

the encoded keys and labels to be stored at the external server.

1. Proxy:When a client sends Req(Read,𝑘) or a Req(Write,𝑘,𝑣 ′)
to the proxy, the proxy invokes the procedure ProcessClientRe-
quest, or Pcr for short, as defined in Figure 1. Similar to §5.1,

1.1 The proxy retrieves key 𝑘’s access counter 𝑐𝑡 (line 1).

1.2 For each of the ℓ indexes of the value, the proxy generates

the two old labels corresponding to both bit-values 0 and

1 (line 5):

{𝑜𝑙 (1)
0
← 𝑃𝑅𝐹 (𝑘, 1, 0, 𝑐𝑡), 𝑜𝑙 (1)

1
← 𝑃𝑅𝐹 (𝑘, 1, 1, 𝑐𝑡),

. . . ,

Procedure Init(𝑘𝑣):

1 𝑘𝑣 ′ ← ∅
2 𝑐𝑡 ← 1 // indicates an access count of 1

3 for (𝑘, 𝑣) ∈ 𝑘𝑣 do
4 𝑙𝑎𝑏𝑒𝑙𝑠 ← ∅
5 𝑖 ← 1 // starting index

// 𝑣 is in binary representation

6 for each bit 𝑏 ∈ 𝑣 starting from left most position do

7 𝑙 ← 𝑃𝑅𝐹 (𝑘, 𝑖, 𝑏, 𝑐𝑡)
8 𝑙𝑎𝑏𝑒𝑙𝑠

∪←− 𝑙
9 𝑖 ← 𝑖 + 1

10 end

11 𝑘𝑣 ′
∪←− {𝑃𝑅𝐹 (𝑘), 𝑙𝑎𝑏𝑒𝑙𝑠}

12 end

13 Return 𝑘𝑣 ′

Procedure Pcr( 𝑜𝑝, 𝑘, 𝑣𝑎𝑙 )

1 Retrieve key 𝑘’s 𝑐𝑡 // 𝑘’s latest access count

2 𝐸 ← ∅
3 𝑖 ← 1 // starting index

// 𝑣𝑎𝑙 is in binary representation

4 for each bit 𝑏 ∈ 𝑣𝑎𝑙 starting from left most position do

5 𝑜𝑙
(𝑖 )
0
← 𝑃𝑅𝐹 (𝑘, 𝑖, 0, 𝑐𝑡), 𝑜𝑙 (𝑖 )

1
← 𝑃𝑅𝐹 (𝑘, 𝑖, 1, 𝑐𝑡)

6 𝑛𝑙
(𝑖 )
0
← 𝑃𝑅𝐹 (𝑘, 𝑖, 0, 𝑐𝑡 + 1), 𝑛𝑙 (𝑖 )

1
← 𝑃𝑅𝐹 (𝑘, 𝑖, 1, 𝑐𝑡 + 1)

7 if 𝑜𝑝 = 𝑟𝑒𝑎𝑑 then

8 𝐸
∪←− {𝐸𝑛𝑐

𝑜𝑙
(𝑖 )
0

(𝑛𝑙 (𝑖 )
0
), 𝐸𝑛𝑐

𝑜𝑙
(𝑖 )
1

(𝑛𝑙 (𝑖 )
1
)}

9 else

10 𝐸
∪←− {𝐸𝑛𝑐

𝑜𝑙
(𝑖 )
0

(𝑛𝑙 (𝑖 )
𝑏𝑖
), 𝐸𝑛𝑐

𝑜𝑙
(𝑖 )
1

(𝑛𝑙 (𝑖 )
𝑏𝑖
)}

11 end

12 𝑖 ← 𝑖 + 1
13 end

14 𝑐𝑡 ← 𝑐𝑡 + 1
15 Pairwise shuffle 𝐸

16 Return 𝐸

Figure 1: LBL-ORTOA’s algorithms to initialize a set plaintext

key value pairs 𝑘𝑣 and process an individual client request for

operation type 𝑜𝑝, key 𝑘 , and updated value 𝑣𝑎𝑙 .

𝑜𝑙
(ℓ )
0
← 𝑃𝑅𝐹 (𝑘, ℓ, 0, 𝑐𝑡), 𝑜𝑙 (ℓ )

1
← 𝑃𝑅𝐹 (𝑘, ℓ, 1, 𝑐𝑡)}

1.3 For each of the ℓ indexes of the value, the proxy next

generates two new secret labels corresponding both bit

values by passing the updated access counter 𝑐𝑡 + 1 to the

PRF (line 6):

{𝑛𝑙 (1)
0
← 𝑃𝑅𝐹 (𝑘, 1, 0, 𝑐𝑡 + 1), 𝑛𝑙 (1)

1
← 𝑃𝑅𝐹 (𝑘, 1, 1, 𝑐𝑡 + 1),

. . . ,

𝑛𝑙
(ℓ )
0
← 𝑃𝑅𝐹 (𝑘, ℓ, 0, 𝑐𝑡 + 1), 𝑛𝑙 (ℓ )

1
← 𝑃𝑅𝐹 (𝑘, ℓ, 1, 𝑐𝑡 + 1)}

1.4 For reads, the proxy encrypts each new secret label us-

ing the corresponding old secret label and generates two

encryptions for each of the ℓ indexes (line 8):

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝑛𝑙 (1)
1
) >, . . . ,

< 𝐸𝑛𝑐
𝑜𝑙
(ℓ )
0

(𝑛𝑙 (ℓ )
0
), 𝐸𝑛𝑐

𝑜𝑙
(ℓ )
1

(𝑛𝑙 (ℓ )
1
) >]

For writes, assuming 𝑏𝑖 is the updated bit value at index 𝑖 ,

the proxy encrypts only the new labels corresponding to
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Symbol Meaning

𝑜𝑙
( 𝑗 )
𝑏 𝑗

Secret label of a single bit of plaintext value

𝑗 Index from 1 to ℓ starting from the left of plaintext value

𝑏 𝑗 Bit value (0 or 1) at index 𝑗 of plaintext value

𝑐𝑡 Access counter

𝑛𝑙
( 𝑗 )
𝑏 𝑗

New secret label of a single bit of plaintext value

Table 1: Variables used in LBL-ORTOA.

the updated value 𝑣 ′ using the old labels (line 10):

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝒏𝒍 (1)
𝒃1
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝒏𝒍 (1)
𝒃1
) >, . . . ,

< 𝐸𝑛𝑐
𝑜𝑙
(ℓ )
0

(𝒏𝒍 (ℓ )
𝒃ℓ
), 𝐸𝑛𝑐

𝑜𝑙
(ℓ )
1

(𝒏𝒍 (ℓ )
𝒃ℓ
) >]

Note that for writes, at each index 𝑖 , both the old labels

encrypt only one new label 𝑛𝑙
(𝑖 )
𝑏𝑖

corresponding to 𝑣 ′.
1.5 The proxy increments 𝑘’s access counter (line 14) and

pairwise shuffles each of the ℓ pairs of encryptions and

sends this encryption to the external server.

2. Server: The server upon receiving the encryption 𝐸 from the

proxy performs the following steps:

2.1 For each of the ℓ pairwise encryptions, the server tries to

decrypt both encryptions using the locally stored label.

However, since it stores only one old label per index, it

succeeds in decrypting only one of the two encryptions per

index. Note that LBL-ORTOA uses authenticated encryption
to ensure the server identifies successful decryptions.
At index 𝑗 , the server either stores𝑜𝑙

( 𝑗 )
0

or𝑜𝑙
( 𝑗 )
1

, and hence,

it can successfully decrypt only one of < 𝐸𝑛𝑐
𝑜𝑙
( 𝑗 )
0

(𝑛𝑙 ( 𝑗 )
0
),

𝐸𝑛𝑐
𝑜𝑙
( 𝑗 )
1

(𝑛𝑙 ( 𝑗 )
1
) > obtaining 𝑛𝑙

( 𝑗 )
0

or 𝑛𝑙
( 𝑗 )
1

for reads. For

writes, since both encryptions encrypt 𝑛𝑙
( 𝑗 )
𝑏 𝑗

, either de-

cryptions will result in the new label corresponding to the

updated bit 𝑏 𝑗 at index 𝑗 .

2.2 The server then updates secret label at each index of

𝑃𝑅𝐹 (𝑘) to the newly decrypted value and sends the out-

put to the proxy. Since the proxy knows the mapping of

secret labels to plaintext bit values at each index, the proxy

learns the value of 𝑘 for reads and it ignores the output

for writes.

The server always updates its stored secret labels after executing

LBL-ORTOA to access an object. For reads, the updated labels re-

flect the existing value of the object; for writes, the updated labels
reflect the updated value of the object. Thus by choosing a unique
data representation model and taking advantage of that model,

LBL-ORTOA hide the type of operation in one round without

restricting the number of accesses, as in the FHE approach, or

requiring specialized hardware, as in the TEE version.

5.3 Complexity Analysis

5.3.1 Space Analysis.
Proxy: The only information the proxy needs to maintain to

support LBL-ORTOA is the access counter for each key in the

database. While the complexity of storing access counters for all

the keys is O(N), where 𝑁 is the database size, the actual space it

consumes is quite low. For example if a single counter requires 8

bytes, for a database of size 1 million objects, the proxy requires

about 8mB space to store the counters. Note that this space size

is much lower compared to storing plaintext objects at the proxy.

Server: While the storage cost at the proxy is insignificant to

support LBL-ORTOA, the same is not true for the server. The

exact space analysis at the server is as follows: if ℓ represents the

length of a plaintext value (and all values have same length), 𝑟

the output size (in bits) of the PRFs that generate secret labels

and encoded keys, and 𝑁 the database size, then server’s storage

space in bits can be calculated as:

(𝑟 · 𝑁 )︸ ︷︷ ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑘𝑒𝑦𝑠

+ (𝑟 · ℓ · 𝑁 )︸     ︷︷     ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠

5.3.2 Communication and Computation Analysis.
Every bit of plaintext can have 2 possible values – either a 0 or

a 1. Since the data values, or rather the data value encodings,

are stored only at the server, the proxy generates both possible

secret label encodings, and the corresponding 2 encryptions, for

each bit of the plaintext. The proxy then sends 2 encryptions per

bit to the server. If ℓ be the length of data values and 𝐸𝑙𝑒𝑛 the

length of encrypted ciphertexts, for every object accessed by a

client, LBL-ORTOA incurs the communication cost of:

2 · 𝐸𝑙𝑒𝑛︸  ︷︷  ︸
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑏𝑖𝑡

· ℓ︸︷︷︸
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑏𝑖𝑡𝑠

In terms of computation, the proxy and the server perform

2 ∗ ℓ encryptions and decryptions, respectively.

5.4 Tolerating malicious adversaries

Although we primarily consider protection against honest-but-

curious adversaries, LBL-ORTOA can be extended to protect

against data tampering by malicious adversaries. We briefly out-

line the mechanism here. Since the proxy in LBL-ORTOA has the

mapping of a plaintext bit-value to its corresponding label value,

when it reads an object, it can easily detect any data tampering

by checking whether each read label of a value matches with the

labels for either 0 or 1. Note that the adversary can only corrupt

the data; it can never correctly change the label corresponding to

say bit 0 to bit 1 since the PRF key necessary to correctly generate

labels is stored only at the proxy.

5.5 Challenges with label based solution

The main challenge with LBL-ORTOA is that its storage and com-

munication complexities grow with the size of the data values, as

is evident from §5.3. We experimentally measure the performance

cost (measured in throughput and latency) of LBL-ORTOA as

the value size grows in §6.3. With regard to computation, the

server needs to (attempt to) decrypt all encryptions per bit of

plaintext despite being able to successfully decrypt only one of

them, incurring wasteful computations. We address some of these

challenges with optimizations summarized in the next section.

Another challenge with this version is the necessity of a stateful

trusted proxy. This proxy does not pose a scalability bottleneck:

LBL-ORTOA can easily scale by adding additional proxies with-

out compromising correctness or security. However, the proxy

poses a fault tolerance challenge since it stores information nec-

essary to execute the protocol. We leave the task of exploring

efficient techniques to ensure proxy fault tolerance to future

work.
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5.6 Optimizations

We perform two major optimizations to LBL-ORTOA: one to

reduce the storage size by half without increasing the communi-

cation or computation complexity, and one to enable the server

to decrypt only one encryption per plaintext bit to avoid waste-

ful computations. Due to space constraints, the technical report

provides complete details of the optimization techniques [38]. At

a high level, for storage size reduction, recall that for every bit of

plaintext data, the server stores a secret label of 𝑟 bits; in other

words, 𝑟 bits are used to represent a single bit of plaintext data.

The optimization morphs this such that 𝑟 bits represent two bits
of plaintext rather than one, cutting down the storage cost by

half. To reduce the number of decryptions, we utilize the point-

and-permute [5] optimization of garbled circuits. This technique

involves strategically permuting the possible encryptions per bit

of plaintext and generating two additional bits of information

indicating the exact encryption to decrypt upon the next access.

This reduces the server’s computation cost to decrypting exactly

one encryption per bit of plaintext.

6 EXPERIMENTAL EVALUATION

In this section, we discuss the merits and limitations of various

versions of ORTOA by conducting experimental evaluations. In

particular, we only experimentally measure the performance of

TEE-ORTOA and LBL-ORTOA since FHE-ORTOA using existing

FHE implementations show impractical results (§3). If future effi-

cient FHE implementations are developed, the practical viability

of FHE-ORTOA can be reevaluated.

Baseline: In evaluating ORTOA, we consider a two-round-trip

(2RTT) protocol as the baseline wherein each request by a client –

read or write – translates into a read request followed by a write

request, ensuring read-write indistinguishability. This technique

is on par with how most existing obliviousness solutions hide

the type of operation [13, 27, 33, 45, 52, 53].

Goals: We aim to answer four questions through evaluations:

(1) How does the TEE and label version of ORTOA compare

with the 2RTT baseline when the client-to-server distance

varies? (§6.1)

(2) How does ORTOA’s performance change with changing

configurations such as concurrency or read-write ratio?

(§6.2)

(3) When and how should an application choose between

ORTOA and the 2RTT baseline? (§6.3)

(4) How do the ORTOA and 2RTT protocols compare for a

range of real-world applications? (§6.4)

Experimental Setup: We evaluated LBL-ORTOA and the

baseline on AWS, whereas TEE-ORTOA on Azure due to the avail-

ability of Intel SGX machines. For simplicity, even TEE-ORTOA

and the baseline utilize a proxy to store the encryption key and

all (concurrent) client requests are routed through the proxy. On

AWS, the clients, proxy, and server were deployed on c6i.32xlarge

instance with 8GiB memory and 128 cores @ 3.5GHz. The client

and proxy were located in the US-West1 (California) datacenter

and in most of our experiments, the server was hosted in the US-

West2 (Oregon) datacenter. On Azure, we deployed Intel SGX sup-

portedmachines of spec Standard DC48s v3, 48 vcpus and 384 GiB

memory.We note that Azure supports SGX enabled machines in a

limited number of datacenters, including in the Virginia datacen-

ter, where we placed the server. To have identical communication

latencies as in LBL-ORTOA, the TEE version placed the client in

the Virginia datacenter as well and simulated the proxy-to-server

latency using the Linux tc command. ORTOA’s implementation

can be found at https://github.com/dsg-uwaterloo/ORTOA.

Unless stated otherwise, in each experiment a multi-threaded

client (with a default of 32 threads) sends requests concurrently

to the proxy, while each thread sends requests sequentially, i.e., it

waits until its current request is answered before sending the next

one. Each data point plotted in all the experiments is an average of

3 runs to account for performance variability caused by AWS and

Azure. In our experiments, the servers for both ORTOA protocols

and the baseline store ∼ 2
20

(1M) data objects and unless stated

otherwise, all experiments use synthetic data for evaluations.

Each client thread picks an object to access uniformly at random,

and unless stated otherwise, it decides to read or write the data

also uniformly at random. Most of the experiments choose a

160B value size, ℓ = 1280 bits (this size is in line with other

oblivious data systems [15, 36] as well as with a range of real-

world applications §6.4). Each experiment measures latency, the
time interval between when a client sends a request to when it

receives the corresponding response; and throughput, the number

of operations executed per second, as measured by clients.

Real world datasets: In addition to detailed experiments on

synthetic data, we measure ORTOA’s performances on three real

world datasets: (i) An Electronic Health Record (EHR) data con-

sisting of patients’ heart disease records [17], (ii) SmallBank [1]

data focusing on single object read/write requests rather than

transactional workloads, and (iii) e-Commerce dataset [55] from

UCI’s machine learning repository consisting of records on cus-

tomers’ online retail purchases. §6.4 discusses more details on

the datasets and the performance of the two versions.

6.1 ORTOA vs. two round trip baseline

In the first set of experiments, our goal is to measure the effect

of proxy-to-server distance on throughput and latency. We com-

pare the two ORTOA protocols with the 2RTT baseline where

the proxy and clients are located in the US-West1 (California)

datacenter and the server is placed at increasingly farther data-

centers of US-West2 (Oregon), US-East1 (N. Virginia), EU-West2

(London), and AP-South1 (Mumbai). Table 2 notes the round-trip

time (RTT) latencies from California to the other datacenters.

Since the TEE approach has a major limitation wherein only a

limited datacenters support SGX enabled machines, TEE-ORTOA

placed the client and server in Virginia and emulated the above

setup using the tc command to simulate similar cross datacenter

latencies as in Table 2. Note that we do not place the server in

the same datacenter as the proxy and the clients so as to mimic

realistic behavior where between 79%-95% of cloud users face

more than 10 ms latency when accessing a cloud server [11].

Further, this experiment runs 32 concurrent client requests and

Figure 2a plots the average latency per client request (i.e., the

effect of proxy-to-server distance on individual client requests),

along with the system’s throughput.

As seen in Figure 2a, as the physical distance between the

proxy and the server increases, latency increases and throughput

decreases for both the ORTOA protocols and the 2RTT baseline.

Comparing the two versions of ORTOA, the TEE version con-

sistently outperforms the label version with TEE’s throughput

values between 0.9-1.2x higher than LBL’s and its latency is

about 20% lower than the LBL version. The reason for this per-

formance difference primarily stems from the increased amount

of computation required both at the proxy and the server side

for LBL-ORTOA compared to the simplistic computation that
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(a) ORTOA vs Baseline (b) Varying concurrency (c) Varying % of write requests. (d) Varying the database size.

Figure 2: (a) Throughput and latency for TEE- and LBL-ORTOA and the 2RTT baseline, where the proxy lies in the California datacenter

and the server is placed at increasingly farther datacenters. (b) Performance measured with increasing the number of concurrent clients

for TEE- and LBL-ORTOA. Both versions perform optimally at 32 clients. (c) Throughput and latency measured for both versions of

ORTOA while increasing the percent of PUTs highlight their effectiveness in hiding the read/write ratios of an application. (d) TEE- and

LBL-ORTOA’s throughput and latency measured while increasing the database size, i.e., number of objects, from 2
10

to 2
22

(∼4.2M). The

performance degrading of LBL-ORTOA is mostly due to a single server performing large computations while storing increasing amounts

of data in memory.

Oregon N. Virginia London Mumbai

California 21.84 62.06 147.73 230.3

Table 2: RTT latencies across different datacenters in ms.

occurs in TEE-ORTOA. This indicates that if and when trusted

enclaves are available at a cloud vendor, utilizing it helps improve

ORTOA’s performance. However, as noted in the experimental

setup section, Azure supports SGX machines in limited datacen-

ters. Hence, the TEE-ORTOA version may lose its performance

benefits when the SGX enabled servers reside far from a majority

of clients. For example, say if Virginia is the only datacenter with

TEE enabled machines but an application has all of its clients in

Asia, then based on Figure 2a, the LBL version is a better choice

than TEE-ORTOA.

Comparing the two versions of ORTOA with the two round

trip baseline, the experiment indicates that across all server loca-

tions, the two versions of ORTOA outperform the 2RTT baseline.

In particular, the latency of the 2RTT baseline is 1.5x to 1.9x

that of the two versions of ORTOA. Inversely, LBL-ORTOA’s

throughput is about 1.7x and TEE-ORTOA’s is about 3.2x that

of the baseline. The primary reason for the baseline’s lower per-

formance stems from incurring higher communication latency

since its computation latency is negligible compared to ORTOA.

This experiment highlights the benefits of constructing a single

round access type oblivious protocol over the state-of-the-art

two-round approach.

6.2 Micro Benchmarking

This set of experiments evaluate the behavior of ORTOA pro-

tocols across different configurations, starting with increasing

concurrent client requests. These experiments place the server

in US-West2 (Oregon) and the proxy and the clients in US-West1

(California) datacenters (the TEE version emulates this setup).

6.2.1 Increasing Concurrency. To understand how the OR-

TOA protocols behave when clients’ request load increases, this

experiment measures their throughput and latency while the

number of concurrent clients (implemented via threads) increases

starting from 1, and the results are depicted in Figure 2b. As seen

in the figure, LBL-ORTOA’s performance strikes a neat balance

at 32 clients with an average latency of ∼30 ms and a throughput

of ∼1000 ops/s. This throughput is about 24x of the throughput at
1 client. Although the throughput at 64 clients is 26% higher than

at 32 clients, the latency is 54% higher at 64 clients, making 32

a better choice. Similarly, for TEE-ORTOA, the obvious optimal

concurrency is 32; the performance plateaus after that whereas

the latency starts spiking after 32 clients. The reason for the stark

increase in latency is that the server machines had 48 cores; so

as the client concurrency approached and went beyond 48, the

latency spiked. Additionally, the increased context switching (i.e.,

paging in and out) between the trusted enclave and untrusted

host processing also increases the latency, which is a common

behavior observed in TEEs. Note that both versions exhibit an

increase in throughput compared to a client concurrency of 1

because when a single client injects requests, the system remains

under-utilized and the client is the primary bottleneck. Since a

concurrency of 32 clients has optimal throughput and latency

for both versions of ORTOA, the following (and the previous)

experiments choose the concurrency of 32 clients, all sending

requests in parallel.

6.2.2 Varying the percent of writes. This experiment mea-

sures throughput and latency of the two versionswhile increasing

the percent of PUT (or write) operations from 0 to 100%, as shown

in Figure 2c. In this experiment, the server resides in Oregon and

32 concurrent clients read or write the data. As seen in the figure,

the throughput and the latency values of LBL-ORTOA remain

more or less constant at ∼920 ops/s and 33 ms latency (a maxi-

mum difference of 40 ops/s for throughput and 2 ms for latency).

Similarly, the TEE version has a consistent throughput of ∼2320
ops/s incurring an average latency of ∼23ms. This experimen-

tally demonstrates the access-oblivious guarantee of ORTOA in

that the performance remains the same regardless of the per-

centage of read or write operations in the client workload for

both versions. This highlights that ORTOA protects applications

from vulnerabilities exploited by observing the overall read/write

ratios of an application.

6.2.3 Varying N: the database size. This experiment eval-

uates ORTOA’s performance when the overall database size, i.e.,

the number of objects stored, increases from 2
10

to 2
22

(∼4.2 mil-

lion objects) and the results are depicted in Figure 2d. As shown

in the figure, for TEE-ORTOA, the throughput and latency re-

main mostly constant as the database size increases. Whereas, for
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LBL-ORTOA, throughput and latency change minimally up until

2
20

(∼1M objects) and the performance gracefully degrades by

11% at 2
22

objects. The primary reason for this degradation is due

to a single server storing increasingly larger number of objects

in memory, which reduces the resources available to execute

the computation (i.e., one decryption for each bit of the value)

necessary to serve each request, impeding performance. The TEE

version does not suffer from this degradation due to the limited

amount of computation it requires in serving each client request.

A standard approach to overcome the performance degradation

in database systems is to scale the storage, which is what we do

in the next experiment.

6.2.4 Scaling ORTOA. In this set of experiments, we ad-

dress the observed performance reduction due to increasing data-

base size by sharding the data across multiple servers and proxies,

i.e., by scaling both storage and compute. This experiment in-

creases the number of storage servers and proxies from 1 to 5,

by pairing each storage server with a proxy and scaling them

pairwise. Since ORTOA aims to hide the type of access performed

by a client (and not the overall access pattern), the system can

scale the number of proxies without compromising security. For

each scaling factor 𝑠 , the client concurrency is also increased by

the scaling factor, i.e., by 32 ∗ 𝑠 . This experiment places all the

proxies and clients in California and the servers in Oregon (TEE-

ORTOA emulates this setup) and each server stores 1M objects.

The resulting throughput and latency are shown in Figure 3a.

Both versions of ORTOA scale near-linearly with the increas-

ing number of servers and proxies: their peak throughput at a

scale factor of 5 is about 5x the throughput at a scale factor of

1. The latency remains constant across different scale factors for

both versions. This experiment emphasizes the linear scaling of

ORTOA– a highly desired property of data management systems.

6.3 ORTOA vs the 2RTT baseline: Varying ℓ –

the length of values

Since the storage, communication, and computation complex-

ity of LBL-ORTOA are directly proportional to ℓ (see §5.3), in

this experiment, we measure throughput and latency of both

versions while increasing the size of the values (where all val-

ues have equal length) from 10B to 600B with 32 concurrent

clients sending requests and compare the performance with the

2RTT baseline; the results are depicted in Figure 3b. Note that

this experiment places the server in Oregon and the proxy and

clients in California. Interestingly, this experiment reveals the

turning point at which the baseline outperforms LBL-ORTOA.

As expected, LBL-ORTOA’s throughput decreases and latency

increases as the value size grows. At 300B both the baseline

and LBL-ORTOA have comparable performance and the baseline

starts outperforming LBL-ORTOA after that. Whereas, compar-

ing the baseline with TEE-ORTOA, both protocols exhibit no

performance fluctuations as the value sizes increase. Although

the TEE version has this significant advantage compared to the

LBL version, not all applications can benefit from and choose the

TEE version due to the as yet limited support of trusted enclaves

from all cloud vendors. Moreover, the side-channel leakages in

TEEs [8, 37, 47, 56] may also limit the adoption of TEE-ORTOA.

Given that the LBL version has no such limitations, the next sec-

tion delves deeper to understand why its performance degrades

as the value sizes increase and studies when is the 2RTT baseline

better than LBL-ORTOA.

6.3.1 Latency breakdown of LBL-ORTOA. We speculated

the primary reason for LBL-ORTOA’s performance degradation

to be the increased computation at the proxy as it has to gener-

ate many more labels, and then encrypt, and decrypt the labels.

To validate this hypothesis, we measured latency breakdowns

while increasing the value sizes; this breakdown in shown in Fig-

ure 3c. Surprisingly, while the computation time does increase for

larger values (by 1ms), the primary bottleneck is actually the ad-

ditional communication time required to transfer larger amounts

of data (see the communication overhead analysis in §5.3.2). Fig-

ure 3c plots the overall latency of the baseline to contrast with

LBL-ORTOA’s latency, which consists of computation time, the

constant communication latency of 21.8ms, and the additional

communication overhead time. We see after 300B LBL-ORTOA’s

overall latency becomes greater than the baseline’s latency. How-

ever, we cannot blindly claim that for objects greater than 300B,

the 2RTT baseline is always a better choice because where the

server is located with regard to the proxy also plays a vital role

in this.

6.3.2 How to choose betweenLBL-ORTOAand the 2RTT
baseline? To help an application choose between LBL-ORTOA

and the baseline (assuming that TEEs are not a viable option),

we provide the following equation: Let 𝑐 be the cross-datacenter

communication time between the server and the proxy, let 𝑝

be LBL-ORTOA’s processing or computation time, and let 𝑜 be

LBL-ORTOA’s communication overhead time due to exchanging

large messages. LBL-ORTOA is a better choice for an application

if:

𝑐 > 𝑝 + 𝑜
If communicating with the server one extra round is worse

than the combined processing time and additional large-message

overhead delays, then LBL-ORTOA will yield better performance

than the 2RTT baseline; and vice versa. To highlight this point,

we conduct an experiment with objects of 300B by placing the

server in EU, as an example to show the impact on latency and

performance when an application complies with laws such as

GDPR, which may disallow moving data outside of EU. The re-

sults are shown in Figure 3d.

As seen in the figure, when the server is placed in Europe,

𝑐 = 147.7𝑚𝑠 and for LBL-ORTOA, 𝑝 + 𝑜 = 21.7𝑚𝑠 , LBL-ORTOA’s

throughput is 1.7x that of the baseline. This underscores our hy-

pothesis that having fewer rounds of communication at the cost of

increased message sizes is worthwhile when the communication

latency between the proxy and server is large compared to the

processing and communication overhead of LBL-ORTOA. Even

with low proxy-to-server communication latency, LBL-ORTOA

can be a better choice for performance than the 2RTT baseline for

small object sizes, as discussed in 6.1. Whereas with low proxy-

to-server communication latency but large value sizes (such as

images or videos), the 2RTT solution performs better than LBL-

ORTOA.

6.4 Real world datasets

To assess ORTOA’s behavior for real world applications, this ex-

periment measures and compares the performance of its two ver-

sions with the baseline for three practical applications with strict

privacy needs: health care, banking, and e-commerce. For each

application, we initialize the database with real world datasets:

(i) An Electronic Health Record (EHR) dataset consisting of heart

disease information [17] with 14 attributes. For this dataset, we

chose two attributes: a UUID to identify unique patients and their
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(a) Increasing the scale factor (b) Varying value size ℓ – in bytes (c) Varying value size ℓ – in bytes (d) Servers in Oregon and EU

Figure 3: (a) TEE- and LBL-ORTOA’s throughput and latency measured when the number of servers and proxies in the system are scaled

up to a factor of 5. Throughput scales near-linearly with the scale factor, highlighting the scalability of ORTOA. (b) Throughput and latency

measured for TEE- and LBL-ORTOA, and the baseline while increasing the size of data values from 10B to 600B. Due to the large-message

communication overhead of LBL-ORTOA, the baseline outperforms LBL-ORTOA starting at 300B, whereas TEE-ORTOA’s performance

remains unchanged. (c) Latency breakdown of LBL-ORTOA: computing time spent generating labels and encryptions, communication

latency between the proxy (US-Ca) and server (US-Or), and additional communication overhead due to exchanging larger messages for

higher value sizes. (d) Throughput (in log scale) and latency comparison between LBL-ORTOA and the baseline when the server is placed

in Oregon vs. EU.

Figure 4: Throughput and latency comparison between the OR-

TOA protocols and the baseline for three practical applications

based on real world datasets - Electronic Health Records (EHR),

SmallBank data, and e-commerce data.

resting blood pressure data. The size of resting blood pressure

attribute is 10B (80 bits). Because the original dataset consists of

only 1024 (2
10
) entries, we repeat this dataset to create a data-

base of size 2
20

(1M) objects. (ii) A SmallBank[1]-like dataset

for banking applications where, although SmallBank [1] sup-

ports transactional queries, this experiment focuses on single

object read/write requests from clients, which aligns with the

type of requests supported by ORTOA. This dataset also consists

of 1M entries with a UUID attribute to identify bank customers

and a 50B (400 bits) combined balance attributes consisting of

checking balance, savings balance, and account numbers. (iii) An

e-commerce dataset [55] from UCI’s machine learning reposi-

tory with 8 attributes. For the experiment we pick 3 attributes,

invoiceId as object keys and concatenated customerId (with 5

character limit) and productDescription (with 35 character limit)

attributes as values. Hence, in total, the plaintext values for this

dataset amounts to 40B (320 bits). While the original dataset con-

sists of 541,909 entries, we re-use the dataset to build a database

with 1M entries.

This experiment measures the latency and throughput of the

two versions of ORTOA on real world datasets and contrasts

the performance with the 2RTT baseline with 32 concurrent

client threads generating the read/write workload. As depicted

in Figure 4, TEE-ORTOA’s throughput is roughly 3.2x that of the

2RTT baseline for all three applications. Whereas, LBL-ORTOA’s

throughput is 1.9x of the baseline for EHR, 1.7x for SmallBank,

and 1.8x for e-commerce (varying value sizes, i.e., 10B, 50B, and

40B respectively, causes this difference in performance). Con-

versely, the baseline’s latency is 1.7-1.9x that of the two versions

of ORTOA. These performance differences on real world data are

consistent with those on synthetic data. This experiment indi-

cates that for a variety of popular applications that have strong

privacy requirements, ORTOA outperforms the 2RTT baseline.

7 SECURITY OF ORTOA

This section defines the security guarantees of ORTOA. ORTOA

aims to hide the type of client access – read or write – from an

adversary that controls the external database server. The security

definition closest to capturing this indistinguishability lies in

ORAM [24]; however ORAM’s security definition focuses pri-

marily on access pattern indistinguishability and hence cannot to

employed to capture the desired goals of ORTOA. Therefore, we

introduce a new security definition to express the desired read

or write obliviousness called real-vs-random read-write indistin-

guishability or ROR-RW indistinguishability. We note that the new

definition is the best possible definition for settings that hide the

type of access without hiding the location of the accessed object.

Real(𝐴)

1 𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅
2 for 𝑎𝑖 ∈ 𝐴 do

3 𝑜𝑢𝑡𝑝𝑢𝑡
∪←−

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −
𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑎𝑖 )

4 end

5 Return 𝑜𝑢𝑡𝑝𝑢𝑡

Ideal(𝐾 )

1 𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅
2 for 𝑘𝑖 ∈ 𝐾 do

3 𝑜𝑢𝑡𝑝𝑢𝑡
∪←−

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 (𝑘𝑖 )
4 end

5 Return 𝑜𝑢𝑡𝑝𝑢𝑡

Figure 5: Security game where given a sequence of client gen-

erated accesses 𝐴, the Real world takes 𝐴 as input and the Ideal

world takes the sequence of keys accessed in 𝐴 as input and both

produce as output a sequence of encryptions that are sent to the

external server.

Security definition: Consider a sequence of𝑚 client accesses

𝐴 = {(𝑜𝑝1, 𝑘1, 𝑣𝑎𝑙1), · · · , (𝑜𝑝𝑖 , 𝑘𝑖 , 𝑣𝑎𝑙𝑖 ), · · · , (𝑜𝑝𝑚, 𝑘𝑚, 𝑣𝑎𝑙𝑚)}
11
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where for 𝑖𝑡ℎ request, 𝑜𝑝𝑖 indicates the type of operation (read or

write), 𝑘𝑖 denotes the key, and 𝑣𝑎𝑙𝑖 is either an updated value for

writes or ⊥ for reads. We use a security game-based definition

that provides the sequence of accesses 𝐴 as input to both the real

system and an ideal system (simulator based), where both are

stateful entities, and both produce outputs 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 and 𝑂𝑢𝑡𝑆𝑖𝑚
respectively consisting of a sequence of accesses to the external

server. Note that 𝐴 can be adaptively generated; ORTOA does

not require𝐴 to be known a-priori. A system is said to be ROR-RW
secure if, given the two outputs, an adversary can distinguish

between the two with negligible probability, i.e.,

For all probabilistic polynomial adversaries A,

| 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑅𝑒𝑎𝑙 ) → 1] − 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑆𝑖𝑚) → 1] |≤ 𝑛𝑒𝑔𝑙

To argue for correctness of ORTOA protocols, we consider a

game G that either executes Real or Ideal algorithm with uni-

formly random probability and provides the output to an adver-

sary. Protocols of ORTOA are ROR-RW secure if the adversary,

based on the received output, can identify the algorithm selected

by the security game with negligible probability. Note that the

signature for Procedure ProcessClientRequest (or Pcr) differs
syntactically but not semantically for the FHE and TEE versions

and for the label version. For the security analysis, we simply

assume that a client transforms an access in 𝐴 to the necessary

format (by encrypting the values either using FHE or standard

encryption for the FHE and TEE versions respectively).

The Real algorithm invokes ORTOA’s respective ProcessClien-
tRequest procedure version for each of the𝑚 accesses in 𝐴 and

appends the output of each access to produce 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 . The Ideal

algorithm, on the other hand, invokes a simulated function, Sim-
ulator. Each version utilizes its own simulator so as to match the

output of the respective real ORTOA protocol. The Ideal algo-

rithm (and its Simulator) has no access to the type of requests 𝑜𝑝𝑖
or the data values in A; it generates outputs that depend only

on dummy values. The collation of these dummy encryptions

forms 𝑂𝑢𝑡𝑆𝑖𝑚 . If we can prove that the output generated by the

Real algorithm appears indistinguishable to 𝑂𝑢𝑡𝑆𝑖𝑚 , it proves

that ORTOA is ROR-RW secure.

Theorem 1: A sequences of accesses A generated by the proto-

cols of ORTOA is ROR-RW secure.

Proof : The formal proof, along with a detailed security defini-

tion, can be found in the technical report [38].

8 FUTUREWORK

Designing novel ORAM schemes: Apart from mitigating at-

tacks exploiting access type on encrypted datastores, the ORTOA

protocols can pioneer new oblivious schemes that hide both the

access type and the accessed object in a single round. To show

the possibility of designing such schemes, we briefly outline a

sketch of a novel PathORAM [53]-like tree-based ORAM scheme

that executes operations in one round. As the name suggests,

tree-based ORAM schemes such as [33, 44, 45, 53] structure the

outsourced data as a tree and store each outsourced object in

a randomly chosen path. Specifically, in RingORAM [44], each

node in the tree stores a fixed (maximum) number of real objects

and dummy objects. To serve a client request, RingORAM reads

the entire path on which the object resides, fetching all but one

dummy objects at each level of the path. It temporarily stores

the read real object in a cache-like datastructure called stash, and
finally shuffles the stash objects to store them in the path that

was read, and writes the path back in an eviction step. This incurs

two rounds of communication: once to read a path and once to

evict it, i.e., write it back after shuffling. Although RingORAM

and many other schemes [10, 33, 45] optimize by evicting the

path as an offline process, they still require one round of com-

munication for writing. We can design a novel RingORAM-like

scheme where reading and evicting a path can occur in a single
round as follows: given that when a client requests an object, the

adversary observes a random path, 𝑝 , being accessed, the new

scheme can identify at each level of 𝑝 whether an object from this

level is being read or being written. Reads would correspond to

fetching the client requested object and writes are for evicting the

objects in the stash. This negates the necessity of an offline evic-

tion process. Similar to existing schemes, the read object would

reside in the stash and be evicted upon subsequent accesses to

the server. Even if the stash is empty, the scheme should access

one object per level to avoid any information leakage. Such a

scheme not only reduces the rounds of communication but also

improves the concurrency since paths are accessed only once per

request.

9 CONCLUSION

Encrypted databases leak information about when a client per-

forms a read vs. a write operation to an adversary; by observing

individual read/write accesses, the adversary can learn the overall

read/write workload of an application. An adversary can exploit

this information leak to violate privacy at an individual user level

or at an application level. Existing solutions to hide the type

of operation (deployed in ORAM or frequency smoothing tech-

niques) consist of always reading an object followed by writing

it, irrespective of the client request. This incurs one round of

redundant communication per request and doubles the end-to-

end latency compared to plaintext datastores. In this work, we

propose ORTOA, a family of one round data access protocols that

hide the type of access. Specifically, we propose three versions

of ORTOA, each varying in its trust assumptions. Leveraging

cryptographic primitives like fully homomorphic encryption,

trusted hardware enclaves, and a novel garbled circuits-inspired

primitive, ORTOA offers flexibility in opting for suitable trust

assumptions for applications. This is the first proposal to focus

on hiding access type on encrypted databases. ORTOA can be uti-

lized to develop novel ORAM schemes that hide access patterns

in one round. Experimentally evaluating ORTOA and comparing

it with a baseline that requires two rounds to hide the type of

access confirms the benefits of designing a single round solution:

the baseline’s latency is 1.5-1.9x that of ORTOA, with 1.7-3.2x

throughput difference than the ORTOA protocols for objects of

size 160B.
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