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ABSTRACT
Spatial-temporal forecasting plays an important role in many
real-world applications, such as traffic forecasting, air pollutant
forecasting, crowd-flow forecasting, and so on. State-of-the-art
spatial-temporal forecasting models take data-driven approaches
and rely heavily on data availability. Such models suffer from
accuracy issues when data is incomplete, which is common in re-
ality due to the heavy costs of deploying and maintaining sensors
for data collection. A few recent studies attempted to address
the issue of incomplete data. They typically assume some data
availability in a region of interest either for a short period or at a
few locations. In this paper, we further study spatial-temporal
forecasting for a region of interest without any historical obser-
vations, to address scenarios such as unbalanced region devel-
opment, progressive deployment of sensors or lack of open data.
We propose a model named STSM for the task. The model takes
a contrastive learning-based approach to learn spatial-temporal
patterns from adjacent regions that have recorded data. Our key
insight is to learn from the locations that resemble those in the
region of interest, and we propose a selective masking strategy to
enable the learning. As a result, our model outperforms adapted
state-of-the-art models, reducing errors consistently over both
traffic and air pollutant forecasting tasks. The source code is
available at https://github.com/suzy0223/STSM.

1 INTRODUCTION
Spatial-temporal forecasting is an important component of many
real-world applications, e.g., Intelligent Transportation Systems
(ITS) and air quality monitoring systems. Current state-of-the-
art methods for spatial-temporal forecasting are data-driven.
They leverage sequential models, e.g., 1-D convolutional neu-
ral networks (CNN) [20, 22, 31] or recurrent neural networks
(RNN) [16], to capture temporal features, along with spatial mod-
els, e.g., graph neural networks (GNN), which model spatial re-
lations [20, 22, 31]. However, data scarcity is ubiquitous due to
high deployment and maintenance costs of sensors and unstable
transmission mediums. Hence, developing a model that enables
accurate forecasting without complete historical data is critical.

Prior attempts to address the data scarcity issue for spatial-
temporal tasks fall into two categories: (1) datamissing at times [14,
17, 25, 32, 36]: observations at locations of interest are incom-
plete for all time due to complex environments and/or faulty
sensors, or a short sensor deployment time; (2) data missing at
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(scattering) locations [1, 30, 39]: observations are missing because
the locations of interest do not have historical data recorded at
all (e.g., no sensors have been deployed at those locations). For
the latter category, recent studies revisit Kriging [7]. The aim is
to generate fine-grained records through coarse-grained obser-
vations by inserting derived data for the unobserved locations.
The state-of-the-art models [30, 39] adopt neural networks as a
solution. Both categories assume some data available for the region
of interest, shown in Fig. 1 (a) and 1 (b).
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(a) Data missing at times (b) Data missing at 
scattering locations

(c) Our problem: data 
missing at continuous 
time and locations

Figure 1: Problem setting comparison. Coloured maps and
grey maps indicate data observed and unobserved, respec-
tively. Our focus is Case (c).

Existing studies fail to consider a "continuous" data scarcity
scenario, where all locations without any data observations are
skewed towards a continuous sub-region (i.e., the region of interest
has no available data) while the region boundary is adjacent to the
locations with data observations. Fig. 1 (c) illustrates this scenario,
which may occur when (1) sensors are deployed progressively
from one region to another (one such scenario has been observed
in Hong Kong [25]), (2) some regions do not have resources to
deploy the sensors (e.g., Shanghai traffic congestion data only
covers the core city region [37]), or (3) regions are not willing
to open their data (e.g., the Tom-Tom traffic index [27] does not
have data from mainland China).

To fill this gap, we propose a new problem – spatial-temporal
forecasting for a region of interest without historical data.

This new problem is challenging, and existing Kriging-based
approaches [30, 39] do not address the problem directly. This is
because the core idea of the Kriging-based approach is to perform
data interpolation for the locationswithout observations based on
nearby locations (or time) with observations, which is unavailable
under our setting.

For example, an earlier model, IGNNK [30], represents the
region of interest as a graph and exploits GNNs for Kriging. It
reports substantial performance drops in our setting (detailed
in Section 5.2) because GNNs become ineffective when the local
neighbourhood of a location does not have historical observa-
tions to help infer the data. The state-of-the-art Kriging model,
INCREASE [39], also uses a graph-based region representation.
It aggregates information from nearest neighbours in advance
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and then uses GRUs (which is a type of RNN) to capture the tem-
poral correlation of the data. This model fails to utilise the global
features of the graph as it only considers the nearest neighbours.

We propose a spatial-temporal forecastingmodel with a selective
masking strategy, named STSM, to enable learning from the loca-
tions that resemble those in the region of interest and forecasting
for the region of interest without observations.Wemask observed
data from sub-regions (which are near the region of interest and
have historical data) and train STSM to make predictions for the
sub-regions. Then, at testing time, we exploit the similarity be-
tween the region of interest and the sub-regions used at training
to make predictions for the region of interest.

Unlike existing studies that use random masking [30], STSM
incorporates a selective masking module to mask sub-regions
that are more similar to the region of interest. This strategy
makes it easier for STSM to extend its forecasting capability from
the masked sub-regions to the region of interest. The selective
masking module fuses regional features, road network features
and spatial distance to compute similarity scores between the
masked sub-region (i.e., masked locations) and the region of
interest (i.e., unobserved locations). The similarity scores are
normalised into the range of [0,1] and serve as the probabilities
for drawing the sub-regions (or locations) to be masked.

Further, we use the observed locations’ historical data to gen-
erate pseudo-observations for the unobserved locations and the
masked locations, which enables computing a temporal similarity
based adjacency matrix, i.e., we build links between observed
locations and unobserved locations that have high temporal sim-
ilarities. This helps identify more similar neighbours.

Overall, this paper makes the following contributions:
• We propose a new spatial-temporal forecasting task - fore-
casting for regions without historical observations. This
task can be applied to addressing issues of unbalanced
region development and lack of open data.

• We design a selective masking module to guide our model
STSM to mask observed locations that have high similarity
with the unobserved region to enable STSM to generalise
predictions to the unobserved region.

• Wedesign an efficient pseudo-observation generating strat-
egy and compute a temporal adjacency matrix based on
it to help identify the more informative neighbours and
enhance model learning efficacy.

• Extensive experiments show that our model outperforms
the state-of-the-art model that we adapt to this new prob-
lem, in terms of forecasting accuracy.

2 RELATEDWORK
2.1 Spatial-temporal Forecasting
Current state-of-the-art spatial-temporal forecasting models are
mainly based on deep neural networks. DCRNN [16] introduces
a diffusion convolutional recurrent neural network to model the
spatial correlation between locations and adapts gated recurrent
units (GRU) to model the temporal dependency. GRUs and other
RNN models have a recurrent structure that suffers in model run-
ning time and in the effectiveness of modelling longer sequences.
To overcome this limitation, GraphWaveNet [31] utilises 1-D
temporal convolutional modules to capture the temporal depen-
dency. In addition, the attention mechanism [33] is widely used
in spatial-temporal forecasting [6, 8, 10, 38]. A series of recent
studies further embed heterogeneous relations into adjacency
matrices, including temporal similarity [15, 22] and embedding

similarity [20]. Some studies [11–13, 18] adopt self-supervised
learning to enhance spatial-temporal pattern representations.
Meanwhile, DeepSTUQ [21] considers prediction uncertainty
when forecasting traffic. These models assume fully available
historical data and suffer in learning capability when data is
incomplete.

2.2 Spatial-temporal Forecasting with
Incomplete Data

Existing spatial-temporal forecasting methods for incomplete
data can be divided into two categories from the data perspective:
data missing at times and data missing at (scattering) locations.

Data missing at times: Observations at locations of interest
are incomplete for all time. For this category, one dominant
class of studies focuses on random or continuous data missing
at times caused by harsh environments [14, 17], e.g., extreme
weather or transmission device issues. Generative adversarial
networks (GAN) are applied to address this issue [32, 36]. An-
other study [25] uses transfer learning for settings where sensors
have only been deployed for a short period of time (e.g., 10 days).

Datamissing at (scattering) locations: Some locations of interest
do not have observations at all. Problems considering this setting,
i.e., Kriging [7], aim to impute fine-grained records via coarse-
grained records, which is to recover signals for unobserved loca-
tions. Gaussian process regression [29] is a classic solution, while
it suffers from low efficiency and poor scalability. Tensor/matrix
completion algorithms [2, 24, 41] show better efficiency on large
datasets. They combine the low-rank structure and regularisers
to maintain local and global consistency. Most tensor/matrix com-
pletion algorithms are transductive. They cannot process a new
location of interest without re-training. Recent studies [30, 39]
propose inductive structures. For example, IGNNK [30] utilises
the inductive nature of GNNs together with 1-D CNN to recover
records for unobserved locations. This model struggles to handle
high data missing ratios where there is little information to learn
from the neighbourhood. INCREASE [39] adopts an RNN for
inductive imputation. This method uses heterogeneous relations
for more accurate estimation, while it struggles in capturing
global spatial-temporal patterns.

2.3 Graph Contrastive Learning
Our proposed STSM is based on contrastive learning, in particu-
lar, graph contrastive learning (GCL), which applies contrastive
learning to graph data. The basic idea of contrastive learning
is to maximize the similarity between positive samples while
minimizing that between negative samples.

A series of studies [34, 35, 42] focuses on graph augmentation
modules that generate positive and negative samples. For exam-
ple, GraphCL [35] introduces four augmentation methods, such
as node dropping and edge perturbation, to create positive graph
pairs. Later, GCA [42] and JOAO [34] improve the augmentation
strategies by taking the node weights and the edge weights into
consideration. Besides, some studies [23, 28] aim to maximize
the mutual information between graph inputs at different scales,
e.g., nodes vs. graphs.

A few studies [5, 18] introduce GCL into spatial learning tasks.
For example, SARN [5] learns road network embeddings via con-
trastive learning, STGCL [18] applies GCL to predict traffic flow
assuming complete data. Unlike STGCL, our model can process
incomplete data because of the proposed selective masking mod-
ule that can adaptively augment spatial-temporal graphs based on
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the heterogeneous similarities between observed and unobserved
locations.

3 PROPOSED BASE MODEL
We start with a basic version of our proposed model, named
STSM-RNC (Fig. 2). We first define basic concepts and our studied
problem. Then, we present our base model and its training and
testing procedures.

3.1 Concepts and Problem Statement
Region and Region Graph.We represent a region as a graph
𝐺 = (𝑉 , 𝐸). The set of graph vertices𝑉 represents 𝑁 locations of
interest in the region, and the set of graph edges 𝐸 represents the
connection between the locations. Graph 𝐺 has a feature matrix
L ∈ R𝑁×𝐹 for the locations, where 𝐹 is the dimensionality of the
location features. The features of a location consist of two parts,
i.e., region information and road network information, which
will be detailed in Section 4.1.

For each location 𝑣𝑖 ∈ 𝑉 , 𝑥𝑡𝑖 ∈ R𝐶 represents the observations
at 𝑣𝑖 at time step 𝑡 , where 𝐶 is the number of different types of
observations, e.g., traffic speed, PM2.5, etc.

Observed and unobserved regions. Region graph 𝐺 can
be further divided into two adjacent sub-regions based on the
availability of observations for the sub-regions, i.e., the observed
region and the unobserved region. The locations in these two re-
gions are referred to as observed locations (i.e., with observations)
and unobserved locations (i.e., without observations), respectively.
We use 𝑅𝑜 to denote the region that contains all and only the
observed locations. Similarly, we use 𝑅𝑢 to denote the region
that contains all and only the unobserved locations. These two
regions have no overlap with each other, i.e., 𝑅𝑜 ∩𝑅𝑢 = 𝜙 . We use
𝐺𝑜 = (𝑉𝑜 , 𝐸𝑜 ) to represent the graph on the observed locations,
where 𝑉𝑜 ⊂ 𝑉 denotes the set of the observed locations, and
𝐸𝑜 ⊂ 𝐸 ∩ (𝑉𝑜 × 𝑉𝑜 ) denotes the set of the edges over 𝑉𝑜 . We
use 𝑁𝑜 to denote the size of 𝑉𝑜 . Similarly, we define the graph
on the unobserved locations, which is denoted as 𝐺𝑢 , and the
nodes 𝑉𝑢 (and its size 𝑁𝑢 ) and edges 𝐸𝑢 on this graph. Note
that, 𝑁 = 𝑁𝑜 + 𝑁𝑢 ; X𝑡

𝐺𝑜
= (𝑥𝑡1, ..., 𝑥

𝑡
𝑁𝑜

) ∈ R𝑁𝑜×𝐶 denotes the
observations of the observed locations in 𝐺𝑜 at time steps 𝑡 ; and
X̂𝑡
𝐺𝑢

= (𝑥𝑡1, ..., 𝑥
𝑡
𝑁𝑢

) ∈ R𝑁𝑢×𝐶 denotes estimated values for the
unobserved locations in 𝐺𝑢 at time step 𝑡 .

Problem definition.Given a region graph𝐺 as defined above,
with location features L and past observations on the observed
locations for a time window of length 𝑇 , we aim to learn a func-
tion 𝑓 to predict the values for the unobserved locations over the
next 𝑇 ′ time steps:

X̂𝑡+1
𝐺𝑢
, ..., X̂𝑡+𝑇 ′

𝐺𝑢
= 𝑓 (X𝑡−𝑇+1

𝐺𝑜
, ...,X𝑡

𝐺𝑜
;𝐺 ;L) (1)

3.2 Overview of Our Base Model
We next present a basic model (i.e., STSM-RNC in Section 5.2.2)
that directly combines spatial-temporal modelling with random
sub-graph masking to forecast for regions without observations
as Fig. 2 shows. The main idea of STSM-RNC is to learn a model
that can forecast observations (e.g., traffic speed or PM2.5) for
masking sub-graphs and to extend this capacity to forecast for
unobserved locations.

We denote the full graph with those unobserved locations as
𝐺 . We mask a subset of the locations of𝐺𝑜 to generate a masked
view𝐺𝑚

𝑜 (Section 3.3). Following previous studies [9, 16], we use
temporal similarity-based adjacency matrix and spatial-based

adjacency matrix for spatial correlation modelling. To compute
the temporal similarity for the unobserved locations, we first
compute pseudo-observations for all unobserved locations. Then,
we use dynamic time warping (DTW) [3, 15] to compute temporal
similarities among all observed locations, and the temporal simi-
larities between the observed and the unobserved locations. Be-
sides, for the masked locations in each model training epoch, we
compute pseudo-observations for them and compute the tempo-
ral similarities between masked locations and observed locations.
After these steps, we obtain X𝑡−𝑇+1:𝑡

𝐺𝑚
𝑜

and X𝑡−𝑇+1:𝑡
𝐺𝑚 for train-

ing and testing, respectively, where both X𝑡−𝑇+1:𝑡
𝐺𝑚
𝑜

and X𝑡−𝑇+1:𝑡
𝐺𝑚

contain the pseudo-observations for the masked or unobserved
locations in 𝐺𝑜 or 𝐺 .

We feed X𝑡−𝑇+1:𝑡
𝐺𝑚
𝑜

into a spatial-temporal modelling module to

generate the prediction resultX𝑡+1:𝑡+𝑇 ′

𝐺𝑚
𝑜

(Section 3.4) and compute
the mean squared error between the prediction and the ground
truth as prediction loss to optimise the spatial-temporal model.
After the model is trained, we feed X𝑡−𝑇+1:𝑡

𝐺𝑚 into the model to
obtain predictions for the unobserved locations (Section 3.5).

3.3 Sub-graph Masking
STSM-RNC learns to predict values for masked locations during
training and then extends this capability to predict values for
unobserved locations at testing. To simulate the setting of a
continuous region without data observations, which we focus
on, we mask the sub-graph formed by each selected location and
its 1-hop neighbours instead of a set of scattering locations.

Defining a sub-graph. The sub-graph of an observed location
is formed by its 1-hop neighbours. We compute a location’s 1-
hop neighbours based on a spatial adjacency matrix A𝑠𝑔 , which
is defined by Eq. 2, where 𝜖𝑠𝑔 is a hyper-parameter, and the
𝑑𝑖𝑠𝑡 (𝑐𝑖 , 𝑐 𝑗 ) denotes the distance between locations 𝑖 and 𝑗 (𝑐𝑖
and 𝑐 𝑗 are their geo-coordinates.) We use Euclidean distance in
this paper for efficiency considerations, though road network
distance can also be used.

𝐴𝑠𝑔,𝑖 𝑗 =

{
1 𝑒𝑥𝑝 (−𝑑𝑖𝑠𝑡 (𝑐𝑖 ,𝑐 𝑗 )2

𝜎2 ) ≥ 𝜖𝑠𝑔,
0 otherwise.

(2)

Sub-graphmasking.We use a masking ratio 𝛿𝑚 to define the
percentage of observed locations to be masked. The number of
locations masked is expected to be 𝑁𝑜 · 𝛿𝑚 . Since the sub-graph
of each location may have a different size, STSM-RNC iteratively
and randomly selects a location and masks the location and its
1-hop neighbours until the number of masked locations reaches
𝑁𝑜 · 𝛿𝑚 .

3.4 Spatial-temporal Modelling
The spatial-temporal modelling module of our base model STSM-
RNC contains the 1-D convolution networks for temporal corre-
lation modelling and the graph convolutional networks (GCNs)
for spatial correlation modelling. The spatial-temporal modelling
module stacks multiple blocks to compute the final output. Fig. 3
shows the structure of the spatial-temporal modelling module
and details the 𝑙th block of the module. Each block contains a
temporal correlation modelling module and a spatial correlation
modelling module. These two modules are parallel in each block.
We first describe the input features and the adjacency matrices
used in the spatial-temporal modelling module. Then, we detail
the temporal and spatial correlation modelling modules.
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Figure 2: Model architecture of STSM-RNC. The model contains a sub-graph masking module and a spatial-temporal
modelling module.
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Figure 3: The structure of the spatial-temporal model

3.4.1 Input Features and Adjacency Matrices. The input fea-
tures of STSM-RNC consist of historical observations for the
observed locations, pseudo-observations for the unobserved and
the masked locations, and temporal attention which is used to
indicate the time of a day. Besides, we compute two types of
adjacency matrices for the GCNs in our model.

We compute pseudo-observations for the 𝑖-th unobserved or
masked location from real observations 𝑥𝑡

𝑖
=
∑

𝑗∈𝑁𝑜
𝛼𝑖, 𝑗𝑥

𝑡
𝑗
. The

weight for each observed location is determined by its spatial
distance to location 𝑖 , as defined by Eq. 3:

𝛼𝑖, 𝑗 =
𝑑𝑖𝑠𝑡 (𝑐𝑖 , 𝑐 𝑗 )−1∑
𝑙∈𝑁𝑜

𝑑𝑖𝑠𝑡 (𝑖, 𝑙)−1
(3)

This step can introduce more information into an unobserved
or masked location based on that of its neighbours.

Then, we build a temporal similarity-based adjacency matrix.
We follow a prior work [15] and adopt DTW to compute the
temporal similarity. Since pseudo-observations can be regarded
as real observations with noises, we only build links among the
observed locations and from observed locations to unobserved
(masked) locations (i.e., unobserved locations cannot send mes-
sages to observed locations directly during GCN training). This
way, we avoid polluting the embeddings of the observed loca-
tions by those of the unobserved (masked) locations. We com-
pute 𝑞𝑘𝑘 and 𝑞𝑘𝑢 most similar pairs of observed locations and
pairs of observed and unobserved (or masked) locations, respec-
tively. We establish a temporal similarity-based adjacency matrix

(A𝑡𝑟𝑎𝑖𝑛
𝑑𝑡𝑤

∈ R𝑁𝑜×𝑁𝑜 in the training process and A𝑑𝑡𝑤 ∈ R𝑁×𝑁 in
the testing process) by assigning an edge weight of 1 for these
pairs, and 0 for the rest of the location pairs. Since the locations
are masked dynamically in each training epoch,A𝑡𝑟𝑎𝑖𝑛

𝑑𝑡𝑤
is updated

in each model training epoch.
Further, we use temporal attention to capture periodic pat-

terns, which can significantly impact the observed values of
spatial-temporal data, e.g., rush hours. Given the length of a time
interval that the spatial-temporal observations are recorded (e.g.,
5 minutes), we can compute the number of intervals in a day,
denoted as𝑇𝑑 . Now each observation interval in a day gets an in-
terval ID in [0,𝑇𝑑 − 1]. Given an input of length𝑇 , we compute a
time-of-day embedding𝑇𝐸 ∈ R𝑇 , which stores the interval IDs in
the input time window. For example, 𝑇𝐸 = [0, 1, 2, 3] represents
an input observation sequence that starts at the first interval of
a day and ends at the fourth interval of a day.

To attach the time embedding 𝑇𝐸 to the model input, we first
project TE𝑡−𝑇+1:𝑡 ∈ R𝑁𝑜×𝑇×1 and the input features X𝑡−𝑇+1:𝑡 ∈
R𝑁𝑜×𝑇×𝐶 into the same latent space and then multiply them as
formulated by Eq. 4:

H𝑡−𝑇+1:𝑡,0 = 𝜙1 (X𝑡−𝑇+1:𝑡 ) ⊗ 𝜙2 (TE𝑡−𝑇+1:𝑡 ) (4)

Here, X𝑡−𝑇+1:𝑡 ∈ R𝑁𝑜×𝑇×𝐶 is the input observation sequence of
the observed graph (i.e., 𝐺𝑜 or 𝐺𝑚

𝑜 ), while TE𝑡−𝑇+1:𝑡 is the cor-
responding time embedding; 𝜙1 (·) and 𝜙2 (·) are linear functions
that project the input observation sequence and time embedding
into the same latent space for element-wise multiplication. We
now obtain the features H𝑡−𝑇+1:𝑡,0 ∈ R𝑁𝑜×𝑇×𝐶′

, which serve as
the inputs to the spatial-temporal model.

3.4.2 Temporal Correlation Modelling. 1-D convolution neu-
ral networks have shown strong performance in temporal feature
modelling. We adopt 1-D dilated convolution neural networks
to embed the temporal features. For ease of presentation, we
simplify the notation of the input features of the first layer of the
spatial-temporal model, H𝑡−𝑇+1:𝑡,0, to H0.

H𝑙
𝑡𝑐𝑛 = ∗𝑑𝑙𝜎 (𝑊

𝑙

𝑑𝑙
𝑗

H𝑙−1) (5)

Here, H𝑙−1 ∈ R𝑁×𝑇×𝐶′
is the output of the previous layer;

H𝑙
𝑡𝑐𝑛 ∈ R𝑁×𝑇×𝐶′

, 𝑙 = 1, 2, . . . , 𝐿 is the output of the 𝑙-th layer’s
1-D temporal convolution networks; ∗𝑑𝑙 means to stack 1-D di-
lated temporal convolution networks, where 𝑑𝑙

𝑗
represents the

exponential dilation rate, 𝑑𝑙
𝑗
= 2𝑗 . To keep the same dimensional-

ity for the time sequence representation, we use zero-padding.
Function 𝜎 (·) is the activation function (e.g., ReLU or sigmoid).
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3.4.3 Spatial Correlation Modelling. We use a graph convo-
lutional network (GCN) to model spatial correlations. The basic
idea of GCN is to aggregate features from neighbours:

𝐺𝐶𝑁 (A, H) = D̃−1/2ÃD̃−1/2ZW (6)

where Ã = A + I, and D̃ is a diagonal matrix. Matrix Z ∈ R𝑁×𝐶

is the input graph node features. Matrix W ∈ R𝐶×𝐶′
contains

the parameters to be learned by the model, where 𝐶 is the input
dimensionality and 𝐶′ is the output dimensionality. Next, we
define GCN layers with two parallel GCNs, denoted as 𝐺𝐶𝑁𝐿:

𝐺𝐶𝑁𝐿(A, Z) = 𝐺𝐶𝑁 (A,Z) ∗ sigmoid(𝐺𝐶𝑁 (A,Z)) (7)

We stack GCN layers to build a GCN block. The output of each
GCN layer is the input of the next GCN layer, as shown in Eq. 8,
where 𝑞 ∈ [1, 𝑘]. The first layer input is H𝑙,𝑡−𝑝,0

𝑔𝑐𝑛,𝑟 = H𝑙−1,𝑡−𝑝 ,
where 𝑝 ∈ [𝑇 − 1, 0] and 𝑟 ∈ {𝑠, 𝑑𝑡𝑤} represents two types of
adjacency matrices (i.e., spatial proximity-based matrix and a
temporal similarity-based matrix).

H𝑙,𝑡−𝑝,𝑞
𝑔𝑐𝑛,𝑟 = 𝐺𝐶𝑁𝐿𝑙,𝑞−1 (A𝑟 ,H

𝑙,𝑡−𝑝,𝑞−1
𝑔𝑐𝑛,𝑟 ) (8)

We use 𝑚𝑎𝑥 (·) to aggregate the outputs of the GCN layers to
obtain the output of 𝑙-th GCN block (Eq. 9)

H𝑙,𝑡−𝑝
𝑔𝑐𝑛,𝑟 =𝑚𝑎𝑥𝑞=1,...,𝑘 (𝐺𝐶𝑁𝐿𝑙,𝑞 (A𝑟 ,H

𝑙,𝑡−𝑝,𝑞
𝑔𝑐𝑛,𝑟 )) (9)

Then, we concatenate the output from each time slot:

H𝑙
𝑔𝑐𝑛,𝑟 = | |𝑝∈[𝑇−1,0]H

𝑙,𝑡−𝑝
𝑔𝑐𝑛,𝑟 (10)

After that, we use𝑚𝑎𝑥 (·) again to aggregate the outputs corre-
sponding to the two different adjacency matrices, as shown in
Eq. 11, to obtain the output of the 𝑙-th layer:

H𝑙
𝑔𝑐𝑛 =𝑚𝑎𝑥𝑟 ∈{𝑠,𝑑𝑡𝑤} (H𝑙

𝑔𝑐𝑛,𝑟 ) (11)

We follow previous studies [9, 16] and adopt Eq. 2 with differ-
ent threshold - 𝜖𝑠 to compute the spatial-based adjacency matrix.
Meanwhile, we follow another work [15] and adopt DTW [3] to
compute A𝑑𝑡𝑤 , as described earlier.

We combine the output of TCN and GCN to obtain the output
of the 𝑙-th layer:

H𝑙 = H𝑙
𝑔𝑐𝑛 +H𝑙

𝑡𝑐𝑛 (12)

Finally, we obtain the output H𝑡+1:𝑡+𝑇 ′,𝐿 at the 𝐿-th layer fol-
lowing the steps described above and linear functions to project
H𝑡+1:𝑡+𝑇 ′,𝐿 to a lower dimension (as Eq. 13 shows).

X̂𝑡+1:𝑡+𝑇 ′
= 𝜎 (𝜙4 (𝜎 (𝜙3 (H𝑡+1:𝑡+𝑇 ′,𝐿)))) (13)

Here, 𝜙3 and 𝜙4 are linear functions, and 𝜎 is an activation func-
tion. X̂𝑡+1:𝑡+𝑇 ′

∈ R𝑁𝑜×𝑇 ′×𝐶 represents the prediction values.

3.5 Model Training and Testing
Model Training:We obtain predicted values X̂𝑡+1:𝑡+𝑇 ′

𝐺𝑚
𝑜

on the
graph view𝐺𝑚

𝑜 that is generated by sub-graphmasking. Then, we
compute the mean squared error between the prediction values
𝑥
𝑡+𝑝′

𝑖
and the ground truth 𝑥𝑡+𝑝

′

𝑖
as the prediction loss (Eq. 18).

𝐿𝑝𝑟𝑒𝑑 =
1

𝑁𝑜𝑇

𝑁𝑜∑︁
𝑖=1

𝑇∑︁
𝑝′=1

| |𝑥𝑡+𝑝
′

𝑖
− 𝑥𝑡+𝑝

′

𝑖
| |22 (14)

Model Testing:Duringmodel testing, we first compute pseudo-
observations for the unobserved locations, and let the graph
𝐺 with pseudo-observations be 𝐺𝑚 . Then, we build the tem-
poral similarity-based adjacency matrix utilising these pseudo-
observations. After that, we feed the featuresX𝑡−𝑇+1:𝑡

𝐺𝑚
∈ R𝑁×𝑇×𝐶

into the trained model to produce the predicted observations
X̂𝑡+1:𝑡+𝑇 ′

𝐺𝑚
for the unobserved locations.

4 PROPOSED FULL MODEL
Section 3 introduced our base model. In this section, we will
introduce two modules - selective masking module and contrastive
learning module that enhance our proposed model performance.
These two modules together with our base model STSM-RNC
form our full model STSM. Figure 4 shows its overall structure.

Recall that our core idea is to learn a model that can extend
the forecasting capability for masked locations to unobserved
locations.

The generalisability of STSM on performance on the full graph
𝐺 depends on the similarity between the masked locations in
𝐺𝑚
𝑜 and the unobserved locations in 𝐺 . To mask the locations

that have higher similarity with the unobserved locations, we
propose a selective masking module, to enhance the sub-graph
masking, exploiting the similarity between the observed locations
and the unobserved locations to help forecast the values (e.g.,
traffic speed or PM2.5) at the unobserved locations. This module
leverages the regional information and the road network infor-
mation surrounding the locations, as well as the spatial distance
to compute the masking probabilities of the locations. We mask
the locations based on such probabilities at each model training
epoch to generate 𝐺𝑚

𝑜 . This module can guide STSM to learn to
predict values for the locations that have higher similarities with
the unobserved locations, thus enhancing the generalisability of
the model.

We further design a contrastive learning module that takes a
graph contrastive learning-based approach and constructs two
views of the graph - one view contains complete spatial-temporal
data (the original view), and the other view contains incomplete
spatial-temporal data (the augmentation view). The view with
complete data is used to guide the prediction for the view with
incomplete data. The augmentation view𝐺𝑚

𝑜 is generated by the
selective masking module. Using contrastive learning, we learn a
model that generates similar predictions for both graph views.
The trained model is then applied on the full graph 𝐺 to make
predictions for the unobserved locations.

We feed X𝑡−𝑇+1:𝑡
𝐺𝑜

and X𝑡−𝑇+1:𝑡
𝐺𝑚
𝑜

into the proposed spatial-
temporal modelling module (described in Section 3.4) to obtain the
graph representations Z𝑡+𝑇

′
𝐺𝑜

and Z𝑡+𝑇
′

𝐺𝑚
𝑜

for contrastive learning

and generating the prediction result X𝑡+1:𝑡+𝑇 ′

𝐺𝑚
𝑜

.
When the model is trained, we feed X𝑡−𝑇+1:𝑡

𝐺𝑚 into the model
to obtain predictions for the unobserved locations (Section 3.5).

4.1 Selective Masking
STSM learns to predict values for masked locations during train-
ing, and then extends this capability to predict values for unob-
served locations at testing. Intuitively, the higher the similarity
between the masked locations and unobserved locations, the
easier it is for the trained model to make predictions for the un-
observed locations. We compute similarities between those 1-hop
sub-graphs (defined in Section 3.3) and the unobserved region.
After that, we use our proposed selective masking module to
guide STSM to mask a sub-region formed by the sub-graphs of
observed locations that are the most similar to the unobserved
region. Heuristically, this strategy leads to more accurate fore-
casting results for the locations in the unobserved region.
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Figure 4: Model architecture of STSM. The model contains three main parts. (1) The selective masking module leverages the
regional and road network representations and the spatial distances to compute the similarity between observed locations
(i.e., their sub-graphs) and the unobserved region. Masking probabilities are assigned based on the similarity scores. (2) The
contrastive learning module guides STSM to make similar predictions for location graphs with complete data and graphs
with incomplete data. (3) The spatial-temporal modelling module (as described in Section 3.4) utilises GCNs and 1-D TCNs
to model spatial and temporal features, together with a contrastive learning loss to optimise the model. To enhance model
performance, STSM generates pseudo-observations for unobserved locations and computes a temporal similarity-based
adjacency matrix. During the testing process, STSM fills unobserved locations with pseudo-observations and then feeds the
graph into ST-Model to obtain the prediction results.

Table 1: Categories of Points of Interest

Categories Subcategories Categories Subcategories
#1 university, college, school, kindergarten, research

institute, language school, childcare
#2 commercial, office, studio

#3 retail, supermarket #4 hotel, motel, guest house, hostel
#5 arts centre, library, events venue, community cen-

tre, conference centre, theatre, exhibition centre,
planetarium, music venue, gallery, artwork, mu-
seum, social centre, zoo, aquarium, theme park

#6 clinic, hospital, veterinary, pharmacy, doctors, nurs-
ing home, dentist, social facility, baby hatch

#7 bridges #8 cinema
#9 fountain, garden, park, trampoline park, water

park, ranger station, dog park, viewpoint, nature
reserve, attraction, bbq

#10 casino, gambling, nightclub, stripclub, dance

#11 church, chapel, cathedral, kingdom hall, monastery,
mosque, presbytery, religious, shrine, synagogue,
temple, place of worship

#12 cafe, ice cream, restaurant, pub, bar, food court, fast
food, biergarten

#13 parking, parking entrance, parking exit, parking
space, carport, motorcycle parking

#14 taxi, bus station, transportation, stop position, stop
area, train station, platform, station

#15 warehouse #16 industrial
#17 residential, apartment, apartments #18 construction
#19 marketplace #20 caravan site, camp site, camp pitch, picnic site, pic-

nic table
#21 pitch, sports centre, sports hall, stadium, swimming

area, swimming pool, track, grandstand, pavilion,
riding hall, sports, fitness centre, fitness station

#22 civic, government, public

#23 fuel, car wash, car repair, vehicle inspection, car
rental, car sharing

#24 atm, bank, bureau de change

#25 boat rental, ferry terminal, boat sharing #26 barn, conservatory, cowshed, farm auxiliary, green-
house, slurry tank, stable, sty

Sub-graph representation. To measure the similarity be-
tween a sub-graph and the region formed by the unobserved

locations, we need to first compute a representation for the sub-
graph of each observed location. We form such a representation
(i.e., an embedding) with three components:
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(1) Point of interest (POI) features. For each observed location,
we draw a circle centered at the location with radius 𝑟 (a
system parameter) and collect all POIs inside the circle
from OpenStreetMap [19]. We classify the POIs into Γ
categories (cf. Table 1). The POI feature component of
the sub-graph embedding, denoted by 𝑙𝑝𝑜𝑖

𝑖
∈ RΓ , is a

vector that keeps a count of the POIs of each category.
We further obtain the number of floors of the buildings
and the areas of the parks in the circular region from
OpenStreetMap [19] to indicate the prosperity of the sub-
graph, as 𝑙𝑠𝑐𝑎𝑙𝑒

𝑖
∈ R1. For example, a sub-graph (i.e., a local

region) with a 60-level building is more prosperous than
a sub-graph with only a 4-level building. We concatenate
𝑙
𝑝𝑜𝑖

𝑖
and 𝑙𝑠𝑐𝑎𝑙𝑒

𝑖
to obtain a sub-graph’s region embedding,

denoted as 𝑙𝑟𝑒𝑔𝑖𝑜𝑛
𝑖

= [𝑙𝑝𝑜𝑖
𝑖

| |𝑙𝑠𝑐𝑎𝑙𝑒
𝑖

] ∈ RΓ+1. Here, | | denotes
concatenation.

(2) Road network features. We select the nearest road of the
location. To represent the road network corresponding to
the sub-graph, we use a 4-dimensional vector 𝑙𝑟𝑜𝑎𝑑

𝑖
∈ R4

where the dimensions represent highway_level, maxspeed,
is_oneway and number of lanes.

Finally, we concatenate the regional representation and the
road network representation of location 𝑖 to form its embedding,
i.e., 𝑙𝑖 = [𝑙𝑟𝑒𝑔𝑖𝑜𝑛

𝑖
| |𝑙𝑟𝑜𝑎𝑑
𝑖

] ∈ RΓ+5. The embedding of the sub-
graph of location 𝑖 , denoted by 𝑙𝑆𝐺𝑖

, is computed as the average
embedding of the embeddings of all locations in the sub-graph,
i.e., 𝑙𝑆𝐺𝑖

= 1/|𝑉𝑆𝐺𝑖
|∑𝑗∈𝑉𝑆𝐺𝑖

𝑙 𝑗 .
Similarity between sub-graphs and the unobserved re-

gion. Following the same strategy, we can compute an embed-
ding 𝑙𝑢 for the full unobserved region by averaging the em-
beddings of all unobserved location. Then, the similarity be-
tween the sub-graph of location 𝑖 and the unobserved region
is computed as the cosine similarity of the two embeddings,
i.e., 𝑠𝑠𝑔

𝑖
= 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑙𝑆𝐺𝑖

, 𝑙𝑢 )), combined with the spatial proximity
𝑠𝑝

𝑠𝑔

𝑖
= 1/𝑑𝑖𝑠𝑡 (𝑐𝑖 , 𝑐𝑢 ) to guide the masking process.

We compute the embedding similarities between all sub-graphs
and the unobserved region, denoted as 𝑆𝑠𝑔 = [𝑠𝑠𝑔1 , ..., 𝑠

𝑠𝑔

𝑁𝑜
], and

the spatial proximity 𝑆𝑃𝑠𝑔 = [𝑠𝑝𝑠𝑔1 , ..., 𝑠𝑝
𝑠𝑔

𝑁𝑜
].

Sub-graph masking. We use a masking ratio 𝛿𝑚 to define
the percentage of observed locations to be masked. Since the sub-
graph of each location may have a different size, we compute the
average size of all sub-graphs, denoted as 𝛿𝑠 = 1

𝑁𝑜

∑
𝑖∈𝑁𝑜

|𝑉𝑆𝐺𝑖
|.

If we mask sub-graphs with the same probability 𝛿𝑚𝑠 = 𝛿𝑚/𝛿𝑠 ,
the final number of locations masked is expected to be 𝑁𝑜 · 𝛿𝑚 .
Since we want to use similarity to guide STSM to mask the ob-
served locations, we combine the similarities 𝑆𝑠𝑔 , the spatial
proximity 𝑆𝑃𝑠𝑔 and the sub-graph masking ratio 𝛿𝑚𝑠 to com-
pute the masking probability for each location as Eq. 15 shows.
This equation normalises 𝑆𝑠𝑔 and 𝑆𝑃𝑠𝑔 to make them contribute
equally.

𝑃 = (𝑆𝑠𝑔 · 𝛿𝑚𝑠

1
𝑁𝑜

∑
𝑖∈𝑁𝑜

𝑠
𝑠𝑔

𝑖

+ 𝑆𝑃𝑠𝑔 · 𝛿𝑚𝑠

1
𝑁𝑜

∑
𝑖∈𝑁𝑜

𝑠𝑝
𝑠𝑔

𝑖

)/2 (15)

The sub-graph size and the size of graph 𝐺 impact the value
𝑝𝑖 ∈ 𝑃 . When they are large, 𝑝𝑖 can become very small, such that
all sub-graphs have very close probability values. To address this
issue, we only keep the top-𝐾 most similar sub-graphs and set
the similarity values as 0 for the remaining sub-graphs, where
𝐾 is a hyper-parameter. This strategy reduces the number of
sub-graphs that can be masked in a graph. Then, we mask the

sub-graphs more similar to the unobserved region, based on
a masking probability 𝜌𝑖 , drawn from a Bernoulli distribution
𝜌𝑖 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑖 ) to generate a graph with masked locations (𝐺𝑚

𝑜 ).

4.2 Graph Contrastive Learning
Based on Section 4.1, we use 𝐺𝑜 (i.e., the graph with complete
data) to generate a graph 𝐺𝑚

𝑜 with incomplete data (i.e., a graph
with masked locations). Graph 𝐺𝑚

𝑜 can be regarded as 𝐺𝑜 with
perturbations (i.e., 𝐺𝑚

𝑜 and 𝐺𝑜 are two views of the observed
graph, and 𝐺𝑚

𝑜 is an augmentation of 𝐺𝑜 ). To guide STSM to
produce similar predictions on 𝐺𝑚

𝑜 and 𝐺𝑜 , we apply contrastive
learning in the training process on these two views of the graph.

STSM adopts graph-level contrastive learning. We use the
original graph 𝐺𝑜 to explain our graph representation generat-
ing steps. First, [X𝑡−𝑇+1

𝐺𝑜
, . . . ,X𝑡

𝐺𝑜
] is inputted into the spatial-

temporal model (as described in Section 3.4) to generate an output
for each time slot, denoted as H𝑡 :𝑡+𝑇 ′,𝐿

𝐺𝑜
, where 𝐿 is the number

of layers in the spatial-temporal model. Then, STSM takes the
last layer output of the spatial-temporal model for the last time
step, i.e., H𝑡+𝑇 ′,𝐿

𝐺𝑜
, to obtain a graph representation Z𝑡+𝑇

′
𝐺𝑜

. We
aggregate all locations’ representations and project them into
a new latent space, formulated as Eq. 16, where 𝜙 (·) is a linear
function. We follow the same steps to generate the representation
Z𝑡+𝑇

′

𝐺𝑚
𝑜

of 𝐺𝑚
𝑜 .

Z𝑡+𝑇
′

𝐺𝑜
= 𝜙 (𝑅𝑒𝐿𝑈 (𝜙 (

∑︁
𝑖∈𝑁𝑜

ℎ
𝑡+𝑇 ′,𝐿
𝑖,𝐺𝑜

))) (16)

A batch of 𝑀 input time windows are sampled at training,
which form 2𝑀 representations, where (Z𝑡+𝑇 ′

𝐺𝑜
,Z𝑡+𝑇

′

𝐺𝑚
𝑜

) is a posi-
tive pair (i.e., graph 𝐺𝑜 and graph 𝐺𝑚

𝑜 from the same time slot
form a positive pair). Negative Paris are generated from the other
𝑀 − 1 graphs in the batch (i.e., graph 𝐺𝑜 and graph 𝐺𝑚

𝑜 from
different time slots in a batch form negative pairs), denoted as
(Z𝑡+𝑇 ′

𝐺𝑜
,Z𝑡

′+𝑇 ′

𝐺𝑚
𝑜

). We adopt the contrastive loss to maximise the
mutual information of the sample pairs:

𝐿𝑐𝑙 = − 1
𝑀

∑︁
𝑡 ∈𝑀

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(Z𝑡+𝑇 ′

𝐺𝑜
,Z𝑡+𝑇

′

𝐺𝑚
𝑜

)/𝜏)∑
𝑡 ′∈𝑀,𝑡 ′≠𝑡 𝑒𝑥𝑝 (𝑠𝑖𝑚(Z𝑡+𝑇 ′

𝐺𝑜
,Z𝑡 ′+𝑇 ′

𝐺𝑚
𝑜

)/𝜏)
(17)

The final loss function to optimise STSM is:

𝐿 = 𝐿𝑝𝑟𝑒𝑑 + 𝜆𝐿𝑐𝑙 (18)

where 𝜆 is a coefficient to balance the prediction loss and the
contrastive learning loss.

5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Datasets. We conduct experiments on three highway
traffic datasets, an urban traffic dataset and an air quality dataset.

• PEMS-Bay [16] contains traffic speed data collected from
325 sensors on highways in the Bay Area, California, be-
tween January and June 2017.

• PEMS-07 [4] contains traffic speed data collected by sen-
sors on highways in Los Angeles. Following a previous
study [20], we randomly sample 400 sensors and use their
collected data between September and December 2022 as
the dataset.

• PEMS-08 [4] contains traffic speed data collected by sen-
sors on highways in the San Bernardino area, California.
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Similarly, we use data collected by 400 randomly sampled
sensors between September and December 2022.

• Melbourne contains traffic speed data collected by 182
sensors in Melbourne City, Australia, between July and
September 2022, from the AIMES project [26].

• AirQ [40] contains pollutant concentration data (PM2.5)
collected by 63 sensors in Beijing and Tianjin, which are
two adjacent cities in China, between May 2014 and April
2015.

All traffic records collected from PEMS are given in 5-minute
windows, i.e., 288 time slots per day, while the traffic records of
the Melbourne dataset are given in 15-minute windows, i.e., 96
time slots per day. The air quality records are given in hourly win-
dows, i.e., 24 time slots per day. Table 2 summarises the dataset
statistics and Fig. 5 visualises the sensor distribution among all
datasets. The region and road network information used for se-
lective masking is obtained from OpenStreetMap [19].

Following a baseline work [30], we use the records in the past
two hours to make predictions for the next two hours, i.e., 𝑇 =

𝑇 ′ = 2ℎ𝑜𝑢𝑟𝑠 in Eq. 1 for the traffic datasets. Following another
baseline work [39], we use the records in the past 24 hours to
make predictions for the next 24 hours, i.e., 𝑇 = 𝑇 ′ = 24ℎ𝑜𝑢𝑟𝑠
in Eq. 1 for the air quality dataset. We split each dataset into
three sets by 4:1:5 for training, validation and testing, where
the locations within each set are adjacent to each other. Note
that, the locations in the training set and the validation set are
considered as observed locations, while those in the test set are
considered as unobserved locations. Dataset split is space-based,
where the sensors are divided horizontally or vertically into three
sets based on the sensor geo-coordinates. For each dataset, we
create four different splits and report the average performance
on each dataset. We use the data recorded during the first 70% of
the time for the training, and the last 30% of the time for testing.
Fig. 6 shows a dataset partitioning on PEMS-Bay and its temporal
partitioning.

Table 2: Dataset Statistics

Dataset Time period Interval #Sensors
PEMS-Bay 01/01/2017 - 30/06/2017 5 min 325
PEMS-07 01/09/2022 - 31/12/2022 5 min 400
PEMS-08 01/09/2022 - 31/12/2022 5 min 400
Melbourne 01/07/2022 - 30/09/2022 15 min 182
AirQ 01/05/2014 - 30/04/2015 1 hr 63

5.1.2 Competitors. There are no existing models for our pro-
posed problem. We adopt the following adapted models for an
empirical comparison with our proposed model STSM:

• GE-GAN [32] is a transductive data imputation method
based on generative adversarial networks (GAN) that utilise
a generator to generate estimating values and a discrimi-
nator to classify the real and generated values.

• IGNNK [30] is an inductive graph neural network for
spatial-temporal Kriging.

• INCREASE [39] is an inductive graph representation
learning network based on GRUs and the state-of-the-art
for spatial-temporal Kriging.

5.1.3 Implementation Details. We use the default settings of
the baseline models from their source code. The baseline models
were proposed for data imputation, while we aim for prediction.

We change their ground truth to the future time window rather
than the past time window to train the models and obtain the
prediction.

We train our model using the Adam optimiser with the learn-
ing rate starting at 0.01. The batch size is 32. For the hyper-
parameters in our models, 𝜏 is 0.5, 𝜎𝑚 is 0.5, 𝜖𝑠 is 0.05 and 𝑞𝑘𝑘
and 𝑞𝑘𝑢 are set to 1. We leave the details of the other model
hyper-parameters (i.e., 𝜆, 𝜎𝑠𝑔 , 𝑟𝑝𝑜𝑖 and 𝐾) in Table 3. These pa-
rameter values are obtained through grid search on the validation
set, except 𝑟𝑝𝑜𝑖 which is fine-tuned only based on the similarity
between sub-graphs and the unobserved regions (i.e., 𝑆𝑠𝑔). Also,
parameter values can be shared among datasets with similar dis-
tributions, e.g., when only the number or the density of sensors
is changed (cf., Table 6 and Table 7). In the experiments, we use
different thresholds for the spatial-based matrices 𝐴𝑠 and 𝐴𝑠𝑔 .
Fig. 7 visualises the two adjacency matrices on PEMS-Bay.

The experiments are run on an NVIDIA Tesla V100 GPU.

Table 3: Parameter settings

Parameter PEMS-Bay PEMS-07 PEMS-08 Melbourne AirQ
𝜆 0.01 1 0.5 0.5 1
𝜖𝑠𝑔 0.5 0.7 0.5 0.4 0.6
𝑟𝑝𝑜𝑖 (m) 200 500 500 50 500
𝐾 35 35 35 45 5

We adopt four commonly used metrics to evaluate model per-
formance, including root mean squared error (RMSE), mean ab-
solute error (MAE), mean absolute percentage error (MAPE) and
R-square (R2). The first three measure the forecasting errors,
while R2 measures how much better the model prediction results
are compared with just using average observations as results [39].

5.2 Experimental Results
We first compare the overall performance of our model with
those of the baseline methods. Then, we report the results of
an ablation study to verify the effectiveness of each module in
STSM. Finally, we study the impact of parameters to test model
robustness.

5.2.1 Model Performance Comparison. Wefirst compare STSM
with the baseline methods.

(1) Overall Results.: Table 4 summarises the overall perfor-
mance results. STSM and its variants including the base model
STSM-RNC (detailed in Section 5.2.2) outperform all the com-
petitors on all four datasets, except for the MAPE measure on
AirQ.

GE-GAN is a transductive method that generates values for
unobserved locations utilising their similar locations based on
graph embeddings. It is difficult to find similar locations when
there are many unobserved locations in a large area, resulting in
poor forecasting accuracy. In urban areas such as Melbourne City,
GE-GAN outperforms the other two baseline models because this
area is relatively small.

IGNNK is an inductive model with GNNs to model spatial
correlations and 1-D convolution neural networks to capture
temporal correlations. It struggles in our task because data miss-
ing at continuous locations makes it difficult for the GNNs to
learn the spatial correlation patterns. Although it has a slightly
low MAPE on AirQ, its MAE and RMSE are still much larger than
those of our model STSM on this dataset. This can be explained
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(a) PEMS-Bay (b) PEMS-07 (c) PEMS-08 (d) Melbourne (e) AirQ

Figure 5: Visualisations of sensor distribution

Table 4: Overall model performance. “↓” (and “↑”) indicates that lower (and larger) values are better. The best baseline
results are underlined, and the best results of the proposed model STSM are in bold. Improvement computes the errors
reduced by the best variant of the proposed model compared with the best baseline model, where N/A indicates that the
improvement results cannot be calculated, because of negative measurement values on the baseline methods.

Dataset Metric GE-GAN IGNNK INCREASE STSM-RNC STSM-NC STSM-R STSM Improvement

PEMS-Bay

RMSE↓ 31.184 9.611 8.820 8.626 8.642 8.628 8.610 +2.38%
MAE↓ 26.020 5.616 5.243 5.352 5.352 5.120 5.237 +0.11%
MAPE↓ 0.432 0.145 0.133 0.130 0.131 0.128 0.130 +2.26%
R2↑ -9.042 0.063 0.195 0.228 0.226 0.230 0.231 +18.46%

PEMS-07

RMSE↓ 21.103 11.556 8.465 8.516 8.512 8.444 8.390 +0.89%
MAE↓ 15.647 9.167 5.495 5.352 5.411 5.417 5.111 +6.99%
MAPE↓ 0.273 0.181 0.125 0.125 0.126 0.125 0.123 +1.60%
R2↑ -4.351 -0.715 0.155 0.156 0.142 0.157 0.169 +9.03%

PEMS-08

RMSE↓ 23.409 10.599 8.275 8.021 7.937 8.018 7.925 +4.23%
MAE↓ 17.611 7.934 5.019 4.982 4.962 5.006 4.899 +2.39%
MAPE↓ 0.299 0.158 0.116 0.115 0.115 0.116 0.114 +1.72%
R2↑ -6.531 -0.678 0.056 0.114 0.134 0.115 0.136 +142.86%

Melbourne

RMSE↓ 10.064 14.635 10.321 9.844 9.884 10.07 9.175 +8.83%
MAE ↓ 7.780 12.511 8.302 7.803 7.188 7.882 7.308 +7.61%
MAPE ↓ 0.369 0.746 0.453 0.399 0.366 0.389 0.388 +0.81%
R2↑ -0.175 -2.355 -0.266 -0.120 0.027 -0.171 0.027 N/A

AirQ

RMSE↓ 295.579 74.873 73.977 69.956 68.126 68.968 67.571 +8.66%
MAE ↓ 244.824 52.726 56.165 50.301 48.451 49.302 48.141 +14.29%
MAPE ↓ 9.142 1.459 2.168 1.789 1.643 1.737 1.692 -12.61%
R2↑ -17.917 -0.067 -0.024 0.074 0.123 0.099 0.141 N/A

Validation

Testing

Training

Time

Speed

Speed

Speed

Figure 6: Data partitioning on PEMS-Bay from spatial (left;
horizontal partitioning) and temporal (right) perspectives.
The red, pink and blue dots on the map represent the ob-
served locations for training, the observed locations for
validation and the unobserved locations for testing, respec-
tively.

by that a lower MAE happens on smaller observations while a
higher MAE happens on larger observations.

(a) 𝐴𝑠 (b) 𝐴𝑠𝑔

Figure 7: Visualization of adjacency matrices. The blank
density in these figures reflects the sparsity of the adja-
cency matrix. The right figure has more blank space due
to we use a larger threshold to limit sub-graph size.

INCREASE, the state-of-the-art spatial-temporal Krigingmodel,
learns heterogeneous spatial relations and diverse temporal pat-
terns, which presents the best performance among the baseline
models. However, it is still outperformed by our model STSM.
Our model reduces forecasting errors by up to 14% on the AirQ
dataset and increases R2 by up to 142% on the PEMS-08 dataset
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because of our temporal adjacency matrix to model the temporal
similarity, our selective masking module to model spatial and
semantic similarity, and contrastive learning to enhance model
robustness.

We also report the model training and testing time over the
traffic datasets. We omit the running time results on AirQ due to
its small scale. The training time of all models is at the same scale.
GE-GAN requires more training epochs to converge. However,
when it comes to testing time, GE-GAN and STSM are faster than
IGNNK and INCREASE.

Table 5: Model training time

Model Time PEMS-Bay PEMS-07 PEMS-08 Mel.

GE-GAN Train (h) 4.4 4.1 4.1 0.3
Test (s) 0.9 0.7 0.8 0.1

IGNNK Train (h) 0.3 0.2 0.2 0.1
Test (s) 8.3 7.8 8.8 2.4

INCREASE Train (h) 0.3 0.2 0.2 0.2
Test (s) 9.5 7.3 7.5 4.0

STSM Train (h) 1.1 1.9 2.2 0.3
Test (s) 1.6 1.3 1.2 0.3

(2) Varying the unobserved ratio.We vary the unobserved ratio
from 0.2 to 0.5 on all datasets, i.e., from 20% to 50% of all the sensor
locations in a dataset are treated as unobserved locations. Same as
before, we split each dataset horizontally or vertically and report
the average performance on the four setups (each split creates two
alternative settings of training and testing sets). Fig. 8 presents
the results. Since INCREASE has the best performance among the
baselines when varying the unobserved ratio, we only show its
results for this set of experiments. STSM outperforms INCREASE
in all settings, except when 20% of the locations are considered
unobserved on PEMS-08.We notice that sometimes the prediction
errors drop even with a higher ratio of unobserved locations. This
is because some unobserved locations are easier than others to
predict. Including such unobserved locations reduces the mean
prediction error. Here, we have only shown results in RMSE.
Results on other metrics show similar patterns, which are omitted
for conciseness. The same applies to the experiments below.

(3) Varying the number of sensors. We merge PEMS08 and
PEMS07 into a larger region, such that we can vary the number
of sensors from 200 to 800 by vertically splitting the space (and
hence the sensor locations) into four equal-sized partitions (i.e.,
each partition contains 200 sensors) based on geo-coordinates.
Table 6 shows reports how the model prediction errors change
with more sensors are added into the dataset. We see that our
model STSM consistently outperforms all three baseline models
in terms of RMSE and R2.

(4) Varying the density of sensors. We further vary the number
of sensors from 200 to 964 (which is the maximum number of
sensors) on PEMS-08, to test the impact of the density of the
sensors. The results in Table 7 show that STSM again outperforms
all baseline models in almost all cases (i.e., 19 out of 20), further
confirming the robustness of the model.

5.2.2 Ablation Study. We conduct an ablation study with
three variants of STSM:

STSM-NC disables the contrastive learning module.
STSM-R replaces the selective maskingmodule with a random

masking module that randomly chooses a location and its 1-hop
neighbours to be masked until the target masking ratio is reached.
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Figure 8: Model performance vs. unobserved ratio

Table 6: Varying the number of sensors. “↓” (and “↑”) in-
dicates that lower (and larger) values are better. The best
baseline results are underlined, and the best model results
are in bold.

#Sensor number Model RMSE↓ MAE↓ MAPE↓ R2↑

200

GE-GAN 24.442 18.348 0.309 -7.828
IGNNK 10.845 7.774 0.157 -0.950
INCREASE 7.800 4.816 0.110 0.129
STSM 7.775 4.649 0.109 0.133

400

GE-GAN 21.929 16.244 0.283 -4.702
IGNNK 15.896 12.709 0.238 -2.998
INCREASE 8.880 5.115 0.130 0.115
STSM 8.718 5.384 0.131 0.141

600

GE-GAN 23.105 17.043 0.296 -5.243
IGNNK 11.492 9.428 0.229 -1.089
INCREASE 8.658 5.494 0.129 0.142
STSM 8.629 5.548 0.130 0.148

800

GE-GAN 21.801 15.867 0.280 -4.349
IGNNK 12.113 8.530 0.172 -1.295
INCREASE 8.370 5.055 0.119 0.113
STSM 8.134 5.008 0.118 0.165

STSM-RNC (our basemodel as described in Section 3) replaces
the selective masking module with the random masking module
and disables contrastive learning.

(1) Impact of selective masking. As Table 4 shows, STSM out-
performs STSM-R among all datasets, except for the MAPE and
MAE on PEMS-Bay. We further compare the similarity between
the masked sub-graphs and the unobserved region in the training
process. Table 8 presents the results, which shows that selective
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Table 7: Varying the density of sensors. “↓” (and “↑”) in-
dicates that lower (and larger) values are better. The best
baseline results are underlined, and the best model results
are in bold.

#Sensor number Model RMSE↓ MAE↓ MAPE↓ R2↑

200

GE-GAN 24.293 18.102 0.306 -7.201
IGNNK 13.847 9.981 0.194 -2.623
INCREASE 8.391 5.188 0.117 0.016
STSM 7.889 4.707 0.111 0.134

400

GE-GAN 23.409 17.611 0.299 -6.531
IGNNK 10.599 7.934 0.158 -0.678
INCREASE 8.275 5.019 0.116 0.056
STSM 7.925 4.899 0.114 0.136

600

GE-GAN 23.933 17.695 0.298 -7.400
IGNNK 12.348 9.198 0.175 -1.745
INCREASE 7.982 5.109 0.110 0.061
STSM 7.708 4.936 0.110 0.127

800

GE-GAN 22.711 17.016 0.288 -6.405
IGNNK 13.172 10.203 0.191 -2.006
INCREASE 8.055 4.847 0.114 0.072
STSM 7.841 4.942 0.114 0.119

964

GE-GAN 22.180 16.685 0.283 -6.186
IGNNK 12.476 9.735 0.184 -1.639
INCREASE 8.052 4.851 0.114 0.064
STSM 7.831 4.757 0.111 0.113

masking can guide the model to mask sub-graphs with higher
similarities to the unobserved regions.

We also compare the performance of STSM-NC and STSM-
RNC. STSM-NC outperforms STSM-RNCon PEMS-08,Melbourne
andAirQ. On PEMS-Bay and PEMS-07, STSM-NC and STSM-RNC
yield similar performance. These results confirm the importance
of the selective masking module.

(2) Impact of contrastive learning. Table 4 shows that STSM
outperforms STSM-NC over all freeway traffic datasets. On the
urban datasets (i.e., Melbourne and AirQ), STSM has better RMSE
while STSM-NC is better at MAE or MAPE. Besides, STSM-R
outperforms STSM-RNC inmost cases (14 out of 20). These results
confirm that contrastive learning is also an important component
that contributes to the strong model performance.

Table 8: Similarity gain compared with random masking

Dataset PEMS-Bay PEMS-07 PEMS-08 Mel. AirQ
Sim. Gain (%) 9.35 14.76 5.39 6.87 19.66

5.2.3 Parameter Study. We test the impact of 𝐾 and 𝜖𝑠𝑔 .
(1) Impact of the number of top similar locations (sub-graphs) 𝐾 .

This parameter determines the number of sub-graphs that may
be masked (i.e., impacts the value of 𝑃 in Eq. 15). It impacts the
performance of STSM and STSM-NC because these two model
variants use the selective masking module. The results in Fig. 9
show that the performance of both STSM and STSM-NC is more
stable on freeway traffic datasets than on the other datasets. The
reason is that the freeway datasets contain more sensors than
the Melbourne and AirQ datasets (i.e., the parameter changing
ratio impacts models’ sensitivity).

(2) Impact of the spatial-based matrix’s threshold 𝜖𝑠𝑔 . This pa-
rameter is used to control the size of sub-graphs. When 𝜖𝑠𝑔 be-
comes larger, the sub-graph size becomes smaller (i.e., fewer
locations in each sub-graph) because of fewer links in the graph.
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Figure 9: Model performance vs. K

STSM and its variants all mask locations based on the sub-graphs,
and we test the impact of 𝜖𝑠𝑔 on all of them. Fig. 10 shows the
results. STSM and its variants are again robust about this parame-
ter, especially on the freeway traffic datasets. For Melbourne and
AirQ, their smaller numbers of sensors and the complex urban
road network information lead to more sensitivities. Note that
the fluctuations are quite small compared with the traffic and air
pollutant observation values.

5.2.4 Impact of Space Splits. The relative position of the un-
observed and observed regions can impact the model result. Our
experiments above use horizontal or vertical space splits. To
further verify the robustness of STSM, considering the circular
nature of many city layouts, we study another space splitting
strategy (i.e., "ring" splitting) as shown in Fig. 11 - the centre
region is the observed region (red dots) for training, the region
in the middle ring (pink dots) is for validation, and the outer
regions are unobserved (blue dots) for testing. We conduct ex-
periments on PEMS-Bay with this strategy. As shown in Table 9,
STSM again outperforms all baseline models consistently, with
an advantage of up to 9% in terms of R2.

5.2.5 Impact of Temporal Correlation Learning. The techniques
used to capture temporal correlation patterns can impact the
model effectiveness. We have used 1-D CNN in STSM for its
simplicity. In this set of experiments, we further explore the ex-
tensibility of STSM to incorporate advanced temporal correlation
modelling techniques. We replace 1-D CNN with a transformer
encoder (which is an advanced sequence learning model) and a
gated fusion module [38] to fuse each block’s spatial and tempo-
ral embeddings. We denote this variant as STSM-trans. Table 10
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Figure 10: Model performance vs. 𝜖𝑠𝑔

Figure 11: Visualization of different types of sensor distri-
bution on PEMS-Bay

Table 9: Model performance on PEMS-Bay (Ring Split)

Model RMSE MAE MAPE R2
GE-GAN 32.674 26.740 0.447 -10.612
IGNNK 12.625 10.233 0.2 -0.737
INCREASE 8.558 4.807 0.125 0.190
STSM 8.462 4.757 0.124 0.208
Improvement +1.1% +1.0% +0.8% +9.5%

presents the experimental results on PEMS-Bay. Overall, STSM-
trans outperforms STSM, which verifies the extensibility of STSM
to incorporate advanced correlation pattern learning models.

Table 10: Model performance with advanced temporal cor-
relation learning modules on PEMS-Bay

Model RMSE MAE MAPE R2
STSM 8.610 5.237 0.130 0.231
STSM-trans 8.562 5.251 0.129 0.240

5.2.6 Impact of Distance Functions. We used Euclidean dis-
tance in our model for efficiency consideration. Road network
distance is an alternative choice. To study the impact of the dis-
tance function, we compare STSM (using the Euclidean distance)
with two variants: STSM-rd-a uses road network distances for
computing the adjacency matrices (i.e., 𝐴𝑠 and 𝐴𝑠𝑔) and pseudo-
observations, while STSM-rd-m uses road network distance for
computing the adjacency matrices (i.e., 𝐴𝑠 and 𝐴𝑠𝑔) only. Ta-
ble 11 shows that STSM has the best performance among all
variants, which verifies that Euclidean distance is efficient and
effective for our model. STSM-rd-m performs better than STSM-
rd-a because Euclidean distance leads to better quality of the
pseudo-observations.

Table 11:Model performancewhen using different distance
functions on PEMS-Bay

Model RMSE MAE MAPE R2
STSM 8.610 5.237 0.130 0.231
STSM-rd-a 8.993 5.426 0.134 0.158
STSM-rd-m 8.708 5.339 0.132 0.213

6 CONCLUSIONS AND FUTUREWORK
We proposed a new task - spatial-temporal forecasting for a
region of interest without historical observations while this re-
gion’s adjacent region has such data. We design a novel model
named STSM for the task. We propose a selective masking mod-
ule based on region, road network and spatial distance features.
This module can guide STSM to mask locations in the adjacent
region that have higher similarity with those in the region of
interest, which is beneficial for extending the forecasting capa-
bility of STSM to the region of interest. Besides, STSM exploits
contrastive learning to enhance model forecasting efficacy. Ex-
tensive experimental results on real-world datasets, including
traffic data and air quality data, show that STSM outperforms
adapted state-of-the-art models consistently in forecasting ac-
curacy. This advantage benefits from (1) the selective masking
module which guides the model to mask regions more similar to
the region of interest, resulting in better generalization of predic-
tions, (2) contrastive learning which enhances model accuracy
over incomplete data, and (3) temporal similarity based adjacency
matrix computation which strengthens the learning capability
of GCNs, allowing messages passing from observed locations to
unobserved locations.

We only considered one unobserved region. In the future, we
plan to extend STSM to deal with multiple unobserved regions
at the same time.
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