
TaC: An Anti-Caching Key-Value Store on Heterogeneous
Memory Architectures

Yunhong Ji
Renmin University of China

China
jiyunhong@ruc.edu.cn

Wentao Huang
National University of Singapore

Singapore
huang@comp.nus.edu.sg

Xuan Zhou
East China Normal University

China
xzhou@dase.ecnu.edu.cn

Bingsheng He
National University of Singapore

Singapore
hebs@comp.nus.edu.sg

Kian-Lee Tan
National University of Singapore

Singapore
tankl@comp.nus.edu.sg

ABSTRACT
In-memory key-value (KV) stores play a pivotal role in mod-
ern applications due to their exceptional performance. However,
they grapple with the high cost and limited capacity of DRAM.
Anti-caching systems address these limitations by using the disk
(or SSD) to store cold data evicted from memory. However, as
data volumes surge, the performance of anti-caching systems
can degrade significantly. Luckily, the emerging byte-addressable
storage, such as Non-Volatile Memory (NVM), offers larger ca-
pacity and enhanced cost-effectiveness compared to DRAM. This
paper delves into its potential in building anti-caching KV stores
for large-scale data.

Due to the performance degradation of NVM compared to
DRAM and its specific performance characteristics, how to effi-
ciently integrate it into an anti-caching KV store poses challenges.
In this paper, we discuss several potential designs and propose
a three-tier anti-caching design, TaC. TaC utilizes NVM to ex-
pand the memory capacity of anti-caching systems and employs
DRAM, NVM, and SSD to host hot, warm, and cold data, re-
spectively. In particular, the three-tier architecture introduces
additional challenges in data swapping and access tracking. To
address them, we introduce a lightweight access tracking mech-
anism and a hybrid data swapping strategy. We implemented
a prototype of TaC on top of the widely-used open-source in-
memory KV store Memcached and evaluated it using the YCSB
benchmark. The results demonstrate that TaC can outperform
alternative designs across various workloads.

1 INTRODUCTION
State-of-the-art in-memory Key-Value (KV) stores, such as Re-
dis [39] and Memcached [30], play a crucial role in modern
applications [52]. One typical use case is the application-level
cache [31], which stores encapsulated results of frequently in-
voked application methods operating over databases, effectively
reducing the backend system workload. Therefore, a KV store
with both large capacity and excellent performance is of para-
mount importance. However, the scalability of current in-memory
KV stores is often limited by the high cost and capacity restric-
tions of DRAM [23]. The typical solution to expand capacity is to
establish a cluster, which can be expensive and complex. In this
paper, we explore an efficient method for expanding the KV store
capacity on a single machine, a solution that can also benefit

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

10 20 30 40 50 60 70 80 90100
DRAM size (GB)

20%
40%
60%
80%

100%

th
ro

ug
hp

ut
(a) dataset = 100GB

25 50 75 100 125 150 175 200
dataset size (GB)

20%
40%
60%
80%

100%

(b) DRAM = 20GB

U50 R50 U5 R95

Figure 1: Normalized performance of FASTER with differ-
ent data volume and DRAM configuration, where “Ux” and
“Ry” refer to x% Update and y% Read requests in the YCSB
benchmark.

cluster setups by allowing more data to be stored with fewer
machines.

Anti-caching, as proposed in the previous work [11], is an ef-
fective mechanism for expanding the capacity of in-memory sys-
tems. It incorporates a slower but cost-efficient storage medium,
such as a disk or SSD, referred to as an anti-cache, to store cold
data from memory. Typically, it can achieve performance close to
that of the in-memory system through the following strategies:

(1) Single Copy: Anti-caching systems store data in a single
copy, eliminating redundancy across different storage tiers.
This reduction in redundancy not only conserves resources
but also minimizes data synchronization overhead [11].

(2) Fine-Grained Eviction: To optimize memory hit rates, anti-
caching employs fine-grained eviction techniques. It col-
lects cold in-memory tuples and organizes them into blocks
for eviction to the disk or SSD. It is more conducive tomain-
taining high memory hit rates compared to the block-level
data swapping commonly used in caching systems [53].

(3) Asynchronous Fetching: Anti-caching employs asynchro-
nous fetching, removing disk (or SSD) I/O operations from
the critical path. This helps to mitigate the waiting time for
I/O operations, enhancing overall system throughput [11].

While anti-caching proves highly effective when the major-
ity of data resides within the memory, its performance dimin-
ishes when hot data surpasses the available memory size. This
is because the increase in disk activity can lead to noticeable
performance degradation, as noted in a previous study [53]. In
Figure 1, we present the performance of FASTER, an anti-caching
style Key-Value store, with the YCSB benchmark [9] and a Zip-
fian request distribution. As illustrated, FASTER experiences
substantial performance degradation as the ratio of DRAM size

dataset size
decreases. Specifically, its performance drops to as low as 20%

Series ISSN: 2367-2005 474 10.48786/edbt.2024.41

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.41

Table 1: Capacity and prices ($/GB) of different memory.

Capacity 128GB 256GB 512GB

DDR5 DRAM DIMM [12] 11.3 12.5 -
Intel Optane PMem [32] 8.6 8.4 8.2

when DRAM size
dataset size decreases from 100% to 50%. This performance

challenge becomes increasingly critical due to the growing gap
between the rapid expansion of data size and the slower growth
of DRAM capacity [23].

Fortunately, emerging byte-addressable storage technologies,
such as Non-Volatile Memory (NVM) [1, 37, 50], offer a cost-
effective solution for expanding memory capacity [38]. These
technologies are primarily designed to overcome the scaling
limitations of DRAM [17], providing larger capacities and near-
DRAM performance at a lower cost. In particular, Table 1 presents
the capacity and prices of recent server DRAM and Intel Optane
NVM DIMMs. It highlights the advantages of NVM which offers
significantly lower cost-per-GB and higher capacities compared
to traditional DRAM. Despite the suspension of Intel Optane
NVM, the cost-effectiveness of future NVM products is expected
to persist due to their high density [17]. In light of these develop-
ments, this paper delves into the exploration of harnessing the
potential of NVM to optimize anti-caching Key-Value stores.

While the byte-addressable nature of NVM suggests an intu-
itive solution: utilizing NVM in the sameway as DRAM to expand
the memory capacity of existing anti-caching Key-Value stores,
this approach faces significant challenges due to the performance
disparities between NVM and DRAM, as extensively discussed
in prior researches [13, 49]. Besides, NVM exhibits distinct per-
formance characteristics, particularly concerning access patterns
and limited bandwidth, which become particularly pronounced
in high-concurrency scenarios [2]. As a result, the direct substi-
tution of DRAM with NVM often yields unexpected performance
variations.

Therefore, efficiently combining NVM and DRAM into a uni-
fied heterogeneous memory presents challenges, and identifying
an effective solution for incorporating NVM into anti-caching
Key-Value stores is of paramount importance. In this paper, we
explore several potential approaches and introduce an efficient
three-tier anti-caching Key-Value store, which we named TaC.
TaC is meticulously designed to accommodate the specific char-
acteristics of NVM by treating DRAM, NVM, and SSD as distinct
tiers, each dedicated to storing hot, warm, and cold data, respec-
tively.

A three-tier architecture, however, introduces several chal-
lenges for an anti-caching system. Firstly, it brings additional
data swapping paths into the equation compared to conventional
two-tier architectures [56]. The careful selection of these paths
is crucial, taking into account the unique characteristics of each
storage device. In response, TaC employs a hybrid data swapping
strategy that optimizes these paths, thereby enhancing SSD I/O
utilization.

Secondly, the three-tier system, compared to traditional two-
tier ones, requires a multi-level data classification due to more
choices in placing the data. Further, the finer-grained data access
tracking it necessitates can incur more overhead. To address this
challenge, TaC introduces "Lazy LRU," a lightweight tuple-level
access tracking mechanism. It defines multiple temperature levels
to guide data swapping processes and allows batch processing

of updates on the LRU list, a measure that significantly reduces
overhead.

In summary, we made the following contributions:
1) To the best of our knowledge, this is the first work that

explores the designs of anti-caching systems on heterogeneous
memory. We discuss several potential designs for integrating
NVM into anti-caching KV stores and propose an efficient three-
tier design.

2) We introduce an efficient design for anti-caching KV stores
that utilize DRAM, NVM, and SSD, simultaneously. This design
leverages a hybrid data swapping strategy and “Lazy LRU” to
address the challenges associated with the three-tier architecture.

3)We have implemented our prototype and alternative designs
on top of a widely-used open-source in-memory Key-Value store,
Memcached [30]. We conducted extensive experiments using the
YCSB benchmark [9]. The results confirm that, in comparison to
alternative designs, the three-tier architecture is themost efficient
approach to integrating NVM into anti-caching KV stores.

The rest of this paper is organized as follows: In Section 2, we
introduce the background and related works. Section 3 discusses
potential anti-caching architectures when integrating NVM and
Section 4 provides a high-level design and the technical choices
made by TaC. Then, implementation details of the system are
presented in Section 5. The results of the experimental study are
reported in Section 6. Finally, there is a conclusion of the paper
in Section 7.

2 BACKGROUND AND RELATEDWORK
In this section, we first introduce the studies about anti-caching.
Then, we summarize the related works of KV stores on NVM and
hybrid storage utilizing NVM. Finally, we provide a discussion
about future byte-addressable devices.

2.1 Anti-caching Systems
Anti-caching systems have been introduced as a solution to ex-
pand the capacity of in-memory systems [11]. Their primary
objective is to enhance performance by offloading cold data to an
anti-cache while retaining hot data in DRAM, thereby enabling
the system to handle most requests as efficiently as an in-memory
system. Since the inception of anti-caching, extensive research
has delved into its mechanisms and components, aiming to un-
cover the key factors that contribute to its performance. Notably,
a comprehensive survey [53] has systematically summarized and
compared various implementation strategies, emphasizing the
effectiveness of tuple-level data swapping in optimizing memory
utilization.

In recent years, there have been some studies [8, 24, 29] to
discuss KV stores on hybrid DRAM and SSD architecture. Specif-
ically, FASTER [5] is a Key-Value store developed by Microsoft
Research that exhibits anti-caching-like characteristics. It op-
erates by managing both disk and DRAM as a unified logical
address space and offloading older data to disk when the DRAM
reaches its capacity threshold. FASTER employs several perfor-
mance optimization techniques, including a latch-free concurrent
hash index and an in-place update mechanism. When the dataset
fits within DRAM, FASTER can achieve performance levels com-
parable to or better than traditional in-memory systems.

However, due to the distinct characteristics of NVMandDRAM,
optimization strategies that work well for DRAM-based anti-
caching systems may not yield the same results when applied
to NVM. Our experimental evaluation, detailed in Section 6.2,

475

demonstrates that a two-tier anti-caching system that simply
treats NVM as if it were DRAM fails to deliver acceptable perfor-
mance.

2.2 KV Stores on NVM
In recent years, a significant number of works have been devoted
to optimizing KV stores on NVM. Some attempted to rebuild
conventional data structures on NVM, such as B-trees or B+
trees [14, 25], hash tables [16, 28, 34], and LSM-trees [51, 54]. A
significant body of works [3, 10, 15, 19, 44, 46] considered how
to integrate DRAM and NVM into an efficient heterogeneous
memory. Some works use DRAM to hold the most frequently
accessed data structures, such as indexes, to hide the latency
of NVM [3, 6, 15, 33]. Some works use DRAM as a cache or
buffer of NVM to speed up data access [36, 44]. However, they
typically assumed that everything could reside in NVM without
considering the use of SSD as an anti-cache.

Different from these works, we argue that it may not be cost-
effective to maintain the entire data set in NVM, considering the
rapid growth of data volume in modern applications [23]. In the
foreseeable future, SSDs and hard disks are expected to remain
the primary storage solutions for mainstream applications. As
a result, we consider a three-tier storage architecture, which
employs SSD as an anti-cache, to achieve a more realistic tradeoff
between capacity and performance.

2.3 Hybrid Storage Utilizing NVM
Besides KV stores, using NVM to expand the capacity of DRAM
has been widely studied. HeMem [38] and HSCC [26] manage
NVM and DRAM as unified memory space, but without consid-
ering SSD. HYMEM [43] and Spitfire [56] treat both DRAM and
NVM as caches (or buffers) of SSD. PRISM [42] utilizes DRAM as
the read cache and NVM as the write buffer. Kassa et al. [22]
employ NVM to enlarge the memory tier of RocksDB [41]. They
are all dedicated to architectures that treat HDD or SSD as the pri-
mary storage while anti-caching is designed to extend in-memory
systems. Besides, Ziggurat [55] is a file system that allows data
to span and be swapped between NVM and SSD, but without
considering DRAM.

Since the performance disparity between NVM and DRAM is
relatively small [38], the overhead associated with data swapping
becomes more pronounced. Specifically, OAM [27] implements
object-level memory management utilizing a profiling tool that
examines the source code of applications. However, this approach
may not be suitable for a general KV store, as the source code of
applications is often unavailable.

In summary, none of the above studies has discussed the anti-
caching architecture based onNVM. To the best of our knowledge,
TaC is the first anti-caching system that leverages NVM to extend
the memory and retains SSD as a supplementary.

2.4 Future Byte-addressable Storage
The decision by Intel to wind down its Optane DIMM busi-
ness [20] has sparked concerns regarding the future of NVM
research. However, we firmly contend that NVM technology, ini-
tially conceived to address the scaling limitations of DRAM [17],
continues to be relevant and essential.

For clarity, we make the following performance assumptions
about NVM that serve as the guiding principles for our design:

• Inferior performance (P1). NVM exhibits a noticeable per-
formance gap when compared to DRAM [13], potentially
leading to unexpected performance variations.

• Read-write asymmetry (P2). NVMdisplays read-write asym-
metry concerning latency and bandwidth, potentially mak-
ing write operations a performance bottleneck [13].

• Inferior performance on small and random accesses (P3).
NVM suffers from a coarser access granularity, resulting
in the well-known read/write amplification issue for small
and random data requests [13]. This emphasizes the im-
portance of data locality.

• Limited concurrency (P4). NVM exhibits specific concur-
rency constraints [2], particularly for write operations. An
excessive number of writing threads can lead to perfor-
mance degradation.

• Interference with DRAM (P5). High concurrency access to
NVM can negatively impact the bandwidth of DRAM [45].
The extent of degradation increases as the number of
threads accessing NVM simultaneously rises.

These assumptions are primarily based on existing NVM de-
vices like Optane [47] and the widely adopted NVM standard,
NVDIMM-P [21], which organizes NVM as memory DIMMs at-
tached to the memory bus. We expect that future NVM products
will adhere to this standard and share similar characteristics [17].

Moreover, our architectural approach can be adapted to other
byte-addressable devices, which are anticipated to share similar
performance characteristics [2]. The emerging CXL standard [7],
for instance, which trades off access latency to expand memory
capacity, introduces new possibilities for heterogeneous memory
architecture. The existing performance gap between CXL mem-
ory and DRAM, akin to that between NVM and DRAM [4, 18],
indicates that the discussion in this paper remains valuable.

3 ANTI-CACHINGWITH NVM
In this section, we discuss several potential designs to integrate
the NVM into an anti-caching architecture. In particular, when
considering an anti-caching system with DRAM, NVM, and SSD,
there could be three primary architecture options as illustrated
in Figure 2:

• the two-tier architecture in Figure 2(a), replacing DRAM
with NVM while utilizing DRAM as the cache of NVM;

• the two-tier architecture in Figure 2(b), which utilizes
NVM in the same way as DRAM;

• the three-tier architecture in Figure 2(c), utilizing NVM as
the middle tier between DRAM and SSD.

Firstly, in the realm of utilizing NVM to expand memory ca-
pacity, two traditional architectures have emerged [13]: “Memory
Mode” and “AppDirect Mode”. The “Memory Mode” architecture
replaces DRAM with NVM while treating DRAM as a cache for
NVM to handle hot data efficiently. In contrast, the “AppDirect
Mode” architecture treats NVM and DRAM as distinct mem-
ory spaces, allowing programmers to manage them separately.
Therefore, when considering the integration of NVM into an
anti-caching Key-Value store, the initial choice is to embrace the
“Memory Mode” architecture. In this configuration, DRAM is re-
placed with NVM, and NVM serves as the primary storage, while
SSD is employed as the anti-cache. DRAM, in this context, func-
tions as a cache for holding hot data in NVM. This architecture
can be easy to implement such as directly applying the “Memory
Mode” of Optane. However, in this design, data in DRAM exists
in duplicate, necessitating its transfer to NVM before eviction.

476

evict fetch

SSD

NVM LRU
DRAM
(cache)

(a) Two-tier design with DRAM as a cache.

DRAM+NVM LRU

evict fetch

SSD

(b) Two-tier design not distinguishing DRAM and NVM.

DRAM

NVM

evict

fetch

fetch

LRU

LRU
evict

fetch

SSD

(c) Three-tier design (TaC).

Figure 2: Potential architectures of anti-caching-based KV-stores with DRAM, NVM, and SSD.

The presence of two copies of data in DRAM and NVM can result
in suboptimal memory utilization.

The second design represents an extension of the classical
anti-caching system, where NVM and DRAM are not treated
distinctly. In this architecture, DRAM and NVM are merged into
the primary storage, while SSD serves as the secondary storage.
This design is also typically easy to implement and can be derived
directly from existing two-tier anti-caching systems. Further, it
could also solve the memory waste problem of the first design.
However, it does not differentiate between the characteristics
of NVM and DRAM. Due to the read-write asymmetry (P2) and
the higher overhead associated with small and random access
(P3) in NVM, using NVM in the same manner as DRAM can
result in inefficient utilization of NVM. The performance gap
between NVM and DRAM (P1) further exacerbates this issue
due to the suboptimal DRAM utilization, leading to diminished
system performance.

The final design, as implemented in our three-tier anti-caching
architecture of TaC, distinguishes between DRAM, NVM, and
SSD. In this arrangement, DRAM serves as the top tier for hot
data, SSD as the bottom tier for infrequently used data, and
NVM as the middle tier for warm data. This design offers several
advantages:

(1) Leveraging DRAM Strengths. By distinguishing between
DRAM and NVM and allocating hotter data to DRAM, we can
harness the strengths of DRAM more effectively. This approach
enhances the DRAM hit rate, reducing the need to access NVM.
Consequently, it mitigates the impact of high latency (P1) and
limited bandwidth (P4) of NVM on system performance.

(2) Hot Data Retention. NVM provides hot data with another
opportunity to return to DRAM before being transferred to SSD.
This mechanism improves the differentiation between hot and
cold data, reducing the influence of misjudging data temperature.

(3) Controlled Writing to NVM. Data eviction to NVM is per-
formed in the background by dedicated evicting threads. This
approach allows for better control over concurrency, which is
particularly friendly to NVM, considering its limited concurrency
constraints. It also prevents an excessive number of concurrent
accesses to NVM, which could impact DRAM bandwidth (P5).

In the following, we investigate how to effectively and effi-
ciently build a three-tier anti-caching KV store in detail.

4 SYSTEM DESIGN
In this section, we present the overall architecture of TaC, dis-
cussing its KV operations, key components, and specific strate-
gies applied.

4.1 Overview
4.1.1 Key-value operations. Typically, TaC is an anti-caching-

based KV store, providing set and get operations based on a
given key. In particular, it designates memory as its primary
storage. Upon the arrival of new data, TaC initially attempts to
store it in DRAM. If unsuccessful, it supplements the attempt in
NVM. Generally, the expectation is to successfully locate data in
memory. In situations where memory approaches full capacity,
as depicted in 2(c), background evicting operations take charge
of flushing cold tuples from upper tiers to lower ones. In rare
cases where neither memory allocation succeeds, a set request
fails and necessitates retrying.

When performing a get operation, the process is based on
the data location. If the data is stored in memory, its value is
directly retrieved and returned. In the case of data in SSD, an
asynchronous SSD read is initiated. Besides, for tuples situated in
NVM or SSD, fetching operations might be prompted according
to data swapping strategies, facilitating their movement to upper
tiers.

4.1.2 Book-keeping method. To identify whether a tuple re-
sides in DRAM, NVM, or SSD, a book-keeping method is needed
to maintain data location information. H-store addresses this
need by employing the Evicted Table, an in-memory mapping
table, to record the location of evicted tuples [11]. TaC adopts
this method by incorporating the Evicted Table into the index,
stored in DRAM.

Specifically, as will be introduced in Section 5, we implemented
the prototype of TaC based on Memcached, which adopts a hash
table as the index. Therefore, to negate the need for additional
lookups in the Evicted Table, TaC incorporates tuple locations in
lower tiers directly into the hash entries. When a tuple is evicted
to NVM or SSD, its entry in the DRAM hash table is removed
and the space is released and recycled. The key and reference
information, which are essential to locate the data out of memory,
are copied into a compact data structure named meta tuple. This
meta tuple is reinserted into the hash table and used to index
the tuple. This methodology ensures efficient tracking of tuple
locations while reducing the need for additional lookups, thereby
enhancing the overall performance of the system.

4.1.3 Challenges. The three-tier architecture introduces sev-
eral challenges for an anti-caching system. Firstly, in two-tier ar-
chitectures, only one data swapping path exists between memory
and the anti-cache. However, the integration of NVM introduces
additional paths among the three tiers. This heightened complex-
ity emphasizes the critical need for a meticulous selection of data
swapping paths, considering the distinctive characteristics, such
as access granularity, of each device. In response, we employ a
hybrid data swapping strategy, detailed in Section 4.2.

477

Secondly, opting for tuple-level data swapping in anti-caching
enhances the DRAM hit rate [11, 53]. However, this approach
necessitates tuple-level access tracking, which can be resource-
intensive [53]. For example, widely used LRU-based eviction
strategies require relocating the most recently accessed tuple to
the forefront of the LRU list for each operation, potentially caus-
ing a notable performance impact. Given the inherent simplicity
of KV operations in comparison to traditional database systems,
the overhead associated with tuple-level access tracking may off-
set the benefits of data swapping. Moreover, the intricacies of the
three-tier architecture demand a more precise categorization of
data to seamlessly align with the hybrid data swapping strategy.
In response, we adopt "Lazy LRU," an efficient multi-level access
tracking mechanism, as outlined in Section 4.3.

4.2 Hybrid Data Swapping
The data-swapping strategy plays a pivotal role in relocating
cold and hot tuples within TaC. In line with the characteristic of
anti-caching, TaC applies tuple-level eviction across all storage
tiers to evict the coldest tuples to lower tiers. However, distinct
fetching strategies are employed for NVM and SSD.

For tuples residing in NVM, TaC leverages tuple-level fetching,
prioritizing the hottest tuple in NVM for swapping into DRAM
to fully exploit the byte-addressability of NVM.

In the case of tuples stored in SSD, data is physically fetched
in blocks. H-store [11] offers two options for this scenario: block-
level and tuple-level swapping. Block-level swapping involves
swapping in all tuples within the fetched block, while tuple-level
swapping only swaps the requested tuples, discarding the rest.

Firstly, unlike conventional database systems that often re-
quire all requested tuples to be swapped into memory for subse-
quent processing, a KV store does not necessarily have such a
requirement. Performing swapping operations for all or only the
requested tuples from a fetched block can be inefficient. Secondly,
the three-tier architecture in TaC introduces more possibilities for
data swapping [56]. Besides data paths between neighbor tiers,
TaC capitalizes on the path between SSD and DRAM, adopting a
hybrid strategy that carefully selects suitable requests for swap-
ping operations. It assesses all tuples within a fetched block and
selectively swaps those deemed appropriate, enabling swapping
more tuples per I/O operation.

Intuitively, TaC prioritizes retrieving hot tuples into DRAM
and warm tuples into NVM to accommodate the performance
variations of different devices and the diversity in data hotness.
However, achieving this necessitates determining the tempera-
ture of a tuple during fetching operations. TaC accomplishes this
by leveraging a metric named “readCount”, maintained by the
access-tracking mechanism introduced in Section 4.3. Based on
this metric, TaC classifies tuples into hot, warm, and cold cate-
gories, as summarized in Table 2. When fetching a block from
SSD, TaC identifies “Hot” tuples within it and swaps them into
DRAM, while “Warm” tuples are swapped into NVM.

4.3 Lazy LRU for Multi-Level Data
Classification

In anti-caching systems, the cooperation between access track-
ing and eviction strategies is important to guide data swapping
processes. In the context of a three-tier architecture, their role
extends to precisely categorizing data into hot, warm, and cold,
which poses unique challenges beyond the traditional hot and
cold data dichotomy. In this subsection, we introduce “Lazy LRU”,

Table 2: Temperature classes of tuples.

t .readCount Temperature Action

> THRhot Hot Fetch from SSD or NVM to DRAM;
Move atop the LRU list if in DRAM.

> THRwarm Warm Fetch from SSD to NVM;
Move atop the LRU list if in NVM.

Others Cold Become ready for eviction.

a lightweight tuple-level access-trackingmechanism,which achieves
multi-level data classification.

In practice, various approximation eviction strategies have
been proposed to mitigate the overhead of fine-grained access
tracking, including approximate LRU (ALRU)[40] and sampling-
based eviction methods[11, 38]. However, neither of them is
suitable for classifying data into multiple categories. Besides,
these approximation methods have their limitations. For example,
ALRU, instead of maintaining full LRU lists, tracks only the latest
access time of each tuple and randomly selects a few tuples for
eviction, potentially leading to increased eviction costs as more
tuples are examined. On the other hand, the sampling method
updates the LRU list only once every ‘n’ operation, compromising
accuracy.

In TaC, we employ an alternative approximate LRU strategy
named as “Lazy LRU”. Lazy LRU eliminates the need to maintain
LRU lists in the critical path of get/set operations, thereby avoid-
ing potential performance bottlenecks. Instead, it captures access
information during each request. To manage LRU lists efficiently,
we utilize two separate background threads, one for DRAM and
another for NVM, to perform batch updates.

Specifically, Lazy LRU leverages historical access information
to predict the future access frequency of tuples. It categorizes
tuples into distinct temperature levels based on the recorded
access information as defined in Table 2. This classification
allows for efficient identification of the temperature level of a
tuple at any given time. This not only enables multi-level data
classification but also facilitates the asynchronous updating of the
LRU list as it can determine whether a tuple should be prioritized
on the LRU list.

In particular, the Lazy LRU mechanism maintains two pieces
of information in the metadata of a tuple:

• time, which is the previous access time,
• readCount, which records the recent access frequency.

They are both updated upon data access. Specifically, the read-
Count for a tuple t is calculated as following:

𝑡 .𝑟𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡 =
𝑡 .𝑟𝑒𝑎𝑑𝐶𝑜𝑢𝑛𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 − 𝑡 .𝑡𝑖𝑚𝑒 + 1
+ 1. (1)

in which currentT denotes the current time of a global clock, and
it is incremented at every second.

Equation 1 draws inspiration from the cache replacement strat-
egy known as 𝛼-Aging [35], which explicitly utilizes age infor-
mation to estimate recent access frequency. In this equation, the
access age of a tuple is calculated as currentT − t .time + 1, and
the readCount attribute is updated based on both its access age
and the previous value. In particular, TaC places significant em-
phasis on recent access history. To ensure that readCount does
not become excessively large and to mitigate the impact of sud-
den increases in access, we impose an upper bound on its value.

478

slab 1

slab 2

slab 3

……

slab n

……

hash table

tuple slot

free list

……

……
LRU list

hv1

hv2

hv3

hv4

……

slab directory

hash bucket list

Figure 3: Data management in Memcached.

This bound is set to 2 × THRhot , which is twice the limit for the
“Hot” category.

Specifically, THRhot and THRwarm in Table 2 represent the
thresholds for “Hot” and “Warm” tuples, respectively, which are
dynamically calculated. TaC periodically and randomly samples
some tuples1 to count their readCounts. Utilizing the histogram
and the ratios of DRAM (or NVM) capacities to the total data
sizes, TaC calculates the ideal thresholds for tuples suitable for
DRAM and NVM. For example, when the ratio of DRAM capacity
to dataset size is set at 10%, THRhot will be the value at which no
more than 10% of tuples have a readCount larger than THRhot .

5 IMPLEMENTATION
We implemented TaC based on the widely used in-memory KV
store, Memcached [30]. In this section, we provide an overview
of the detailed implementation of TaC. First, we introduce Mem-
cached briefly in Section 5.1, followed by a comprehensive overview
of the implementation of TaC. Overall, TaC primarily incorpo-
rates the following important techniques:
• TaC manages NVM space at tuple-level like DRAM while
maintaining the metadata in DRAM to mitigate small and
random writes on NVM, addressing issues related to read-
write asymmetry (P2) and small/random access overhead (P3)
(Section 5.2).

• TaC decouples the NVM writes from the front-end read re-
quests trying to avoid highly concurrent accesses on NVM
(P4 and P5) (Section 5.3).

• TaC utilizes reference information in the metadata to filter
out invalid tuples in SSD, without having to check the index
thereby optimizing data retrieval (Section 5.4 and 5.6).

• TaC enhances the scalability of Memcached’s memory man-
agement through partitioning techniques (Section 5.5).

5.1 Overview of Memcached
Memcached [30] is a popular open-sourced in-memory KV store,
which supports set and get APIs for storing or retrieving a tuple
based on a given key. As Figure 3 shows, it uses a hash table as the
index and a slab directory as the memory manager to organize
data. In this section, we provide a brief overview of them.

In Memcached, tuples of similar sizes are grouped into a slab,
managed by a pre-configured slab directory as shown in Figure 3.
Each slab manages an LRU list of tuples and a free list of available
tuple slots. When a new tuple arrives, the system first tries to
allocate a tuple slot from the free list. If unavailable, the slab
requests a new page. If this request fails, the coldest tuple in the
LRU list is evicted. Contrasting this, TaC retains evicted tuples in
1It’s important to note that the sampling target includes all stored tuples, regardless
of client requests. Therefore, the statistical histogram can be regarded as represen-
tative of the overall distribution of readCounts.

buf

tuple slot in DRAM

page

LRU
next

LRU
prev

hash
next

time
(read count)

flags
value
size

key
size

key value

rev
ptr

time
value
size

key
size

key value

NVMDRAM

tuple slot in NVM or SSD

SSD

LRU
next

… reference

meta tuple

Figure 4: Data arrangement across DRAM, NVM, and SSD.

lower tiers instead of discarding them. Successful page allocation
results in dividing the page into fixed-size tuple slots, as defined
in the slab directory. These tuple slots are subsequently added to
the free list. A background process optimizes free space across
all slabs by reallocating pages from slabs with surplus free lists
to those deficient in tuple slots.

Memcached utilizes a hash table to index tuples and organizes
them into linked lists based on their hash values. To locate a
tuple, the worker traverses the list corresponding to the hash
value of the given key. Updates to existing tuples are handled
via out-of-place writes. If successful, the new version is inserted
into the hash table, and the old tuple slot is freed and added back
to free lists. In TaC, we retain the hash index of Memcached but
revamp its data storage.

A tuple slot in Memcached comprises three components: meta-
data, key, and value, as indicated in Figure 4 labeled by “tuple
slot in DRAM”. The metadata includes link pointers, sizes, and
flag information. Specifically, it contains Next and Prev pointers,
linking the tuple slot to its adjacent nodes in the LRU list. If a
tuple slot is freed, these pointers will be used to manage the free
list. The flags attribute within the metadata indicates whether
the tuple slot is in use. An additional HashNext pointer in the
metadata organizes the hash list in the hash bucket. To prevent
write conflicts, exclusive locks are deployed to safeguard each
LRU list, free list, and hash bucket in Memcached.

5.2 Data Arrangement
TaC employs different strategies to manage the space in its three
storage tiers. Data space in DRAM and NVM is organized using
tuple slots and slabs, akin to Memcached. Specifically, slot sizes
are aligned to 256 bytes in NVM to match the access granularity
of NVM [18]. In SSD, data space is divided into fixed-sized pages,
which serve as the unit for space allocation and reclamation.
These pages are further divided into fixed-sized buf s, which act
as the units for read and write operations and can contain dozens
to hundreds of tuples. Notably, buf s are not aligned with the
slabs and may contain tuples from different slabs. This design
choice stems from TaC’s approach of not recycling tuple slots
within a buf or page while recycling within slabs is essential for
optimizing the limited space available in DRAM and NVM.

TaC adopts the format in Memcached for tuples stored in
DRAM but utilizes a distinct format for those in NVM or SSD,
as depicted in Figure 4. In TaC, all tuples are indexed in DRAM.
Therefore, tuples in NVM or SSD omit link information in the
metadata and instead include an additional field called revPtr,
which serves as a reverse pointer to the corresponding meta
tuple in DRAM. In contrast, the meta tuple in DRAM, indexed in

479

the hash index, contains link information and references to its
physical tuple in NVM or SSD. For tuples in NVM, the reference
is an 8-byte pointer, while for those residing in SSD, the reference
comprises a 2-byte page version, a 2-byte page identifier, and
a 4-byte inner offset. This combination determines the precise
physical location of the tuple.

Storing the entire index in DRAM yields substantial perfor-
mance benefits. Indexes are frequently accessed components of
a KV store and have a small size with random access patterns.
Given that fine-grained random data accesses to NVM are signifi-
cantly slower than to DRAM [48], NVM is unsuitable for indexing.
Besides, TaC also keeps tuple metadata in indexes, which is cru-
cial for set requests that update multiple metadata components.

In particular, the access information needed by Lazy LRU
resides in the metadata of a tuple. While Memcached originally
stores the access time of a tuple in 4 bytes, TaC further divides
it into time (3 bytes) and readCount (1 byte), as illustrated in
Figure 4. Specifically, time increments at the second level, making
3 bytes sufficient for data temperature identification.

5.3 Data Eviction
In TaC, the responsibility for managing data movement oper-
ations, such as data eviction and data fetching, is delegated to
dedicated threads. This delegation of tasks helps optimize the
utilization of worker threads, allowing them to focus on serv-
ing requests more efficiently [11]. In particular, with dedicated
threads responsible for data flushing to NVM, the NVM writes
are decoupled from front-end requests and alleviate the influence
of limited NVM write concurrency on the system performance.

Specifically, when the free space in memory reaches a water-
mark (4 MB for DRAM and 256 MB for NVM in our evaluation),
the eviction process is triggered. This process entails transfer-
ring cold tuples from higher (and faster) storage tiers to lower
(and slower) tiers. This ensures the efficient utilization of storage
resources and maintains system performance.

During eviction, TaC relies on the Lazy LRU mechanism to
determine which tuples to evict. Background threads for Lazy
LRU move hot or warm tuples atop the LRU lists of DRAM or
NVM respectively, while eviction threads select tuples from the
bottom of LRU lists for eviction. Typically, when a tuple is evicted
to NVM, it is written directly to a tuple slot in NVM. However,
if tuples are evicted to SSD, they are initially packed into buf s,
which are subsequently flushed to SSD when they reach the buf
capacity.

5.4 Data Fetching
Similar to the data eviction process, TaC employs dedicated
threads to asynchronously select and fetch hot tuples from lower
tiers to upper tiers. When accessing tuples in NVM, “Hot” tu-
ples will be recorded in a thread-local queue. Thereby, fetching
threads will check these queues and fetch hot tuples in NVM into
DRAM.

When accessing SSD, once the accessed tuple is warm or hot,
TaC will record the buf it residing in and notify the fetching
threads. The fetching threads then regard all tuples in the buf as
candidates for swapping. However, as updates are performed out-
of-place in TaC, candidate tuples may become outdated. Initially,
to verify the validity of a tuple, its key can be used to traverse
the hash table to determine if the tuple is in use or not. However,
traversing the index needs to fetch the lock of related hash buck-
ets. To avoid this, TaC leverages the revPtr in the SSD-resident

……
……

……
cold tuples

……

free list m

……

……
LRU list m

evict thread 1
LRU list 1

evict thread m

worker 1

worker m

new tuples

free list 1

slab n

Figure 5: Illustration of partitioned memory management.

tuple as depicted in Figure 4, without checking the index. In par-
ticular, an SSD-resident tuple can be considered as valid if and
only if it can satisfy three conditions:

• its revPtr is not NULL and the relative meta tuple is in use
(indicated by flags);

• its key remains the same as the one in the meta tuple;
• its meta tuple refers to itself.

After confirming the validity of a candidate tuple, TaC will
check its temperature to determine whether to fetch it and where
to fetch it. According to Table 2, “Hot” tuples are fetched into the
DRAM, “Warm” tuples into the NVM, and “Cold” tuples will stay
in the SSD.

5.5 Scalable Memory Management
As discussed in Section 5.1, Memcached manages tuples by slabs.
Each slab maintains an LRU list for data eviction and a free list for
tuple allocation. However, these lists are protected by exclusive
locks, which can easily become a hot spot of contention. The
introduction of data evicting and fetching threads of the anti-
caching architecture has made the problem even more severe.
To address this issue, TaC partitions memory management tasks
such as data eviction, data fetching, and LRU maintenance. In
particular, Figure 5 illustrates how the data eviction tasks are
partitioned, while data fetching and LRU maintenance can be
handled in similar ways.

As illustrated in Figure 5, TaC divides both the LRU list and
free list of a slab into𝑚 partitions, with each partition assigned
to a corresponding evicting thread responsible for data eviction
and space recycling. Each worker is also assigned to a particular
partition, allowing it to operate on its designated free-list and
LRU-list partition when inserting or updating a tuple. This parti-
tioning scheme helps reduce contention on the exclusive locks
associated with each list and improves overall concurrency.

Increasing the number of partitions can help eliminate con-
tention, but it can also result in excessive space and performance
overhead and potentially impact the accuracy of LRU. To address
this, TaC sets the number of partitions to the maximum number
of threads initialized by the system, providing enough parallelism
without excessive overhead. Load balancing is also a crucial fac-
tor to consider when utilizing the partitioning approach. TaC
addresses this by enabling threads to steal work from other par-
titions when they’re starved. Due to space limitations, we omit
the details.

5.6 Space Reclamation
Following the original Memcached, TaC employs out-of-place up-
dates for all set requests, which allows changing value sizes when

480

updating a tuple. When a tuple in DRAM or NVM is updated,
its original slot is immediately recycled to the free list. However,
for SSD, TaC reclaims space in pages, meaning that a page can
only be reclaimed when all of its tuples are outdated/invalid. This
approach can cause space fragmentation and potentially exhaust
SSD capacity if there are too many out-of-place updates. (Note
that a tuple in SSD could become invalid if (1) the tuple has been
updated or deleted or (2) it has been swapped into DRAM or
NVM.) This may cause space fragmentation.

To address this issue, TaC proactively performs defragmenta-
tion when the SSD is about to be exhausted. The defragmentation
process starts from the oldest page, reads in all valid buf s, and
re-evicts their valid tuples to new pages while filtering out in-
valid tuples according to the conditions introduced in Section 5.4.
When tuples are moved to new locations of SSD, only the refer-
ence information in the meta tuples needs to be updated while
their corresponding meta tuples in DRAM remain intact.

5.7 About Failure Recovery
Data loss can be tolerated in some specific circumstances, such
as being used as the application-level cache [31], where the lost
data can be refilled by following requests. However, the need
for failure recovery is critical in many other contexts. We posit
that the design of TaC can be readily adapted to support failure
recovery and introduce our solution briefly below.

Essentially, an operation log inNVMcan assist in data recovery
in the event of a system crash. This operation log offers several
advantages. Firstly, due to its sequential writing nature, NVM
can leverage its near-DRAM performance. Secondly, since data in
NVM and SSD is already persistent, it can serve as a checkpoint
and be used to truncate the log. This means that only the data
in DRAM needs to be backed up, which is typically the smallest
portion.

To ensure the integrity of persisted data, checksums can be
added to tuple slots in NVM or SSD. Additionally, if the old
version of a tuple in SSD has not been reclaimed, the time attribute
of tuples in NVM and SSD, as illustrated in Figure 4, can be used
to identify the latest version. This is because the time attribute
records the last access time before it is flushed, and an older
version will not be accessed again after being updated. In other
words, the time attribute of the new tuple, which is no less than
its creation time, is certainly larger than that of the old version.

6 EVALUATION
6.1 Experimental Environment
We conducted experiments on a dual-socket machine managed by
Linux kernel 5.4.0-126. Each socket was equipped with an Intel R○

Xeon R○ Gold 6326 CPU (2.90GHz) with 16 physical cores. Each
physical core had a 48KB L1 data cache, a 32KB L1 instruction
cache, and a 1.25MB L2 cache, and can be forked into 2 logical
ones by hyper-threading. A 24MB L3 cache was shared by all
physical cores in the same socket. The machine was equipped
with 128GB DRAM, 1TB NVM (Intel R○ OptaneTM Persistent
Memory 200 Series) per socket, and 1.92TB SAMSUNG SSD
(MZQL21T9HCJR-00A07 series). All NVM DIMMs were config-
ured to App Direct mode, exposing NVM and DRAM to program-
mers as two separate memory tiers and allowing explicit control
of the utilization of different kinds of memory. All experiments
were performed on a single socket with all memory (including
DRAM and NVM) accesses and CPU utilization being restricted
to the same socket to rule out potential NUMA impacts.

6.1.1 Workload. We conducted our evaluation using the YCSB
benchmark [9]. The benchmark primarily comprises concurrent
get and set requests. To assess TaC in different scenarios, we tried
three representative workloads as follows:

• Read-Only (YSCB-RO): 100% reads
• Read-Heavy (YCSB-RH): 95% reads and 5% updates
• Write-Heavy (YCSB-WH): 50% reads and 50% updates

In particular, the workloads were configured to follow the Zip-
fian distribution, with a default factor of 0.99. Each tuple consisted
of an 8-byte key and a 1000-byte value. For each experiment, we
preloaded 50 million tuples (over 50GB) unless otherwise speci-
fied. We measured system throughput as our primary evaluation
metric, as in previous studies [5, 11, 56]. All reported results are
the averages of 10 consecutive runs, each lasting 30 seconds.

6.1.2 Systems for Comparison. We mainly evaluated TaC
against the following alternative designs:

• Anti-NVM, a two-tier design that utilizes NVM as the pri-
mary storage, supplemented by SSD, as illustrated in Fig-
ure 2(a). In this design, DRAM is the cache of NVM. In
order to better control the allocation of DRAM and NVM,
we implemented a variant based on Memcached using the
"App Direct" Mode of Optane. When a tuple is updated,
the new data is initially written to the cache in DRAM
and subsequently flushed to NVM in the process of cache
eviction.

• Anti-2, a two-tier design that does not differentiate be-
tween DRAM and NVM, as illustrated in Figure 2(b). It
is also implemented based on Memcached. In particular,
without making a distinction between DRAM and NVM,
it brings all “Warm” data, including those categorized as
“Hot” in Table 2, into memory.

• FASTER-NVM, another variant of the design in Figure 2(b)
which is implemented on top of a two-tier anti-caching
KV store, FASTER [5]. It treats NVM as DRAM to extend
the memory part of FASTER while retaining SSD as a
supplement, adhering to its original design.

• Spitfire, which is a three-tier caching architecture, treating
DRAM and NVM as buffers for SSD [56].

• PRISM, which is a KV store on heterogeneous storage de-
vices [42], using DRAM for read cache and NVM for write
buffer and index.

In the experiments, for a fair comparison, all systems were
allocated an equal amount of memory and bound to identical
CPU resources. Specifically, all Memcached variants adopted the
same in-memory indexing and bookkeeping methods as TaC,
while FASTER-NVM and Spitfire received the same amount of
DRAM allocation as Memcached. By default, TaC employed
8 evicting threads, with the number of fetching threads equal
to the number of workers. The impact of these settings on the
performance of TaC is discussed in Section 6.4. Additionally,
the number of partitions was set to 128, slightly exceeding the
total count of workers and background threads, as explained in
Section 5.5.

6.2 Performance Comparison and Analysis
To evaluate the performance of different designs, we tested all
comparison systems on a variety of circumstances.

6.2.1 Experiments on varying degree of parallelism. Figure 6
illustrates the impact of varying the number of workers on the
throughput of subject systems, with fixed DRAM and NVM sizes

481

1 2 4 8 16 32
workers

6
12
18
24

th
ro

ug
hp

ut
 (M

op
s/

s)

(a) YCSB-RO

1 2 4 8 16 32
workers

5
10
15
20

(b) YCSB-RH

1 2 4 8 16 32
workers

3
6
9

(c) YCSB-WH

TaC Anti-2 Anti-NVM FASTER-NVM Spitfire PRISM

Figure 6: Impact of the degree of concurrency on throughput.

100
1000

10000

P50 P75 P99

TaC
Anti-2

Anti-N
VM

FASTER-NVM
Spitfir

e
PRISM0.6

1
2
3

la
te

nc
y

(u
s)

Figure 7: Read latency on YCSB-WH.

Table 3: Memory hit rates on the YCSB-RH workload.

TaC Anti-2 Anti-NVM

DRAM 61.4% 9.1% 59.8%
NVM 21.0% 76.3% 18.8%

of 4GB and 32GB, respectively. Most systems exhibited efficient
scaling on the multi-core machine, with all Memcached variants
effectively scaling up to 16 workers, matching the number of
physical cores. However, when the number of workers exceeded
this threshold, contention on lock resources and SSD I/Os among
workers and background threads increased significantly, partic-
ularly for write-heavy workloads. This resulted in a plateau or
a slight decrease in throughput. For a deeper insight into per-
formance differences between the systems, we present the read
latency of all systems in Figure 7 and the memory hit rates (i.e.,
the ratios of read requests fetching data from DRAM or NVM) of
the Memcached variants in Table 3. Generally, the results verify
the superiority of TaC over alternative designs. Moreover, several
key observations can be made:

(a) The anti-caching architecture outperforms the caching
architecture regarding the throughput.

As depicted in Figure 6, anti-caching-based variants outper-
formed Spitfire and PRISM, which utilize the caching or buffering
architecture. This is because the former was originally designed
for in-memory systems, featuring more efficient in-DRAM in-
dexes and finer-grained data swapping compared to Spitfire and
PRISM, which are inherently disk-resident systems. Notably, Fig-
ure 7 reveals that Spitfire and PRISM experienced higher P50 and
P75 latency than others. However, Spitfire exhibited a smaller
P99 latency due to asynchronous SSD reads in other systems,
which can result in occasional higher latency, especially when
conflicting with writes.

In particular, PRISM employs an in-NVM index and asynchro-
nous SSD read to optimize system performance. Further, it em-
ploys DRAM as a read cache for hot data in SSD to optimize
read performance and NVM as a write buffer to enhance write
operations. However, the separation prevents it from leveraging
NVM in read-intensive workloads. Moreover, without data trans-
formation between DRAM and NVM, it struggles to handle hot
data in NVM.

Besides, there is a significant discrepancy between our results
for Spitfire and those reported in the original paper [56]. This
is because the original paper measured the throughput of the
buffer manager and a single set or get KV operation would result
in multiple calls to the buffer manager. Additionally, caching ar-
chitecture naturally supports data persistence and is more suited
for failure recovery scenarios. Therefore, the choice between

these architectures may vary based on specific application re-
quirements.

(b) Distinguishing between NVM and DRAM enhances
system performance by improving DRAM hit rates and
NVM accessing efficiency.

As illustrated in Figure 6, TaC consistently outperforms FASTER-
NVM and Anti-2, both of which employ two-tier anti-caching
architectures without distinguishing between DRAM and NVM.
Notably, when compared to Anti-2, TaC exhibits remarkable
performance improvements, exceeding 1.48x for the YCSB-WH
workloads.

This superiority comes from the ability of TaC to differentiate
between hot and warm data, with hot data stored in DRAM and
warm data in NVM, resulting in an improved DRAM hit rate. In
contrast, Anti-2 treats NVM similarly to DRAM, resulting in the
storage of hot data in both. Specifically, for read-heavyworkloads,
TaC achieves a DRAM hit rate of 61.4%, while Anti-2 lags at 9.1%.
Given the inferior performance of NVM compared to DRAM, this
negatively impacts the performance of Anti-2. Besides, the per-
formance gap widens further with write-heavy workloads since
NVM experiences more pronounced performance degradation for
writes compared to reads. This issue becomes particularly severe
during metadata maintenance in the process of set operations,
which involves numerous small and random memory accesses.

FASTER-NVM performs better on write-heavy workloads be-
cause it directs all write requests to memory, capitalizing on its
latch-free in-DRAM hash index and in-place updates strategy.
However, similar to Anti-2, it suffers from a low DRAM hit rate.
Notably, FASTER-NVM struggles significantly with read-only
workloads, primarily because FASTER only brings newly written
data into memory storage, neglecting optimization for read re-
quests. Consequently, it experiences exceptionally low memory
hit rates in read-only scenarios.

(c) The three-tier architecture outperforms the “Memory
Mode” architecture due to better memory utilization and
reduced data synchronization cost.

Figure 6 also demonstrates that TaC outperforms Anti-NVM,
which utilizes DRAM as a cache of NVM. This performance
discrepancy can be attributed to two primary factors: Firstly,
Anti-NVM exhibits data redundancy between NVM and DRAM,
resulting in inefficient memory utilization and a lower memory
hit rate compared to TaC. This effect is particularly pronounced
in read-only workloads. Secondly, Anti-NVM incurs maintenance
overhead due to data synchronization between the DRAM cache
and the primary data in NVM, primarily for write requests. In
the case of TaC, hot tuples can be stored directly in DRAM tuple
slots without necessitating NVM involvement. Conversely, in
the design of Anti-NVM, space in NVM must be allocated and

482

2GB 4GB 8GB
DRAM size

7
14
21

th
ro

ug
hp

ut
 (M

op
s/

s)

(e) YCSB-RO NVM/DRAM = 8

2GB 4GB 8GB
DRAM size

7
14
21

th
ro

ug
hp

ut
 (M

op
s/

s)

(c) YCSB-RH, NVM/DRAM = 8

2GB 4GB 8GB
DRAM size

4

8

12

th
ro

ug
hp

ut
 (M

op
s/

s)

(a) YCSB-WH, NVM/DRAM = 8

2GB 4GB 8GB
DRAM size

7
14
21

(f) YCSB-RO, 32GB NVM

2GB 4GB 8GB
DRAM size

7

14

21

(d) YCSB-RH, 32GB NVM

2GB 4GB 8GB
DRAM size

4

8

12

(b) YCSB-WH, 32GB NVM

TaC Anti-2 Anti-NVM FASTER-NVM

Figure 8: Impact of DRAM and NVM sizes on throughput.

managed, leading to additional overhead for maintaining the two
copies in both DRAM and NVM.

In the following experiments, we applied 32 workers for read-
only and read-heavy workloads and 16 workers for the write-
heavy workloads except for the FASTER-NVM, which applied 32
workers for write-heavy workloads to get its top performance.

6.2.2 Experiments on varying DRAM and NVM sizes. The per-
formance of anti-caching systems is usually heavily influenced
by the capacity of DRAM and NVM. To assess this, we conducted
a series of experiments, varying the sizes of DRAM and NVM
across all systems. Initially, we held the DRAM/NVM size ratio
at 8 while adjusting the size of DRAM, and then held the NVM
capacity at 32GB while adjusting the size of DRAM, yielding
different DRAM/NVM size ratios. As Figure 8 illustrates, TaC
outperforms other systems across a wide range of memory con-
figurations. It also leads to the following observations:

(a) Increased size of memory tends to soften the differ-
ence between TaC and Anti-NVM on read operations.

As illustrated in Figure 8, the performance of Anti-NVM ex-
hibits significant improvement as memory size increases. To pro-
vide a concrete example, when using 2GB of DRAM and 16GB of
NVM, TaC outperforms Anti-NVM by 1.50x in a read-only work-
load. However, this performance advantage diminishes to 1.27x
when using 8GB of DRAM and 64GB of NVM. With larger NVM
capacities, both TaC and Anti-NVM allocate most of the data in
NVM, reducing the impact of wasted memory space. Moreover, a
larger DRAM allows for a greater amount of hot data to be stored
in DRAM, significantly reducing the overhead associated with
cache eviction. Nevertheless, even when equipped with 64GB of
NVM, TaCmaintains its performance superiority over Anti-NVM,
particularly in write-heavy workloads. This continued advantage
comes from inherent challenges in Anti-NVM regarding the data

synchronization between the two copies residing in DRAM and
NVM.

(b) Increasing the memory size would enlarge the supe-
riority of TaC over Anti-2 while an increased DRAM/NVM
size ratio would soften its superiority on write operations.

As indicated in Figure 8(c), when employing 2GB of DRAM
and 16GB of NVM, the throughput of TaC is 1.04x that of Anti-2,
but this difference increases to 1.44x when using 8GB of DRAM
and 64GB of NVM. This outcome aligns with expectations: when
more data can be accommodated in memory (whether DRAM or
NVM), overall performance becomes predominantly influenced
by the efficiency of DRAM utilization. Consequently, the supe-
rior performance of TaC is attributed to its ability to enhance the
DRAM hit rate. However, as the ratio of DRAM to total memory
sizes increases, there are more requests served by DRAM, dimin-
ishing the performance gap between Anti-2 and TaC, especially
on write operations. To illustrate, when employing 32GB of NVM
and 2GB of DRAM, the DRAM hit rate of Anti-2 for write-heavy
workloads is only 9.1%, but it increases to 24.5% when using 8GB
of DRAM.

Notably, FASTER-NVM exhibits outstanding performance in
the configuration featuring 8GB of DRAM and 64GB of NVM.
This exceptional performance is attributed to the ability of mem-
ory to hold all data with such a configuration, enabling the latch-
free index of FASTER to fully capitalize on its strengths.

6.2.3 Experiments on varying dataset sizes. In this part, we
conducted additional experiments to investigate the impact of
varying dataset sizes on the performance of different anti-caching
systems. In these experiments, we held the sizes of DRAM and
NVM constant at 20GB and 80GB, while varying the dataset
size. The results are presented in Figure 9. Additionally, the
figure provides the performance of Plush [44] and Halo [15],
which are state-of-the-art hybrid DRAM and NVM Key-Value
stores, as references. In particular, Plush adopts an LSM-tree-
like architecture and we configured its DRAM tier as 32GB with
other configurations as default settings. Basically, we could get
the following key observations:

(a) Applying NVM directly to well-optimized DRAM-
oriented systems can result in significant performance
degradation.

Notably, FASTER-NVMoutperformsMemcached variantswhen
the entire dataset fits into memory (i.e., no larger than 100GB),
particularly when most of the data can reside in DRAM (i.e.,
around 20GB). This advantage arises from the highly efficient
in-DRAM index of FASTER and its ability to capitalize on the in-
place update strategy without the engagement of SSD. However,
as the dataset size increases and more data is stored in NVM,
its performance declines substantially. For instance, Figure 9(a)
shows that its throughput for write-heavy workloads decreases
by 43% as the data size increases from 25GB to 50GB. This drop
in performance can be attributed to its DRAM-oriented update
strategy, which leads to suboptimal performance on NVM. A
similar phenomenon is observed with Anti-2. In contrast, TaC
exhibits a more stable performance as the dataset size grows.
This further highlights that directly applying NVM to existing,
well-optimized two-tier anti-caching systems is not a favorable
approach.

(b) The performance of anti-caching-based systems is
competitive to that of hybrid DRAM and NVM systems
when the data could fit in memory while providing larger
capacity.

483

25 50 75 100125150175200
dataset sizes (GB)

10
20
30

(c) YCSB-RO

25 50 75 100125150175200
dataset sizes (GB)

10
20
30

(b) YCSB-RH

25 50 75 100125150175200
dataset sizes (GB)

8
16
24

th
ro

ug
hp

ut
 (M

op
s/

s)

(a) YCSB-WH

TaC Anti-2 Anti-NVM FASTER-NVM Plush Halo Halo-SSD

Figure 9: Impact of dataset sizes on throughput.

1 2 4 8 16 32
workers

7

14

21

th
ro

ug
hp

ut
 (M

op
s/

s) no partition YCSB-RO
no partition YCSB-RH
no partition YCSB-WH
TaC YCSB-RO
TaC YCSB-RH
TaC YCSB-WH

Figure 10: Impact of partitioning.

Plush [44] and Halo [15] stand as representative hybrid DRAM
and NVM KV stores. As indicated in the figure, Plush excels in
write-heavy workloads, leveraging its DRAM tier as an effective
write buffer. Conversely, Halo showcases superior performance in
read-intensive scenarios, capitalizing on its optimized in-DRAM
hash index and pre-fetching-optimized read strategy.

When the dataset fits into memory, TaC demonstrates com-
petitive performance compared to Plush and Halo, as all data in
TaC is stored in memory. In particular, in scenarios where the
majority of the data can reside in DRAM, TaC outperforms both
Plush and Halo significantly across various workloads. This is
credited to the hotness-aware design of TaC, enhancing DRAM
utilization and ensuring that the majority of requests are serviced
by DRAM.

Specifically, with write-heavy workloads, TaC outperforms
both Plush and Halo. This is attributed to the anti-caching de-
sign which maximizes the utilization of DRAM for serving write
requests. In contrast, despite Halo leveraging a pre-core buffer to
optimize small write operations, it still necessitates all write re-
quests to reach NVM. Similarly, the append-only update strategy
in Plush, along with its extra payload log for values larger than 8
bytes, also mandates that all write requests would reach NVM
once the DRAM is full. In contrast, TaC facilitates the timely
reclamation and recycling of old tuple slots in DRAM, resulting
in fewer NVM writes.

As the dataset size surpassed the memory capacity, Plush and
Halo encountered challenges as they assumed that everything
could be accommodated in NVM. In contrast, the anti-caching
architecture is purposefully designed to handle such scenarios,
while providing promising performance, as illustrated in the
figure.

To illustrate the impact of integrating SSD into the system, we
introduced a variant of Halo, named “Halo-SSD”. In Halo-SSD,
data storage is divided into two parts: the first part remains in
NVM, consistent with the original design, occupying 100GB; the
second part is allocated to SSD. When reading a tuple located
in the second part, it incurs an SSD read instead of the original
NVM read. In Figure 9(c), the performance of Halo-SSD on read-
only workloads is presented. As evident, the introduction of SSD
leads to a sharp drop in the read performance of Halo-SSD, high-
lighting the non-trivial nature of extending the hybrid DRAM
and NVM design to include SSD. The primary challenges revolve
around identifying data temperatures and fully leveraging mem-
ory performance, both of which TaC is dedicated to resolving.
In conclusion, the three-tier anti-caching design proves to be an
effective choice when data size exceeds memory capacity.

6.3 Optimization Impact Analysis
In this subsection, we performed studies on the implementation
decisions of TaC, including the partitioned memory management,
the hybrid data swapping strategy, and the Lazy LRU strategy.

6.3.1 Partitioned memory management. Partitioned memory
management indeed plays a significant role in ensuring the scal-
ability of TaC. Figure 10 exhibits the multi-core scalability of
TaC against that of the original Memcached enhanced with anti-
caching (termed no partition). From the figure, it is evident that
with partitioned memory management, the system can scale sig-
nificantly better, particularly on write-heavy workloads, where
the original Memcached has little scalability after equipping with
the anti-cache. This is because the write-heavy workload results
in more data eviction operations, leading to more contention
on LRU lists and free lists. As a result, the impact of partition-
ing in reducing their lock contention becomes more noticeable.
Partitioning the memory effectively limits the lock contention
within each partition, allowing for improved parallelism and
better utilization of multi-core resources.

6.3.2 Hybrid data swapping. To verify the effectiveness of
the hybrid data swapping strategy, we compared TaC against
another variant of Memcached, termed Anti-Tuple. Anti-Tuple
adopts the same three-tier architecture as TaC but only performs
tuple-level swapping. This means that when fetching data from
the SSD, it only swaps in the exact tuples requested by the get
operations. In contrast, when TaC fetches a buf from the SSD, it
evaluates all the tuples in the buffer and selectively swaps in the
hot and warm tuples. This strategy allows TaC to maximize the
efficiency of SSD operations, resulting in improved performance.

As depicted in Figure 11, the hybrid data swapping strategy
outperformed the pure tuple-level data swapping strategy on
the read-only and read-heavy workloads. However, it has little
effect on the write-heavy workloads as it does nothing for write
requests and the frequent set requests bring updated data into
memory, which also results in less influence of the data swapping
strategy. The results demonstrate the advantage of the hybrid
swapping strategy, which provides more efficient data access.

6.3.3 Lazy LRU. Lazy LRU plays an important role in divid-
ing the data into different temperature levels and guiding the
data swapping operation, which is hard to implement by other
alternatives. Besides, it could also improve the cache hit ratios
and the efficiency of systems. To further validate its efficiency,
we conducted a simulation experiment similar to the one per-
formed in FASTER [5]. In this simulation, the tuple at the bottom
of the LRU list is continuously evicted to make space for new
tuples. We applied various eviction strategies, including LRU,
Lazy LRU, ALRU, and Sampled LRU, across a range of cache sizes.

484

YCSB-RO
YCSB-RH

YCSB-WH8

14

20

M
op

s/
s

TaC
Anti-Tuple

Figure 11: Throughput
w.r.t. swapping strategies.

0.1 0.2 0.5
cache / dataset

0.64
0.68
0.72
0.76

hi
t r

at
e

(\%
)

(a)
0.1 0.2 0.5
cache / dataset

10
20
30
40

M
op

s/
s

(b)

LRU
Lazy LRU

ALRU
Sampled LRU

Figure 12: Cache hit rate (a) and throughput
(b) w.r.t. eviction strategies.

1 2 4 8 16 32
evicting threads

0
7

14
21

M
op

s/
s

(a)
1 2 4 8 16 32

fetching threads
6

12
18
24

(b)

YCSB-RO YCSB-RH YCSB-WH

Figure 13: Throughputw.r.t. numbers of evict-
ing (a) and fetching (b) threads.

Figure 12(a) illustrates the cache hit rates of different approaches,
while Figure 12(b) plots their throughputs. In each experiment,
we employed 16 workers and set the Zipfian factor to 0.99. The
results showed that Lazy LRU outperformed alternatives in both
throughput and cache hit rate.

The figure clearly shows that the original LRU suffers from
very low throughput, as it requires updating the LRU list for
almost every read operation. ALRU performs fewer updates on
the LRU lists, but this comes at the cost of needing to access
more tuples when performing eviction. Sampled LRU misses a
significant amount of information about data accesses, which
negatively impacts its accuracy in approximating LRU. In con-
trast, Lazy LRU, which only delays updates on the LRU lists,
has more information available for approximating LRU. It also
minimizes interference on the workers processing user requests,
enhancing the throughput. Thus, the Lazy LRU strategy demon-
strates superior performance in managing cache eviction and
data access tracking.

6.4 Parameter Sensitive Analysis
In this part, we performed studies on the influence of the num-
ber of evicting and fetching threads. The results are shown in
Figure 13.

The number of evicting threads can have a significant im-
pact on data eviction operations. Specifically, too few evicting
threads can cause eviction lag, which can have a negative impact
on write performance. However, too many evicting threads can
lead to high contention on locks and SSD I/O operations, which
can also be slightly detrimental to performance, especially for
read-intensive workloads. Overall, 8 threads, half the number of
physical cores, seem to yield good performance across various
scenarios.

The number of fetching threads shows little influence on the
systems. Firstly, for write-heavy workloads, the set requests
would bring hot data into DRAM resulting in less requirement on
data swapping operations. Secondly, the skewness of the requests
also helps restrict the amount of data swapped due to the limited
amount of hot data. However, more fetching threads allow hot
data to be migrated into upper tiers quicker, resulting in a slightly
better read performance. Therefore, we suggest the same number
of fetching threads as the workers.

7 CONCLUSION
This paper discussed several potential designs for integrating
NVM into anti-caching KV stores. Specifically, considering the
characteristics of NVM, we present an effective three-tier anti-
caching design, TaC. It addresses the challenges of managing data

across three different storage tiers by introducing a hybrid data
swapping strategy and a lightweight access tracking mechanism
implementing multi-level data classification. Through extensive
experimentation, we demonstrated the superiority of TaC over
alternative designs. The results indicate the three-tier design is
the most efficient and effective method for incorporating NVM
into anti-caching KV stores.

As for future work, there have been other kinds of memories
that gained a lot of attention, such as CXL memory and High
Bandwidth Memory (HBM). Firstly, the specific performance
characteristics of alternative devices, such as CXL memory, re-
quire more experimental exploration and targeted studies. Sec-
ondly, expanding and generalizing the anti-caching architecture
to be a modular framework that enables seamless incorpora-
tion of different devices remains a valuable topic. Besides, the
extended persistence domain offered by the Optane Series 200
also introduces additional optimization chances regarding the
persistence of anti-caching architectures.

8 ACKNOWLEDGE
This project is supported by theNSFC Project (China) No. 92270202.
It is also partially supported by a grant funded by the Ministry of
Education (Singapore) (Title: inPMdb: An in-Persistent Memory
Database System; WBS NO: A8000082-00-00) and Shanghai Engi-
neering Research Center of Big Data Management. Moreover, we
appreciate the valuable suggestions from anonymous reviewers.

REFERENCES
[1] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti

Tang, Daniel Lottis, KiseokMoon, Xiao Luo, Eugene Chen, AdrianOng, Alexan-
der Driskill-Smith, and Mohamad Krounbi. 2013. Spin-transfer torque mag-
netic random access memory (STT-MRAM). ACM J. Emerg. Technol. Comput.
Syst. 9, 2 (2013), 13:1–13:35. https://doi.org/10.1145/2463585.2463589

[2] Vinay Banakar, Kan Wu, Yuvraj Patel, Kimberly Keeton, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2023. WiscSort: External Sorting
For Byte-Addressable Storage. Proc. VLDB Endow. 16, 9 (2023), 2103–2116.
https://www.vldb.org/pvldb/vol16/p2103-banakar.pdf

[3] Lawrence Benson, HendrikMakait, and Tilmann Rabl. 2021. Viper: An Efficient
Hybrid PMem-DRAM Key-Value Store. Proc. VLDB Endow. 14, 9 (2021), 1544–
1556. https://doi.org/10.14778/3461535.3461543

[4] Lawrence Benson, Leon Papke, and Tilmann Rabl. 2022. PerMA-Bench: Bench-
marking Persistent Memory Access. Proc. VLDB Endow. 15, 11 (2022), 2463–
2476.

[5] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value
Store with In-Place Updates. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein
(Eds.). ACM, 275–290. https://doi.org/10.1145/3183713.3196898

[6] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu.
2020. FlatStore: An Efficient Log-Structured Key-Value Storage Engine for
Persistent Memory. In ASPLOS ’20: Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, March 16-20, 2020,

485

James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 1077–1091. https:
//doi.org/10.1145/3373376.3378515

[7] CXL Consortium. 2022. Compute Express Link (CXL) Specifica-
tion. https://www.computeexpresslink.org/_files/ugd/0c1418_
1798ce97c1e6438fba818d760905e43a.pdf

[8] Alex Conway, Martín Farach-Colton, and Rob Johnson. 2023. SplinterDB and
Maplets: Improving the Tradeoffs in Key-Value Store Compaction Policy. Proc.
ACM Manag. Data 1, 1, Article 46 (may 2023), 27 pages. https://doi.org/10.
1145/3588726

[9] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceed-
ings of the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, June 10-11, 2010, Joseph M. Hellerstein, Surajit Chaudhuri, and
Mendel Rosenblum (Eds.). ACM, 143–154. https://doi.org/10.1145/1807128.
1807152

[10] Lixiao Cui, Kewen He, Yusen Li, Peng Li, Jiachen Zhang, Gang Wang, and
Xiaoguang Liu. 2023. SwapKV: A Hotness Aware In-Memory Key-Value
Store for Hybrid Memory Systems. IEEE Transactions on Knowledge and Data
Engineering 35, 1 (2023), 917–930. https://doi.org/10.1109/TKDE.2021.3077264

[11] Justin A. DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and
Stanley B. Zdonik. 2013. Anti-Caching: A New Approach to Database Man-
agement System Architecture. Proc. VLDB Endow. 6, 14 (2013), 1942–1953.
https://doi.org/10.14778/2556549.2556575

[12] DRAM price 2024 (accessed 2024). February 2024 Server Memory Prices.
https://memory.net/memory-prices/.

[13] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understanding the
Idiosyncrasies of Real Persistent Memory. Proc. VLDB Endow. 14, 4 (2020),
626–639. https://doi.org/10.14778/3436905.3436921

[14] Yuliang He, Duo Lu, Kaisong Huang, and Tianzheng Wang. 2022. Evaluating
Persistent Memory Range Indexes: Part Two. Proc. VLDB Endow. 15, 11 (2022),
2477–2490. https://www.vldb.org/pvldb/vol15/p2477-wang.pdf

[15] Daokun Hu, Zhiwen Chen, Wenkui Che, Jianhua Sun, and Hao Chen. 2022.
Halo: A Hybrid PMem-DRAM Persistent Hash Index with Fast Recovery. In
SIGMOD ’22: International Conference on Management of Data, Philadelphia,
PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi
(Eds.). ACM, 1049–1063. https://doi.org/10.1145/3514221.3517884

[16] Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen. 2021.
Persistent Memory Hash Indexes: An Experimental Evaluation. Proc. VLDB
Endow. 14, 5 (2021), 785–798. https://doi.org/10.14778/3446095.3446101

[17] Kaisong Huang, Yuliang He, and Tianzheng Wang. 2022. The Past, Present
and Future of Indexing on Persistent Memory. Proc. VLDB Endow. 15, 12 (2022),
3774–3777. https://www.vldb.org/pvldb/vol15/p3774-wang.pdf

[18] Wentao Huang, Yunhong Ji, Xuan Zhou, Bingsheng He, and Kian-Lee Tan.
2023. A Design Space Exploration and Evaluation for Main-Memory Hash
Joins in Storage Class Memory. Proc. VLDB Endow. 16, 6 (2023), 1249–1263.
https://www.vldb.org/pvldb/vol16/p1249-huang.pdf

[19] Yihe Huang, Matej Pavlovic, Virendra J. Marathe, Margo I. Seltzer, Tim Harris,
and Steve Byan. 2018. Closing the Performance Gap Between Volatile and
Persistent Key-Value Stores Using Cross-Referencing Logs. In 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13,
2018, Haryadi S. Gunawi and Benjamin Reed (Eds.). USENIX Association,
967–979. https://www.usenix.org/conference/atc18/presentation/huang

[20] Intel. 2022. Intel Reports Second-Quarter 2022 Financial Results.
[21] JEDEC. 2021. DDR4 NVDIMM-P BUS PROTOCOL.

https://www.jedec.org/system/files/docs/JESD304-4-01.pdf.
[22] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaibhav

Gogte, and Ronald G. Dreslinski. 2021. Improving Performance of Flash Based
Key-Value Stores Using Storage Class Memory as a Volatile Memory Extension.
In 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16,
2021, Irina Calciu and Geoff Kuenning (Eds.). USENIX Association, 821–837.
https://www.usenix.org/conference/atc21/presentation/kassa

[23] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann.
2018. LeanStore: In-Memory Data Management beyond Main Memory. In 34th
IEEE International Conference on Data Engineering, ICDE 2018, Paris, France,
April 16-19, 2018. IEEE Computer Society, 185–196. https://doi.org/10.1109/
ICDE.2018.00026

[24] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019.
KVell: the design and implementation of a fast persistent key-value store.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, Tim Brecht and Carey
Williamson (Eds.). ACM, 447–461. https://doi.org/10.1145/3341301.3359628

[25] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating Persistent Memory Range Indexes. Proc. VLDB
Endow. 13, 4 (2019), 574–587. https://doi.org/10.14778/3372716.3372728

[26] Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin, Bingsheng He, Long Zheng,
and Rentong Guo. 2017. Hardware/software cooperative caching for hy-
brid DRAM/NVM memory architectures. In Proceedings of the International
Conference on Supercomputing, ICS 2017, Chicago, IL, USA, June 14-16, 2017,
William D. Gropp, Pete Beckman, Zhiyuan Li, and Francisco J. Cazorla (Eds.).
ACM, 26:1–26:10. https://doi.org/10.1145/3079079.3079089

[27] Haikun Liu, Renshan Liu, Xiaofei Liao, Hai Jin, Bingsheng He, and Yu Zhang.
2020. Object-Level Memory Allocation and Migration in Hybrid Memory
Systems. IEEE Trans. Computers 69, 9 (2020), 1401–1413. https://doi.org/10.
1109/TC.2020.2973134

[28] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2021. Scaling
Dynamic Hash Tables on Real Persistent Memory. SIGMOD Rec. 50, 1 (2021),
87–94. https://doi.org/10.1145/3471485.3471506

[29] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, HariharanGopalakrishnan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. WiscKey:
Separating Keys from Values in SSD-Conscious Storage. ACM Trans. Storage
13, 1 (2017), 5:1–5:28. https://doi.org/10.1145/3033273

[30] Memcached 2023 (accessed September, 2023). Memcached. https://memcached.
org/.

[31] Jhonny Mertz and Ingrid Nunes. 2017. A Qualitative Study of Application-
Level Caching. TOSEM 43, 9 (2017), 798–816.

[32] NVM price 2023 (accessed September, 2023). NVM price. https:
//www.intel.sg/content/www/xa/en/products/details/memory-storage/
optane-dc-persistent-memory.html.

[33] Ismail Oukid, Johan Lasperas, Anisoara Nica, ThomasWillhalm, andWolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and Sam Madden
(Eds.). ACM, 371–386. https://doi.org/10.1145/2882903.2915251

[34] Prashant Pandey, Michael A. Bender, Alex Conway, Martin Farach-Colton,
William Kuszmaul, Guido Tagliavini, and Rob Johnson. 2023. IcebergHT: High
Performance Hash Tables Through Stability and Low Associativity. Proc. ACM
Manag. Data 1, 1 (2023), 47:1–47:26. https://doi.org/10.1145/3588727

[35] Stefan Podlipnig and László Böszörményi. 2003. A survey of Web cache
replacement strategies. ACM Comput. Surv. 35, 4 (2003), 374–398. https:
//doi.org/10.1145/954339.954341

[36] Madhava Krishnan Ramanathan, Wook-Hee Kim, Xinwei Fu, Sumit Kumar
Monga, Hee Won Lee, Minsung Jang, Ajit Mathew, and Changwoo Min. 2021.
TIPS: Making Volatile Index Structures Persistent with DRAM-NVMM Tiering.
In 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16,
2021, Irina Calciu and Geoff Kuenning (Eds.). USENIX Association, 773–787.
https://www.usenix.org/conference/atc21/presentation/krishnan

[37] Simone Raoux, Geoffrey W. Burr, Matthew J. Breitwisch, Charles T. Rettner,
Yi-Chou Chen, Robert M. Shelby, Martin Salinga, Daniel Krebs, Shih-Hung
Chen, Hsiang-Lan Lung, and Chung Hon Lam. 2008. Phase-change random
access memory: A scalable technology. IBM J. Res. Dev. 52, 4-5 (2008), 465–480.
https://doi.org/10.1147/rd.524.0465

[38] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter.
2021. HeMem: Scalable TieredMemoryManagement for Big Data Applications
and Real NVM. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021, Robbert van
Renesse and Nickolai Zeldovich (Eds.). ACM, 392–407. https://doi.org/10.
1145/3477132.3483550

[39] Redis 2023 (accessed September, 2023). Redis. https://redis.io/.
[40] Redis ALRU 2023 (accessed September, 2023). Redis ALRU. https://redis.io/

docs/manual/eviction/.
[41] RocksDB 2023 (accessed September, 2023). RocksDB. http://rocksdb.org/.
[42] Yongju Song, Wook-Hee Kim, Sumit Kumar Monga, Changwoo Min, and

Young Ik Eom. 2023. Prism: Optimizing Key-Value Store for Modern Heteroge-
neous Storage Devices. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS 2023). Association for Computing Machinery, New York,
NY, USA, 588–602. https://doi.org/10.1145/3575693.3575722

[43] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing Non-Volatile Memory in Database Systems. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, GautamDas, ChristopherM. Jermaine,
and Philip A. Bernstein (Eds.). ACM, 1541–1555. https://doi.org/10.1145/
3183713.3196897

[44] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Jana Giceva, Thomas
Neumann, and Alfons Kemper. 2022. Plush: A Write-Optimized Persistent
Log-Structured Hash-Table. Proc. VLDB Endow. 15, 11 (2022), 2895–2907.
https://doi.org/10.14778/3551793.3551839

[45] Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, and Yuanyuan Dong.
2022. PATS: Taming Bandwidth Contention between Persistent and Dy-
namic Memories. In 2022 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2022, Antwerp, Belgium, March 14-23, 2022, Cristiana
Bolchini, Ingrid Verbauwhede, and Ioana Vatajelu (Eds.). IEEE, 885–890.
https://doi.org/10.23919/DATE54114.2022.9774762

[46] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017,
Dilma Da Silva and Bryan Ford (Eds.). USENIX Association, 349–362. https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/xia

[47] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022.
Characterizing the performance of intel optane persistent memory: a close
look at its on-DIMM buffering. In EuroSys ’22: Seventeenth European Conference
on Computer Systems, Rennes, France, April 5 - 8, 2022, Yérom-David Bromberg,
Anne-Marie Kermarrec, and Christos Kozyrakis (Eds.). ACM, 488–505. https:
//doi.org/10.1145/3492321.3519556

[48] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022.
Characterizing the performance of intel optane persistent memory: a close

486

look at its on-DIMM buffering. In EuroSys ’22: Seventeenth European Conference
on Computer Systems, Rennes, France, April 5 - 8, 2022, Yérom-David Bromberg,
Anne-Marie Kermarrec, and Christos Kozyrakis (Eds.). ACM, 488–505. https:
//doi.org/10.1145/3492321.3519556

[49] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven
Swanson. 2020. An Empirical Guide to the Behavior and Use of Scalable
Persistent Memory. login Usenix Mag. 45, 3 (2020). https://www.usenix.org/
publications/login/fall2020/yang

[50] J. Joshua Yang and R. StanleyWilliams. 2013. Memristive devices in computing
system: Promises and challenges. ACM J. Emerg. Technol. Comput. Syst. 9, 2
(2013), 11:1–11:20. https://doi.org/10.1145/2463585.2463587

[51] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM.
In 2020 USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17,
2020, Ada Gavrilovska and Erez Zadok (Eds.). USENIX Association, 17–31.
https://www.usenix.org/conference/atc20/presentation/yao

[52] Geoffrey Yu, Markos Markakis, Andreas Kipf, Per ake Larson, Umar Farooq
Minhas, and Tim Kraska. 2022. TreeLine: An Update-In-Place Key-Value
Store for Modern Storage. Proc. VLDB Endow. 16, 1 (2022), 99–112. https:
//doi.org/10.14778/3561261.3561270

[53] Hao Zhang, Gang Chen, Beng Chin Ooi, Weng-Fai Wong, Shensen Wu, and
Yubin Xia. 2015. "Anti-Caching"-based elastic memory management for Big
Data. In 31st IEEE International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, April 13-17, 2015, Johannes Gehrke, Wolfgang Lehner,
Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman (Eds.). IEEE Computer
Society, 1268–1279. https://doi.org/10.1109/ICDE.2015.7113375

[54] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.
ChameleonDB: a key-value store for optane persistent memory. In EuroSys
’21: Sixteenth European Conference on Computer Systems, Online Event, United
Kingdom, April 26-28, 2021, Antonio Barbalace, Pramod Bhatotia, Lorenzo
Alvisi, and Cristian Cadar (Eds.). ACM, 194–209. https://doi.org/10.1145/
3447786.3456237

[55] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019. Ziggurat: A
Tiered File System for Non-Volatile Main Memories and Disks. In 17th USENIX
Conference on File and Storage Technologies, FAST 2019, Boston, MA, February 25-
28, 2019, Arif Merchant and HakimWeatherspoon (Eds.). USENIX Association,
207–219. https://www.usenix.org/conference/fast19/presentation/zheng

[56] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. 2021. Spitfire: A
Three-Tier Buffer Manager for Volatile and Non-Volatile Memory. In SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava
(Eds.). ACM, 2195–2207. https://doi.org/10.1145/3448016.3452819

487

