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ABSTRACT
Analytical Stream Processing (ASP) and Complex Event Process-

ing (CEP) extract knowledge from unbounded data streams. ASP

solutions are optimized for scalable cloud environments to handle

huge volumes of data in motion. In contrast, CEP solutions are

designed for single-machine deployments, limiting their usage

for large data volumes and distributed processing. A few hybrid

solutions seek to address the lack of support for large-scale CEP

by enabling its support in ASP systems and exploiting their data

collection and distribution capabilities. However, these hybrid so-

lutions assign the entire pattern workload to a single unary opera-

tor, which becomes the bottleneck of the entire execution pipeline.

In addition, this composed operator prevents the application from

utilizing the highly efficient stream processing optimization ca-

pabilities currently available in ASP systems. In this paper, we

propose a novel operator mapping that overcomes the drawbacks

of current hybrid solutions. In particular, we bridge the gap be-

tween CEP and ASP by mapping CEP to ASP operators, enabling

thedecompositionof thepatternworkload intomultiple operators.

As a result, our mapping enables CEP workloads to piggyback

on the scalability and efficiency of cloud-based ASP systems. Our

results demonstrate that our proposed mapping outperforms the

single-operator solution for semantically equivalent ASP queries

by a factor of up to 150x and enables workloads that current CEP

solutions do not sustain. As a result, our mapping truly unlocks

the benefits of both paradigms in one system by enabling a broad

range of CEP functionalities in general-purpose ASP systems.

1 INTRODUCTION
CEP is a stream processing paradigm that has emerged to detect

interesting behavior in data streams based on user-defined pat-

terns [32, 56, 62]. With the rise of the Internet of Things, CEP

functionality is required for various emerging application scenar-

ios such as traffic congestion monitoring, smart street lighting,

or vehicle pollution control [11, 41, 78]. Utilizing CEP function-

ality for data-intensive and time-sensitive applications requires

scalable CEP systems that leverage distributed computation envi-

ronments [44, 66]. Nowadays, cloud environments have become

the preferred computational platform for state-of-the-art data pro-

cessing systems, including analytical stream processing systems

(ASPSs), e.g., Flink [18], or Spark [75]. ASPSs efficiently gather

data from external sources centrally in the cloud, enabling access

to potentially unlimited resources for data processing. In order

to maximize the utilization of cloud resources, these ASPSs pro-

vide advanced features such as parallel processing and flexible

resource allocation to deal with large data volumes and high inges-

tion rates [26, 42, 44]. However, no general-purpose CEP system

exists yet that can leverage the capabilities of cloud environments
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to the same extent as ASPSs [26, 42]. The main limitation of tra-

ditional CEP systems is that they rely on stateful models such as

automata and are primarily designed for single-node execution

or centralized architectures with serial processing models [44].

To provide CEP in cloud environments, two approaches exist

that integrate CEP functionality into cloud-optimized ASPSs [44].

The first approach, Stratio Decision [2], runs instances of CEP

systems on worker nodes of an ASPS-managed cluster. Thus, this

approach leverages thedata-gatheringcapabilities of theASPSand

enables workload distribution based on patterns. However, this

approach integrates traditional CEP systems as a black box for the

ASPS. Consequently, it includes the limitations of traditional CEP

systems [44] and prevents leveraging ASPS optimizations beyond

data-gathering. The second approach used by Esper on Storm [1],

KafkaStreamCEP [52], and FlinkCEP [3], incorporates CEP func-

tionality as an additional unary operator that can be combined

with other operators in an execution pipeline of the ASPS. We

refer to this approach as a hybrid streamprocessing system (HSPS)

that unifies the functionality of ASP and CEP in a single system.

The benefit of an HSPS is three-fold: First, it mitigates the scal-

ability limitations of state-of-the-art CEP solutions [26, 42, 44] by

enabling ASPS optimization such as parallel execution and load

balancing of the CEP operator. Second, from the user perspective,

an HSPS allows running workloads of both paradigms in a sin-

gle system by providing more flexible functionality and ease of

use compared to the usage of multiple systems [44]. Third, from

a system perspective, HSPSs can leverage the synergies of both

paradigms instead of maintaining and optimizing similar execu-

tion environments separately. On the downside, the integration

of CEP functionality as a single operator has limitations. First, an

unary CEP operator can only be applied to a single stream, while

CEP typically composes events from potentially various heteroge-

neous streams. Thus, this unary operator forces the union of all in-

volved streamsbefore pattern detection [51, 59]. Second, the single

operator approach composes an expensive stateful computation

taskwith a complexity equivalent to amulti-way join [55] into one

operator. To this end, this expensive operator limits the maximal

sustainable throughputof theentireASPexecutionpipelinebypre-

venting pipeline parallelization and operator reordering [51, 54].

In this paper, we introduce a general operator mapping that

bridges the gap between both paradigms and enables the trans-

lation of CEP patterns into ASP queries. Our mapping provides

the benefits of HSPS by eliminating the drawbacks of the state-of-

the-art single CEP operator approach. To reach this goal, we first

exploit the synergies between ASP and CEP and leverage similar

functionalities of both streamprocessing paradigms, such as event

time processing, continuous queries, and windowing [36, 60, 69].

Second, we formally define the set of common CEP operators

described in Simple Event Algebra (SEA) [44] to investigate the se-

mantic similarities and differences between the operators in both

paradigms. Third, we map each SEA operator to its semantically

equivalent ASP representations and show optimization potentials.

With thiswork,weenable awide rangeofCEPworkloads inHSPSs
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by leveraging existing optimizations of ASPSs. In particular, our

mapping decomposes the pattern workload into its different op-

erators and thus leverages pipeline parallelism. For this reason,

it outperforms the current single CEP operator approach, whose

performance is severely affected bymultiple sources and increased

selectivities. Furthermore, we show that the complex workload

composed in the stateful CEP operator leads to extensive mem-

ory consumption, preventing the execution pipeline from coping

with high ingestion rates. Furthermore, the extensive memory

consumption makes the application error-prone. In particular,

in the presence of high ingestion rates, the stateful model incor-

porated in this operator builds up outdated intermediate results,

which lead to garbage collection stalls and even system failure.

In contrast, our mapping avoids performance degradation and

execution failures for these challengingworkloads. As a result, our

mapping enables pattern detection in dynamic stream processing

environments with multiple sources and high-frequent streams.

In summary, our contributions are as follows:

• We contrast both stream processing paradigms to identify

similarities and conceptual differences (see Section 2).

• We formally define common CEP operators based on SEA

to provide clear semantics for CEP patterns (see Section 3).

• Wemap SEA operators using our formal definitions into

their ASP counterparts to enable CEP pattern detection on

a general-purpose ASPS (see Section 4).

• We evaluate the efficiency of our mapping using Apache

Flink as a representative HSPS under a variety of pattern

parameters and workloads (see Section 5).

Finally, we conclude this paper with an overview of related work

in Section 6 and a summary in Section 7.

2 CONTRASTINGASP&CEP
In the following, we compare and highlight the conceptual differ-

ences between ASP and CEP based on the four component models

that form general stream processing systems (SPSs).

High-Level Overview of an SPS: We first provide a high-

level overview of an SPS from a unified perspective in Figure 1.

An SPS receives streams of data generated by data producers as

input. Internally, the SPS transforms each received data item from

the input stream into a representative item of its 1 data model.

Users submit continuous requests to the SPS using its 2 lan-

guage model. These requests operate on the input stream, process

individual data items, and produce an output stream as a result.

The SPS uses its 3 processing model and 4 time model to

apply the requested operations to the input streams. The derived

results of these operations are sent back to the user as an output

stream. In the remainder, we introduce the four models in detail

and contrast them for ASP and CEP.

1 DataModel:Astream𝑆 is a continuous andunbounded list

of data items generated by distributed data producers [14, 36, 44,

47]. SPSs commonly consider a data model, i.e., the representation

of a data item, of tuples [14, 17, 36, 44, 73]. A tuple 𝑡 is a list of

attributes t(𝑎1,...,𝑎𝑛), and all tuples 𝑡𝑖 ∈𝑆 share the same attribute

list, i.e., a common schema 𝑆 (𝑎1,...,𝑎𝑛). For a tuple 𝑡 , we write 𝑡 .𝑎𝑖
for the attribute 𝑎𝑖 ∈ 𝑆 (𝑎1,...,𝑎𝑛). ASP refers to its data model as

a stream of tuples. In contrast, CEP considers a stream of events.

An event 𝑒 is a tuple containing a time attribute 𝑒.𝑡𝑠 that specifies

when the event was created by its producer [36, 44, 54]. In partic-

ular, we assume that each producer creates a sequence of events

with discrete and continuously increasing timestamps. Thus, the

data models of both paradigms are equivalent, i.e., one can map

Figure 1: High-level overview of a SPS.

an event of the CEP model to an ASP tuple with an additional

timestamp attribute.Moreover, CEP distinguishes events based on

their content in so-called event types [44, 54]. Let 𝜖 = {𝑇1,...,𝑇𝑛} be
the universe of event types and each event e an instantiation of an

event type𝑇𝑖 ∈𝜖 [15]. The event type can be either provided as an
attribute or needs to be inferable [55]. We write 𝑒 ∈𝜖 for the event
typeof e. Furthermore, the events of the output streamarematches

of the pattern, i.e., compositions of the events 𝑒𝑖 that participated

in the pattern detection process [12, 37, 44, 74, 76]. In particular,

each match M is a tuple 𝑐𝑒 (𝑒1, ...𝑒𝑛,𝑡𝑠𝑏 ,𝑡𝑠𝑒 ), where for each pair

(𝑒𝑖 ,𝑒 𝑗 ) it is true that |𝑒𝑖 .𝑡𝑠−𝑒 𝑗 .𝑡𝑠 |<𝑊 [44]. Furthermore,𝑐𝑒.𝑡𝑠𝑏 and

𝑐𝑒.𝑡𝑠𝑒 are the timestamps of the first and last occurred event in M.

2 LanguageModel:Users specify continuous requests using
the provided language(s) of the SPS to extract knowledge from

the data stream. Requests are called queries inASP and patterns

in CEP. We split the language model discussion into two aspects,

i.e., programming language and operators.

Programming Language. In order to provide high flexibility for
query specification (transformations), ASPSs provide low-level
programming APIs that enable the definition of arbitrary data

transformations, e.g., map() or UDFs [18, 36]. Furthermore, many

ASPSs also provide a declarative language based on SQL [18, 75].

In contrast, CEP systems commonly provide declarative pattern

specification languages (PSLs) to simplify specification for domain

experts (non-programmers). Many PSLs use a SQL-like syntax,

e.g., SASE+ [48] or CCL [78].We use the SASE+ languagewith the

general structure presented in Listing 1 and an example pattern

with the sequenceoperator (SEQ) inListing 2.Onenon-declarative

exception is the language model of FlinkCEP [3], which is a func-

tional programming API.

Listing 1: General structure.
PATTERN <pattern structure>

[WHERE <predicates>]

[WITHIN <window>]

[RETURN <output definition>]

Listing 2: Example pattern.
PATTERN SEQ (𝑇1𝑒1,𝑇2𝑒2,𝑇3𝑒3)

WHERE 𝑒1 .𝑣𝑎𝑙𝑢𝑒 ≤ 𝑒2 .𝑣𝑎𝑙𝑢𝑒

∧ 𝑒3 .𝑣𝑎𝑙𝑢𝑒 ≤ 10

WITHIN 4 MINUTES

Operators. Both language models mainly differ in their supported

operators.ASP focuses on data transformation and enhances SQL-

based operators such as joins and filters with flexible UDFs. In

contrast, CEP relates data items by time and cause using temporal

and logical operators. Since the CEP paradigm originated from

several research lines, e.g., active databases [68], publish-subscribe

systems [39], or data streammanagement systems [22], it has no

universally agreed language model [36, 44]. For instance, logic-

basedCEP systemsuse event [57] and interval calculus [19],which

offer various temporal operators, such as within and before, but
do not support iterations. In contrast, iteration and sequence are

the core operators of ordered-based CEP systems, which do not

provide the variety of temporal operators of interval calculus. SEA

is the result of current research efforts [17, 44] that is consistent

with related work [16, 36, 64] and provides a trade-off between

complexityandexpressiveness. For this reason,weopted to choose
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SEA as the baseline for our mapping. In particular, SEA contains

the following eight operators: selection, projection, window, se-

quence, conjunction, disjunction, iteration, and negation. From a

unified perspective, the following two operators are semantically

equivalent in both stream processing paradigms:

(1) Selection 𝜎𝜃 (𝑡) (ASP: filter) returns an input tuple 𝑡 if the

user-defined set of predicates 𝜃 is fulfilled or discards 𝑡 from fur-

ther processing [18, 75]. (2) ProjectionΠ𝑚 (𝑡 (𝑎1,...,𝑎𝑁 )) (ASP:map)
transforms the schema and attribute values of𝑎𝑖 of the input tuple

𝑡 according to a set of mapping expressions𝑚 and returns the

transformed tuple [18, 75]. The remaining SEA operators are dis-

joint from ASP operators and require an in-depth analysis of their

semantics due to the heterogeneous language models of CEP [44].

We introduce and formally define these operators in Section 3 to

further investigate similarities between ASP and CEP operators.

3 ProcessingModel: The processing model of an SPS trans-

forms the user-provided requests into an internal, logical repre-

sentation, which is optimized and translated to physical tasks for

query execution in ASPS and pattern detection in CEP systems.

In ASPSs, each query consists of three components: sources, oper-

ators, and sinks. A source forwards the tuples of an input stream

to an operator. Each operator consumes input tuples from one or

more sources and produces output tuples, which can be forwarded

to another operator. Operators can be stateless, i.e., they process

each tuple independently, or stateful, i.e., the processing depends

on multiple tuples and is blocked until all required tuples arrive.

Finally, a sink consumes the produced output tuples. ASPSs use

directed graphs as a processing model that connects all operators

between sources and sinks [13, 26, 36]. The operator order can be

optimized to improve processing performance, e.g., the order of

multiple joins orfilter push-downs. Furthermore, oneoperator can

be split into independent sub-operations using key assignments,

which are processed in parallel and on different nodes. Shuffling

steps between two operators might be required to re-partition the

output tuples of several sub-operations to the next operator.

CEP systems use a variety of so-called pattern detectionmecha-

nisms, e.g., state machines for order-basedmechanisms [39, 76] or

tree structures for tree-basedmechanisms [64]. CEP relates events

by time and cause, i.e., within a certain time interval, one event

causes the occurrence of another event. Therefore, temporal oper-

ators, such as the sequence operator that accepts events occurring

in temporal order, are essential for theCEPparadigm. These opera-

tors resemble regular expressions and lead to the prominent usage

of order-based evaluation mechanisms [36, 42, 44, 45, 55]. We

briefly introduce this mechanism using a common representative,

i.e., a nondeterministic finite automaton (NFA).AnNFAconsists of

a finite set of states𝑄 with one initial state𝑞0 and one ormore final

states 𝐹𝑛 . Each state𝑞𝑛 (𝑛>0) represents a partialmatch of the pat-

tern, particularly for order-based mechanisms, it denotes a prefix

of the pattern. The partial matches of each state need to be stored

and are combined with new arriving events accepted by the state

(stateful processing) [37, 42, 54, 55]. States are connectedwith tran-

sitionsgiven the specifiedorderof event types in thepattern.Every

transition accepts a new event 𝑒 (and transitions to the following

state 𝑞𝑛+1) if it is of the accepting event type and fulfills the corre-
sponding user-defined predicates. For instance, for the pattern in

Listing 2, the detection is triggeredby the arrival of an event𝑒1 ∈𝑇1,
which is a partial match of𝑞1. The final state 𝐹 is reached with the

successive arrivals of all events, anda full patternmatch is detected.

4 TimeModel: The notion of time is essential for SPSs to

relate tuples in a timely order or to create finite substreams to

process stateful operators [13, 36]. CEP systems consider the time

model of event time [36]. This model processes events based on

their time attribute. In contrast, ASP additionally provides the

time model of processing time, which processes tuples based on

the system clock. While the event time of a tuple never changes,

the processing time is updated after every operator.

We conclude fromour unified overviewof SPSmodels that both

systems share basic functionalities. In particular, CEP restricts

its data and time model to a subset of the ASP counterparts, i.e.,

time-stamped tuples (events) and event time processing. Themain

difference between both paradigms is the systems’ internals, i.e.,

the supported operations on the streams, which we investigate

in detail in the remainder of this paper.

3 CEPOPERATORS
In this section, we introduce the CEP operators, which differ from

the traditional ASP operators (described in Section 2), and their

formal semantics. First, we describe the required modifications to

well-defined operators using the literature from related research

lines in Section 3.1. Second,we present the formal semantics of the

remaining SEA operators, i.e., conjunction, sequence, disjunction,

iteration, and negation, in Section 3.2.

3.1 Formal Semantics andModifications
As with the majority of PSLs [64, 76], SEA only provides infor-

mal semantics, i.e., verbal descriptions, of its operators. Our map-

ping requires formally defined semantics to map SEA operators

into their ASP counterparts. Investigating the literature [21, 27–

29, 57, 68] for formal semantics disclosed that no well-defined,

commonly agreed-upon definition of these operators exists across

systems. In order to achieve principled andwell-defined semantics

for our mapping, we give our own formal definition based on the

literature. To this end, we modify well-defined operators of tradi-

tional event algebras in active databases using the representative

Snoop [29] to enable their usage for SPS. In particular, we apply

the following modifications:

3.1.1 Modifications. Traditional event algebras define their
operatorsasBoolean functions todetectpatterns inapoint-in-time

manner. Let us assume a simple pattern applied to the universe

of event types 𝜖 that requires the occurrence of an event 𝑒 ∈𝑇 . To
detect this pattern, the Boolean function T(ts) returns 𝑡𝑟𝑢𝑒 if an

event 𝑒 ∈𝑇 occurs at the point in time 𝑡𝑠 , else 𝑓 𝑎𝑙𝑠𝑒 [29]:

𝑇 (𝑡𝑠)=
{
𝑇𝑟𝑢𝑒, iff 𝑒 ∈𝑇 ∧ e.ts = ts

𝐹𝑎𝑙𝑠𝑒,else
(1)

In contrast to batch-optimized database systems, SPSs use win-

dowing to copewithunbounded streams. Inparticular,windowing

introduces a bounded lifetime of an event, i.e., how long an event is

valid before it can be discarded from further processing. However,

there is a major difference in dealing with window constraints

between the processing model of CEP and ASP systems: Order-

based CEP systems, as well as most CEP systems, use an implicit

windowing, i.e., the system contains no actual window logic, and

the window constraint is transformed into predicates [44]. In con-

trast, ASPSs (and some CEP systems such as ZStream [64] and

RTEC [21]) rely on explicit windowing that splits the input stream

into finite and subsequent substreams of length𝑊 (window size)

for processing [28, 43]. We focus on explicit windowing to map

SEA operators to ASP operators. To this end, we replace the point-

in-timedetectionof events inEquation1with awindowconstraint.

We use 𝑡𝑠𝑏 and 𝑡𝑠𝑒 to define an arbitrary time interval [𝑡𝑠𝑏 ,𝑡𝑠𝑒 )
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such that𝑊 = 𝑡𝑠𝑒 − 𝑡𝑠𝑏 . Thus, we adjust the input of T to a set

of events E = {𝑒1, ...,𝑒𝑛}, where for each event 𝑒𝑖 , it is true that

𝑒𝑖 .𝑡𝑠 ∈ [𝑡𝑠𝑏 ,𝑡𝑠𝑒 ). We modify Equation 1 as follows:

[𝑇 ]𝑡𝑠𝑒𝑡𝑠𝑏
=

{
𝑇𝑟𝑢𝑒, iff ∃𝑒𝑖 ∈𝑇∧𝑒𝑖 .𝑡𝑠 ∈ [𝑡𝑠𝑏 ,𝑡𝑠𝑒 )
𝐹𝑎𝑙𝑠𝑒, else

(2)

Additionally, we adapt the output of the function [𝑇 ]𝑡𝑠𝑒𝑡𝑠𝑏
(Equa-

tion 2) to fulfill the closure properties of SEA. In particular, the

function either returns the set of events satisfying all pattern con-

straints or an empty set instead of a Boolean value. To this end,

we formally define our operator semantics as follows:

[𝑇 ∗]𝑡𝑠𝑒𝑡𝑠𝑏
=

{
{𝑒 |𝑒 ∈𝑇∧𝑒.𝑡𝑠 ∈ [𝑡𝑠𝑏 ,𝑡𝑠𝑒 )}
∅,else (3)

In sum, we adapt the semantics of traditional event algebra to

address the requirements for stream processing and the specifi-

cation of SEA for our operator semantics. To this end, we focus

on explicit windowing, which makes the window operator a core

component of each pattern. Thus, we turn to essential details of

window semantics.

3.1.2 Window Operator. Definition. The window operator is

a temporal operator with a commonly time-based constraint𝑊 ,

such as 20 minutes, that requires all events of a match to occur

within a maximal time difference of𝑊 . This definition represents

a time-based sliding window for explicit windowing [44]. Explicit

windowing incorporates the following two semantic components:

(1) Intra-Window Semantic. The intra-window semantic defines

whichevents are assigned towhichfinite substream(s)𝑇𝑘 . For time-

based windows, each event 𝑒 with a timestamp 𝑒.𝑡𝑠 ∈ [𝑡𝑠𝑏𝑘 ,𝑡𝑠𝑒𝑘 )
is assigned to the finite substream𝑇𝑘 . Formally,

[𝑇 ]𝑡𝑠𝑒𝑡𝑠𝑏
=𝑇𝑘 = {𝑒 |𝑒 ∈𝑇∧𝑒.𝑡𝑠 ∈ [𝑡𝑠𝑏𝑘 ,𝑡𝑠𝑒𝑘 )} (4)

, where each finite substream 𝑇𝑘 has a time interval [𝑡𝑠𝑏𝑘 ,𝑡𝑠𝑒𝑘 )
with the window length𝑊 =𝑡𝑠𝑒𝑘 −𝑡𝑠𝑏𝑘 [47]. Operators combined

with the window specify further constraints on the events 𝑒𝑖 ∈𝑇𝑘
to form a match, e.g., event types or temporal order.

(2) Inter-WindowSemantic.The inter-windowsemantic of awin-

dow operator defines how subsequent windows are created and,

thus, how the stream is discretized into substreams. In particular,

for slidingwindows, a fixed slide size 𝑠 is specified by the user that

declares when subsequent windows start [44, 47]. Thus, sliding

windows create a sequence of subsequent, potentially overlapping

substreams𝑇𝑘+𝑙 as follows:

𝑇𝑘+𝑙 = [𝑇 ]𝑡𝑠𝑏𝑘+𝑙𝑡𝑠𝑒𝑘+𝑙
(5)

, where 𝑡𝑠𝑘+𝑙 = 𝑡𝑠𝑘 +𝑠 ·𝑙 , respectively (𝑘,𝑙 ∈N).
Syntax. Explicit windowing combines stateful operators with the

window operator for processing. Thus, all operators in Section 3.2

have to be combined with a window operator. The window oper-

ator is specified with the keywordWITHIN (W,s).

3.1.3 Correctness of Operator Semantics. Since we adapt tradi-
tional operator semantics,weneed to ensure the correctness of our

mapping. The essential correctness criteria are the detection of all

matches contained in a stream 𝑆 . In particular, by incorporating

thewindow operator into our operator semantics, wemust ensure

that no match𝑀 =𝑐𝑒 (𝑒1,..,𝑒𝑛) is lost by discretizing the stream 𝑆 .

Theorem 1. Given a pattern 𝑃 and a substream 𝑆𝑘 , our intra-
operator semantics detected all matches of the pattern in 𝑆𝑘 .

Figure 2: Contrasting the semantics of T(ts) and [T∗]tsetsb
.

Proof. Let the complex event 𝑐𝑒 (𝑒𝑖 ,𝑒 𝑗 ) be a valid match𝑀 of

the pattern 𝑃 in 𝑆𝑘 . Then, by definition, 𝑒𝑖 ,𝑒 𝑗 ∈𝑆𝑘 and 𝑒𝑖 .𝑡𝑠,𝑒 𝑗 .𝑡𝑠 ∈
[𝑡𝑠𝑏 ,𝑡𝑠𝑒 ). Thus, 𝑐𝑒 is an output tuple of our operator. □

Theorem 2. Given a match𝑀 =𝑐𝑒 (𝑒1,..,𝑒𝑛) of pattern 𝑃 and a
stream 𝑆 , there exists at least one substream 𝑆𝑘 such that 𝑒𝑖 ,𝑒 𝑗 ∈𝑆𝑘
and, thus,𝑀 is detected by our operator.

Proof (sketch).
1
By definition, for every event pair (𝑒𝑖 ,𝑒 𝑗 ) ∈𝑐𝑒

it is true that𝑚𝑎𝑥 (𝑒𝑖 .𝑡𝑠,𝑒 𝑗 .𝑡𝑠) −𝑚𝑖𝑛(𝑒𝑖 .𝑡𝑠,𝑒 𝑗 .𝑡𝑠) <𝑊 [44]. It fol-

lows that𝑊 −1 is the maximal time difference between a pair in

𝑐𝑒 . A match 𝑀 that contains a pair (𝑒𝑖 ,𝑒 𝑗 ) which is𝑊 − 1 time

units apart is only detected in 𝑆𝑘 = [𝑆]𝑡𝑠𝑒𝑡𝑠𝑏
, if𝑚𝑖𝑛(𝑒𝑖 .𝑡𝑠,𝑒 𝑗 .𝑡𝑠)=𝑡𝑠𝑏 .

Otherwise 𝑡𝑠𝑏 +𝑊 −1+𝑛 > 𝑡𝑠𝑒 −1→𝑚𝑎𝑥 (𝑒𝑖 .𝑡𝑠,𝑒 𝑗 .𝑡𝑠) ∉ [𝑡𝑠𝑏 ,𝑡𝑠𝑒 ).
Hence, we must ensure that there exists a 𝑆𝑘+𝑙 in which 𝑒𝑖 and 𝑒 𝑗
occur. To this end, let us consider the worst-case scenario where

𝑒𝑖 ∈ 𝑆𝑘 and𝑚𝑖𝑛(𝑒𝑖 .𝑡𝑠,𝑒 𝑗 .𝑡𝑠) = 𝑒𝑖 .𝑡𝑠 = 𝑡𝑠𝑒𝑘 −1. To detect (𝑒𝑖 ,𝑒 𝑗 ), we
need to ensure that ∃𝑆𝑘+𝑙 so that 𝑒𝑖 .𝑡𝑠 = 𝑡𝑠𝑒𝑘 −1∧𝑒𝑖 .𝑡𝑠 = 𝑡𝑠𝑏𝑘+𝑙 . It
follows that if 𝑒𝑖 .𝑡𝑠 = 𝑡𝑠𝑏𝑘+𝑙 , 𝑒 𝑗 .𝑡𝑠 = 𝑡𝑠𝑏𝑘+𝑙 +𝑊 − 1 = 𝑡𝑠𝑒𝑘+𝑙 . Thus,

𝑒 𝑗 ∈ 𝑆𝑘+𝑙 and 𝑀 is detected. This implies a slide size of one for

slide-by-tuple sliding windows or a slide size smaller or equal

to the frequency of the stream with the highest arrival rate to

guarantee that ∀𝑒 ∈𝑆 ∃𝑆𝑘+𝑙 (𝑒.𝑡𝑠 =𝑡𝑠𝑏𝑘+𝑙 ). □

3.1.4 Impact ofModifications. Wemodify the input andoutput

of our operator semantics to ensure the closure properties of SEA

and introduce explicit windowing for stream processing. We visu-

alize the resulting difference between the traditional event algebra

andour semantics in Figure 2,where events of type𝑇 1 andother

types 1 occur over time. The traditional Boolean function𝑇 (𝑡𝑠)
(Equation 1) evaluates for each point in time if an event matches

all conditions of 𝑇 (𝑡𝑠). In contrast, [𝑇 ∗]𝑡𝑠𝑏𝑡𝑠𝑒
(Equation 3) evalu-

ates the set of events occurring within the specified time interval

[𝑡𝑠𝑏 ,𝑡𝑠𝑒 ) of each subsequent substream and returns a set matches.

In Figure 2, each yellow rectangle depicts a substream and outgo-

ing arrows the detected matches. The differences between both

functions lead to four major impacts on how events are processed:

First, the traditional function𝑇 (𝑡𝑠) uses implicit windowing to

ensure eager pattern detection by immediate returns of a match,

i.e., the condition 𝑒.𝑡𝑠 = 𝑡𝑠 . In contrast, explicit windowing uses

lazy pattern detection, thus buffering all occurring events till 𝑡𝑠𝑒
before processing [44]. For this reason, explicitwindowing implies

a higher detection latency than implicit windowing. However, the

slide size 𝑠 introduces an upper bound to this latency overhead.

Second, to ensure the correctness of our semantics, we create

overlapping substreams. This leads to the detection of duplicate

matches. Duplicate matches are irrelevant for idempotent actions

but need to be maintained otherwise, e.g., by the operator state.

Third, as the content of a window is unordered, windowing re-

stricts the selection policies supported by our approach. Selection

policies express additional constraints on the temporal order of

relevant and partially irrelevant events to form amatch [44, 77].

1
Formal proof available at github.com/arianeziehn/CEP2ASP.
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As our final semantics describe operations on sets, they corre-

spond to the most common selection policy skip-till-any-match.
Skip-till-any-match considers any combination of relevant events

for a match, regardless of whether irrelevant events occur in be-

tween [44, 76, 77]. Thus, skip-till-any-match is the most flexible as

well as most computationally expensive policy with worst-case

exponential growth [55]. Other commonpolicies are skip-till-next-
match, which ignores the occurrence of irrelevant events until the
next relevant event occurs, and strict-contiguity, which requires
all events participating in a match to occur directly after another

(without an irrelevant event in-between). The matches derived by

skip-till-any-match are supersets of these policies [44, 76]. To this
end, skip-till-next-match results can be constructed from skip-till-
any-match, while strict-contiguity requires ordered window con-

tent to determine valid matches. Fourth, in contrast to traditional

CEP systems, the specification of awindow operator ismandatory

for every pattern using our semantics. However, window con-

straints define a time interval in which an event is valid. Without

this constraint, events arevalid forever, leading to anever-growing

state in stream processing scenarios. For this reason, the window

constraint is considered tobeacommoncompositionof thepattern

regardless of the CEP system [16, 44, 49, 67]. For the rare number

of patterns without a window constraint, this limitation implies

the overhead for the user identifying the lifetime of an event.

3.2 Operator Semantics
In the following, we use the introduced modifications to formally

define SEA operators. To this end, we first provide a detailed exam-

ple of how these modifications are applied to the conjunction. Sec-

ond,we present the final semantics of the remaining operators, i.e.,

sequence, disjunction, iteration, and negation, based on the well-

definedoperators of theCEP-related research line active databases.

We refer to Snoop [29] for the traditional operator semantics.

Conjunction:Definition. The conjunction is a binary operator
that expects the occurrence of both events 𝑒1 ∈ 𝑇1 and 𝑒2 ∈ 𝑇2
togetherwithinW [44]. Traditional event algebra formally defines

conjunction as follows [29]:

(𝑇1∧𝑇2) (𝑡𝑠) :=∃𝑡𝑠𝑛,𝑡𝑠𝑚 :𝑇1 (𝑡𝑠𝑛)∧𝑇2 (𝑡𝑠𝑚)
∧𝑚𝑎𝑥{𝑡𝑠𝑛,𝑡𝑠𝑚}=𝑡𝑠 (6)

In contrast, SEA requires the pattern to occur withinW, i.e., the

time interval [𝑡𝑠𝑏 ,𝑡𝑠𝑒 ). Therefore,wemodifyEquation 6 as follows:

[(𝑇1∧𝑇2)]𝑡𝑠𝑒𝑡𝑠𝑏
:=∃𝑡𝑠𝑛,𝑡𝑠𝑚 :𝑇1 (𝑡𝑠𝑛)∧𝑇2 (𝑡𝑠𝑚)

∧𝑡𝑠𝑛,𝑡𝑠𝑚 ∈ [𝑡𝑠𝑏 ,𝑡𝑠𝑒 ) (7)

Equation 7 presents the combination of the conjunction and the

window operator. Thus, we extract the window operator and its

time constraint from Equation 7 as follows:

(𝑇1∧𝑇2) :=∃𝑡𝑠𝑛,𝑡𝑠𝑚 :𝑇1 (𝑡𝑠𝑛)∧𝑇2 (𝑡𝑠𝑚) (8)

Finally, we define the output of a pattern as a set of matches in-

stead of a Boolean value. Thus, our operator function returns

either the composition of both occurred events within the time

interval [𝑡𝑠𝑏 ,𝑡𝑠𝑒 ) or an empty set ∅. The resulting equation of the
conjunction operator is defined as follows:

(𝑇1∧𝑇2)∗= {(𝑒1,𝑒2) | 𝑒1 ∈𝑇1 ∧ 𝑒2 ∈𝑇2} (9)

Syntax. A conjunction is specified with the keyword 𝐴𝑁𝐷 and

is associative and commutative. Nested Patterns with multiple

conjunctions, such as𝐴𝑁𝐷 (𝑇1,𝐴𝑁𝐷 (𝑇2,𝑇3)), can be simplified to

𝐴𝑁𝐷 (𝑇1,𝑇2,𝑇3).

Sequence: Definition. The sequence is a binary temporal oper-

ator that expects the occurrence of an event 𝑒1 ∈𝑇1 followed by an
event𝑒2 ∈𝑇2within𝑊 andwhere𝑒1 .𝑡𝑠 <𝑒2 .𝑡𝑠 [17, 44, 74]. Formally,

(𝑇1;𝑇2)∗ = {(𝑒1, 𝑒2) | 𝑒1 ∈ 𝑇1 ∧ 𝑒2 ∈ 𝑇2 ∧ 𝑒1 .𝑡𝑠 < 𝑒2 .𝑡𝑠 (10)

Syntax.A sequence is specified with the keyword 𝑆𝐸𝑄 and is asso-

ciative. Due to the temporal constraints, a sequence is not commu-

tative, as the order of event occurrences is relevant. However, it

can reach this property using additional time constraints to guar-

antee the order of events [71, 78]. Patterns with nested sequences,

such as 𝑆𝐸𝑄 (𝑇1,𝑆𝐸𝑄 (𝑇2,𝑇3)), can be simplified to 𝑆𝐸𝑄 (𝑇1,𝑇2,𝑇3).
Disjunction:Definition. The disjunction is a binary operator

that expects either 𝑒1 ∈𝑇1 or 𝑒2 ∈𝑇2 to occur within𝑊 [17, 44].

Formally,

(𝑇1∨𝑇2)∗= {𝑒 | 𝑒 ∈𝑇1 ∨ 𝑒 ∈𝑇2} (11)

Syntax.Adisjunction is specifiedwith the keywordOR and is asso-
ciative and commutative [71]. Patterns with nested disjunctions,

such as𝑂𝑅(𝑇1,𝑂𝑅(𝑇2,𝑇3)), can be simplified to𝑂𝑅(𝑇1,𝑇2,𝑇3).
Iteration: Definition. The iteration is a unary operator that

allows for𝑚 event occurrences (𝑚 > 0) of the event type𝑇 in a

sequence [17, 44]. Formally,

(𝑇𝑚)∗ = {(𝑒1,...,𝑒𝑚) |∀ 1≤ 𝑖 ≤𝑚 :𝑒𝑖 ∈𝑇 ∧(𝑒1 .𝑡𝑠 < ...<𝑒𝑚 .𝑡𝑠)}
(12)

Note that in contrast to the Kleene∗ and Kleene+ operator of stan-

dard regular expressions, the SEA iteration operator is bounded

to the exact occurrence of𝑚 events [17, 44].

Syntax.An iteration is specified with the keyword 𝐼𝑇𝐸𝑅𝑚 .

Negation: Definition. The negation is a unary operator that

requires the absence of any event 𝑒 ∈ 𝑇 in W to match the pat-

tern [17, 29, 44]. Formally,

¬(𝑇2) [𝑇1,𝑇3] (𝑡𝑠)= (∃𝑡𝑠1) (∀𝑡𝑠2) (𝑇1 (𝑡𝑠1)∧∼𝑇2 (𝑡𝑠)∧𝑇3 (𝑡𝑠)
∧((𝑡𝑠1 ≤ 𝑡𝑠2< 𝑡𝑠) −→∼ (𝑇2 (𝑡𝑠2)∨𝑇3 (𝑡𝑠2)))) (13)

Following Equation 13, the negation detects the absence of𝑇2 in

the closed interval of consecutiveoccurred events of type𝑇1 and𝑇3,

i.e., SEQ(𝑇1,𝑇3). Thus, it restricts the usage of negation in the center

of a sequence as a ternary operator, often referred to as negated

sequence [16, 64]. In contrast, SEA verbally describes the nega-

tion as a unary operator, i.e., ¬[𝑇 ]𝑡𝑠𝑒𝑡𝑠𝑏
. However, a unary negation

violates the closure properties of SEA (see Section 3.1) by return-

ing a Boolean value instead of a set of tuples. Thus, we discard

unary negation and use the ternary operator negated sequence for

our mapping. The negated sequence is in line with the operator

functionality offered by common CEP systems [3, 55, 64, 76] and

formally defined as follows:

(𝑇1;¬(𝑇2);𝑇3)∗= {(𝑒1,𝑒3) | 𝑒1 ∈𝑇1 ∧ 𝑒3 ∈𝑇3
∧(𝑒1 .𝑡𝑠 <𝑒3 .𝑡𝑠∧¬∃𝑒2 .𝑡𝑠 ∈ (𝑒1 .𝑡𝑠,𝑒3 .𝑡𝑠) :𝑒2 ∈𝑇2} (14)

Syntax.The negated sequence is specifiedwith the keywordNSEQ
and is neither associative nor commutative.

4 GENERALOPERATORMAPPING
In this section, we introduce our operator mapping that enables

the transformation of patterns into queries to execute them in

cloud-optimized ASPSs. To this end, we use our formal operator

definitions in Section 3 to identify each operator’s ASP counter-

parts in Sections 4.1.We refer to the formal definitions of relational

algebra operators [33, 34] forASP operators and toNegri et al. [65]

for the definition of semantic equivalence of two queries. In par-

ticular, two queries are semantically equivalent if, for all input
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tuples, the output tuples obtained are equivalent after executing

the queries and eliminating duplicates. Furthermore, we discuss

the generalization of mapping for ASPS in Section 4.2. Finally, we

investigate optimization opportunities in Section 4.3 and summa-

rize our findings in Table 1.

4.1 OperatorMapping
In the following, we present themappings for all SEA operators as

defined in Section 3.We provide a detailed example with mapping

directives of the conjunction and enhance mappings with a brief

discussion if deeper insights or analysis are required.

Conjunction:Mapping.Our formal definition in Equation 9

is equivalent to the definition of the relational Cartesian prod-

uct × [33], which composes two streams into one as a set of pairs.

Each pair is a pattern match.

Mapping Directive.We present the overall structure of a con-

junction pattern in Listing 3. The PATTERN clause contains the

conjunction operator𝐴𝑁𝐷 and the input streams (event types)

𝑇1 and 𝑇2. Each stream of the 𝑃𝐴𝑇𝑇𝐸𝑅𝑁 clause is added to the

𝐹𝑅𝑂𝑀 clause of the query in Listing 4. The𝑊𝐻𝐸𝑅𝐸 clauses of

both requests are identical and contain the pattern predicates. The

𝑊𝐼𝑇𝐻𝐼𝑁 clause contains the time interval𝑊 of the pattern. In the

query,𝑊 defines the𝑅𝑎𝑛𝑔𝑒 of the𝑊𝐼𝑁𝐷𝑂𝑊 clause and 𝑠 the slide

size. Finally, the𝑆𝐸𝐿𝐸𝐶𝑇 clauseof thequery is definedwith∗. Note
that the output tuple can also bemodified in the pattern by adding

a 𝑅𝐸𝑇𝑈𝑅𝑁 clause, which by default returns the concatenation of

all the attributes of the events participating in a match.

Listing 3: AND pattern.
PATTERN AND(𝑇1𝑒1,𝑇2𝑒2)

WHERE <predicates >

WITHIN W

Listing 4: AND query.
SELECT *

FROM Stream 𝑇1, Stream 𝑇2
WHERE <predicates >

Window [Range W, s]

Sequence:Mapping.Our formal definition in Equation 10, is

equivalent to the definition of the relation Theta Join ⊲⊳𝜃 using the

order by time of both events as join predicate 𝜃 [33]. In particular,

all event pairs (𝑒1,𝑒2) that fulfill the conditionof consecutive times-

tamps match the constraints of a sequence and are returned as

pattern matches. We present the translation of a sequence pattern

as example in Listing 7 and 8.

Disjunction:Mapping.Our formal definition in Equation 11

is equivalent to the formal definition of the relational set union

operator ∪ [33]. The union operator unifies two input streams

into a new one, i.e.,𝑇1 and𝑇2 are unified to𝑇1,2. Each event 𝑒1,2 in

𝑇1,2 is a match of the pattern.

Discussion.Our mapping creates semantically equivalent que-

ries but requires union compatibility of both event types. Union

compatibility is a restriction compared to the traditional Boolean

function that handles events of different types regardless of their

schema. However, ASPSs provide the map operator (see Section 2)

that allows the transformation of schemata to archive union com-

patibility at the minor cost of an additional stateless computation.

Iteration:Mapping.Ourformaldefinition inEquation12equals

a nested sequence over a single event type T. Thus, the iteration is

mapped toasequenceof𝑚ThetaSelf-Joins ⊲⊳𝜃 using theorder time

constraint between consecutive event pairs as join predicate𝜃 [33].

Negated Sequence:Mapping.Our formal definition in Equa-

tion 14 represents the combination of a sequence, i.e., (𝑇1;𝑇3), and

the negated existential quantifier that requires the absence of any

event 𝑒2 ∈𝑇2 within the time interval (𝑒1 .𝑡𝑠,𝑒3 .𝑡𝑠). Thus, we refer
to the mapping of the sequence and add the negated quantifier

as a sub-query to the𝑊𝐻𝐸𝑅𝐸 clause of the sequence query. We

present the overall structure of a negated sequence pattern in

Listing 5 and its translation into a query in Listing 6.

Discussion.Our mapping creates semantically equivalent que-

ries but uses quantifiers, which are not commonly available in

ASPSs. However, the flexibility of UDFs allows the expression

of 𝑁𝑆𝐸𝑄 patterns. In particular, we first union𝑇1 and𝑇2. Then,

we apply a UDF window function that, for each event 𝑒1 ∈ 𝑇1,

finds (if it exists) the next occurrence of 𝑒2 ∈𝑇2 within the time

interval𝑊 of the pattern. To this end, we add an additional times-

tamp attribute 𝑎𝑡𝑠 to each event 𝑒1. If an event 𝑒2 occurs after 𝑒1
within𝑊 𝑎𝑡𝑠 = 𝑒2 .𝑡𝑠 , else 𝑎𝑡𝑠 = 𝑒1 .𝑡𝑠 +𝑊 indicating that no 𝑒2
occurred. Afterward, we perform 𝑆𝐸𝑄 (𝑇1,𝑇3) with the additional
selection 𝜎𝑎𝑡𝑠>𝑒3 .𝑡𝑠 to guarantee that no event 𝑒2 ∈𝑇2 occurred in
the interval (𝑒1 .𝑡𝑠,𝑒3 .𝑡𝑠).

Listing 5: NSEQ pattern.
PATTERN SEQ(𝑇1𝑒1,¬𝑇2𝑒2,𝑇3𝑒3)
WHERE <predicates >

WITHIN W

Listing 6: NSEQ query.
SELECT *

FROM Stream 𝑇1, Stream 𝑇3
WHERE <predicates> ∧ 𝑇1 .𝑡𝑠 <𝑇3 .𝑡𝑠 ∧

NOT EXISTS (SELECT *

FROM Stream 𝑇2
WHERE <predicates> ∧

𝑇1 .𝑡𝑠 <𝑇2 .𝑡𝑠∧𝑇2 .𝑡𝑠 <𝑇3 .𝑡𝑠)
Window [Range W, s]

4.2 Generalization
We target the general applicability of our mapping in common

ASPSs. To this end, we first discuss the support of identified CEP

counterparts in ASPSs in Section 4.2.1. Second, we introduce our

means to cope with nested patterns in Section 4.2.2.

4.2.1 LanguageModelSelection. Similar toCEP,nouniversally

agreed languagemodels exist forASP. Thus, ourmapping requires

investigating the support of the identified target operators in com-

mon ASPSs [23, 44]. To this end, we review the Stream APIs of a

selectionofASPSs, i.e.,Beam[4], Flink[5], Spark[7], Storm[8], and

Kafka Streams [6]. We include Beam as a representative abstract

query model adapted by many state-of-the-art ASPSs beyond our

selection, e.g., Google Cloud Dataflow or Samza, to underline the

general applicability of our mapping. Our ASPS review yields the

support of all necessary counterparts for our mapping except the

Cartesian product and Theta Join. To overcome the lack of the

Cartesian product, a precedent map operation that assigns a uni-

form key to each event of the involved types,𝑇𝑛 can be applied be-

fore joining. Similarly, ourmapping can bypass the lack of support

for the Theta Join by creating the Cartesian product and filtering

the results by theTheta Joinpredicate𝜃 to guarantee a timelyorder

of events. To this end, ourmapping allows basic CEP functionality

on common ASPSs, where the only implementation overhead is

the UDF of the 𝑁𝑆𝐸𝑄 . Thus, it enables CEP workloads on ASPSs

that currently do not provide CEP support, e.g., Spark or Storm.

4.2.2 Nested Patterns. Another insight from ourASPSs review

is that except Beam, no ASPS allows to specify multi-wayWin-

dow Joins, i.e., the composition of more than two streams per

Window Join. In particular, let us consider the 𝑆𝐸𝑄 example in

Listing 7, which can be translated into the multi-way Window

Join in Listing 8 using our mapping.

Listing 7: SEQ pattern.
PATTERN SEQ(𝑇1𝑒1,𝑇2𝑒2,𝑇3𝑒3)

WHERE <predicates >

WITHIN W

Listing 8: SEQ query.
SELECT *

FROM Stream 𝑇1, Stream 𝑇2, Stream 𝑇3
WHERE 𝑇1 .𝑡𝑠 <𝑇2 .𝑡𝑠∧𝑇2 .𝑡𝑠 <𝑇3 .𝑡𝑠

∧ <predicates>

Window [Range W, s]
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Table 1: OperatorMapping Overview.
Mappings Optimization Opportunities

Pattern and Data
Characteristics Fu

nc
.

Pe
rf
.

Eval-
uation

Conjunction (𝑇1∧𝑇2 ) - AND
𝑇1×𝑇2 O1 - ✓ ✓ -

𝑇1 ⊲⊳𝑐𝑇2 O3 join predicate c ✓ -

Sequence (𝑇1;𝑇2 ) - SEQ
𝑇1 ⊲⊳𝜃 𝑇2 O1 - ✓ ✓ § 5.2.1- 5.2.5

𝑇1 ⊲⊳𝑐𝑇2 O3 join predicate c ✓ § 5.2.3- 5.2.5

Disjunction (𝑇1∨𝑇2 ) - OR
𝑇1∪𝑇2 union compatibility -

Iteration (𝑇𝑚 ) - 𝐼𝑇𝐸𝑅𝑚
𝑇 1 ⊲⊳𝜃 ...⊲⊳𝜃 𝑇

𝑚
O1 - ✓ ✓ § 5.2.1- 5.2.5

𝛾𝑐𝑜𝑢𝑛𝑡 (∗) (𝑇 ) O2 unbounded m ✓ ✓ § 5.2.1- 5.2.5

𝑇 1 ⊲⊳𝑐 ...⊲⊳𝑐𝑇
𝑚

O3 join predicate c ✓ § 5.2.3- 5.2.5

Negated Sequence ¬𝑇3 [𝑇1;𝑇2 ] -𝑁𝑆𝐸𝑄

UDF(𝑇1∪𝑇2 ) ⊲⊳𝜃 𝑇3 O1, O3 as 𝑆𝐸𝑄 § 5.2.1

As Listing 8 is only applicable in Beam, two consequentWin-

dow Joins are necessary for other ASPSs and require an explicit

redefinition of the event time attribute after eachWindow Join. In

general, it is theminimum timestamp of the output pair (𝑒1,𝑒2) for
apartialmatchof anestedpatternand themaximumtimestamp for

a completematch. For our example, that is the timestamp attribute

of𝑇1 after𝑇1 ⊲⊳𝑇2. Furthermore, ourmapping allows us to leverage

the commutative and associative properties of CEP operators and

reorder joins. In addition, we can combine different window types

within one pattern to further optimize performance.

4.3 Optimization Opportunities
In the following, we investigate optimization opportunities in

terms of functionality (Func.) and performance (Perf.) of our map-

pings, which are summarized in Table 1 with references to the

respective evaluation sections.

4.3.1 Alternative Windowing with Interval Joins (O1). As dis-
cussed in Section 3.1, windowing and its parameters are crucial

for the correctness of ourmapping.We followGiatrakos et al. [44]

and use time-based slidingwindows as they cover general CEPuse

cases [44] and are commonly available in ASPSs [4, 36]. Sliding

windows create consecutive overlapping windows, which guaran-

tee the detection of all complex events if sliding by tuple is applied.

However, our mapping suggests using small slide sizes, leading

to many concurrent windows with a negative performance im-

pact. Additionally, due to the overlap of consecutive windows, our

mapping produces duplicates.

Functionality:An alternativewindowing solution that prevents
setting stream-depend parameters and duplicates is the Inter-

val Joins (available in Flink [5]). This join composes two events

𝑒1 ∈𝑇1 and 𝑒2 ∈𝑇2 given a key condition and a window condition

𝑒2 .𝑡𝑠 ∈ (𝑒1 .𝑡𝑠 + lowerBound,𝑒1 .𝑡𝑠 +upperBound), with bounds de-

fined as time measurement [5]. The bounds only depend on the

window size𝑊 , thus circumventing the setting of a slide size. In

particular, for the conjunction, the bounds are defined as follows

(𝑒1 .𝑡𝑠−𝑊,𝑒1 .𝑡𝑠+𝑊 ). All other operators use (𝑒1 .𝑡𝑠+0,𝑒1 .𝑡𝑠+𝑊 ).
Thus, the Interval Join creates content-based windows defined

by events of𝑇1. To this end, the Interval Join detects all matches

and prevents the creation of duplicates as all relevant 𝑒2 ∈𝑇2 are
assigned to the unique window of 𝑒1 ∈𝑇1.

Performance: Utilizing Interval Joins yields performance bene-

fits over SlidingWindowJoins if the frequencyof𝑇1 is significantly

lower than the frequency of𝑇2. This improvement stems from the

content-based creationofwindowsbasedon𝑇1 events, resulting in

fewer windows and reduced computational workload. In contrast,

sliding windows are created apriori and independent of actual

tuple occurrences. Thus, its performance is independent of the

frequency differences between both streams. BothWindow Joins

perform alike for similar frequencies, while SlidingWindow Joins

outperform Interval Joinswhen the frequency of𝑇1 is significantly

higher than the frequency of𝑇2.

4.3.2 Leverage Aggregations for Iterations (O2). The mapping

of the iteration is in line with the SEA iteration operator. However,

many ordered-based CEP systems support unbounded iterations

where thenumberofcontributingevents≥𝑚 insteadof=𝑚, resem-

bling the Kleene∗ and Kleene+ operator [36, 44]. While the map-

ping towards Theta Joins does not support any Kleene operation,

we can utilize ASP aggregations to overcome this limitation [77].

Functionality: Inparticular,wefirst applyawindowaggregation

that returns the count 𝑛 of relevant events of𝑇 in the window𝑊 .

Afterward,we compare𝑛with the user-defined𝑚, i.e., if𝑛≥𝑚, the

pattern is fulfilled under the selection policy skip-till-any-match.
However, we denote O2 as approximate because aggregations

return one tuple of the same schema as the input stream per win-

dow instead of multiple tuples with the composition of events as

the iteration operator. On the other hand, composing all events

of an unbounded iteration may lead to extensive result tuples

with potentially duplicate or irrelevant information. Furthermore,

retrieving any accumulated information from 𝐼𝑇𝐸𝑅𝑚 results is

barely supported in traditionalCEP systems,whichmakes it rather

cumbersome to, for instance, derive the average of an attribute

𝑎 𝑗 ∈𝑇 (𝑎1,...,𝑎𝑛) for all events 𝑒𝑖 ∈𝑐𝑒 (𝑒1,...,𝑒𝑚) [36, 44]. O2 enables
further analysis by the usage of additional aggregation functions,

e.g., mean or max, supported in some CEP systems [48]. Note that

someASPSs allow users to implement UDF aggregation functions,

which can return multiple output tuples per window and sort the

window content to support conditions between the contributing

events, such as 𝑒𝑖 .𝑎𝑛 <𝑒𝑖+1 .𝑎𝑛 , and other selection policies. Finally,
ASP window aggregations do not trigger a window that has no

event assigned. Thus, O2 cannot support Kleene∗ operations. As
a result, O2 supports a variation of the Kleene+ operation under

skip-till-any-match,which canbe extended to the full functionality
of Kleene+ by using UDFs.

Performance: Due to the approximation of the result, aggre-

gations reduce the computational load and thus provide better

performance.Note that from the performance perspective, it is rec-

ommended to utilize natively supported operators from the ASP

API instead of UDFs. Native calls can undergo detailed analysis by

the systemoptimizer, resulting in significantly better performance

outcomes compared to UDFs [70].

4.3.3 Data Partitioning using Equi Joins (O3). Following our
mapping, four out of five SEA operators are mapped to a join type,

i.e., Cross Joins and Theta Joins. Both join types are rarely avail-

able in ASPSs as they incorporate challenges of data partitioning

by key and, thus, introduce massive computing and communica-

tion overhead during data processing in distributed settings [25].

Thus, O3 does not provide any optimization on functionality but

a performance optimization for a subset of pattern workloads.

Performance: Common CEP use cases provide a subset of pat-

terns that require matching attribute values, e.g., for IDs or region

keys [33, 44]. Those use cases contain a join condition 𝑐 with an

equality operator, i.e., 𝑒1 .𝑎𝑖 =𝑒2 .𝑎 𝑗 , and can be translated into an

Equi Join. Equi Joins enable data partitioning by key in ASPSs and,

thus, enable higher degrees of parallelization compared to Cross

Joins or Theta Joins. In particular, a precedent map operation that
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assigns a single key to all events leads to no parallelization poten-

tial. Consequently, Equi Join predicates 𝑐 are always preferable

as join keys when using our operator mapping. Other constraints,

such as 𝜃 from the mapping of the sequence, are executed after

the Equi Join. Furthermore, O3 can be combined with O1 and O2.

5 EVALUATION
In this section, we evaluate the performance of ourmapping in the

representativeHSPS Flink. To this end, we first describe our exper-

imental setup in Section 5.1. Then, we compare the performance

of our mapping against FlinkCEP in Section 5.2.

5.1 Experimental Setup
In the following, we introduce our experimental setup in Sec-

tion 5.1.1, analyze the supported SEA operators of FlinkCEP in

Section 5.1.2, and present data and workloads in Section 5.1.3.

5.1.1 Hardware and Software. We conduct our experiments

on a five-node cluster. Each node has a 16-core Intel Xeon Silver

CPU (4216 2.10GHz) and 528 GB of main memory. We use one

node exclusively as a master and the others as workers. For the

experiments in Section 5.2.1-5.2.4, we use one worker and scale

out to multiple workers in Section 5.2.5. We investigate the four

introduced hybrid solutions, i.e., Stratio Decision [2], Esper on

Storm [1], KafkaStreamsCEP [52], and FlinkCEP [3]. The former

three solutions are outdated, partially archived research projects,

with commits more than four years ago and deprecated dependen-

cies for support versions of the respective ASPS
2
To this end, Flink

is the only ASPS that provides an actively maintained CEP feature

with FlinkCEP (FCEP) and allows us to compare the benefits and

drawbacks of our solutionwithin one SPS, excluding cross-system

differences. For these reasons, we useApache Flink (v1.11.6) for all

our experiments. In particular, the performance of FCEP patterns

serves as a baseline, which we compare to their corresponding

FlinkASP (FASP) queries translated with our mapping.

Table 2: Operator Support of FCEP and FASP.
𝐴𝑁𝐷 𝑆𝐸𝑄 𝑂𝑅 𝐼𝑇𝐸𝑅 𝑁𝑆𝐸𝑄 SP

FASP ✓ ✓ ✓ ✓ ✓ stam

✗ ✓ ✗ ✓ ✓ stam

FCEP ✗ ✓ ✗ ✓ ✓ stnm

✗ ✓ ✗ ✓ ✓ sc

5.1.2 Flink Implementation Details. FCEP uses an order-based
evaluation mechanism [44], which is implemented as a unary

operator that creates an NFA given a user-defined pattern. The

unary CEP operator can only be applied to a single input stream,

which requires the previous union of all input streams. Further-

more, as with all order-based CEP systems, FCEP uses no actual

window implementation but logical windowing, i.e., predicates,

to ensure that time constraints are met [44]. To define patterns,

FCEP supports three of the five SEA operators exclusively pro-

vided byCEP, i.e.,𝑆𝐸𝑄 , 𝐼𝑇𝐸𝑅, and𝑁𝑆𝐸𝑄 . In contrast, ourmapping

enables the entire SEA operator set, as shown in Table 2. Further-

more, our mapping supports the most common selection policies

(SP) skip-till-any-match (stam) [44], while FCEP additionally sup-

ports skip-till-next-match (stnm) and strict-contiguity (sc) (see

Section 3.1.4). For this reason, FCEP has multiple options for its

operators, e.g., for 𝑆𝐸𝑄 : .next() for sc, .followedBy() for stnm, and

2
We investigated KafkaStreamCEP [52] and migrated the project to a recent

KafkaStream version. However, KafkaStreamCEP was only able to process small

data sets (under 300 MB) with a low throughput of 5k tpl/s. For larger data sets, an

internal buffer for pattern detection overloads, and the query fails. Thus, we exclude

KafkaStreamsCEP from further evaluation.

.followedByAny() for stam. To compare equivalent workloads, we

use the following FCEP operators, all corresponding to stam: .fol-
lowedByAny() for 𝑆𝐸𝑄 , .times(n).allowCombinations() for 𝐼𝑇𝐸𝑅,

and .notfollowedBy() for 𝑁𝑆𝐸𝑄 . We use exclusively these three

FCEP operators for patterns and the provided FASP operators in

Flink’s DataStreamAPI for queries. We exclude third-party sys-

tems and sockets from our evaluation as they would be identical

for both approaches but may introduce performance bottlenecks.

Thus, instead of using connectors as interfaces for data providers,

we extract a fixed time frame of the data (see Section 5.1.3) as CSV

files and employ a simple source operator for reading. Addition-

ally, we ensure a fair comparison by using identical source and

sink functions for all pattern-query pairs.

Finally, we turn toward the parallelization of FCEP. FCEP can

leverage partitioning by key and otherwise runs on a single thread.

Ourmapping incorporates a similar bottleneck. In particular, if the

pattern has no Equi Join condition between each stream pair, their

join is performed in a global window. However, our mapping al-

lows us to decompose the patternworkload into consecutive joins,

i.e., multiple operators, and to adjust the join order to improve its

performance. Furthermore, it prevents the previous union of all

streams and simplifies the garbage collection of processed tuples.

5.1.3 Workloads. In the following, we give details about data
and the representation of event types and patterns.

Data:We use two real-world sensor data sources for our evalu-

ation. First, QnV-Data3 represents traffic congestion management

data that includes sensor readings from almost 2.5k road segments

in Hessen (Germany). Each tuple contains the number of cars,

i.e., quantity (𝑄), and their average speed, i.e., velocity (𝑉 ), for

one minute on a road segment defined by coordinates. Second,

AirQuality-Data (AQ-Data) [72] contains data from 𝑆𝐷𝑆011 sen-

sors that measure air quality, i.e., particulate matter with 𝑃𝑀10

and 𝑃𝑀2.5 values (particles of 10 and 2.5 micrometers or smaller).

Additionally, 𝐷𝐻𝑇22 sensors provide temperature (𝑇𝑒𝑚𝑝) and

humidity (𝐻𝑢𝑚) measurements. Both sensors collect data every

three to five minutes. To represent these event types, we create

a POJO class with a common schema for all data sources, i.e.,

(𝑖𝑑 ,𝑙𝑎𝑡 ,𝑙𝑜𝑛,𝑡𝑠 ,𝑣𝑎𝑙𝑢𝑒), and a child class for each measurement, i.e.,

𝑄 ,𝑉 ,𝑇𝑒𝑚𝑝 ,𝐻𝑢𝑚, 𝑃𝑀10, and 𝑃𝑀2.5. Thus, also simplifying the

union of sources for FCEP.

Metrics:Wemeasure the maximum sustainable throughput in

tuples per second (tpl/s) and the detection latency of a pattern. The

detection latency results from subtracting the maximum event

time of all events contributing to the output from the current sys-

tem time when the output reaches the sink operator [53]. As we

produce all the data in the cloud, we use the creation time of a

tuple instead of its event time to derive the detection latency.

Pattern Parameters:We denote the number of event types con-

tributing to a pattern in brackets. For instance, 𝑆𝐸𝑄 (2) describes
a 𝑆𝐸𝑄 of two streams. We use

#𝑚𝑎𝑡𝑐ℎ𝑒𝑠
#𝑒𝑣𝑒𝑛𝑡𝑠 [76] to determine the out-

put selectivity 𝜎𝑜 of a pattern in %. We give the window size𝑊 in

minutes, and, following our findings in Section 3.1, use a slide size

of one minute for all sliding window queries.

5.2 Performance Evaluation
Wenowcompare theperformanceofouroperatormappingagainst

the unary CEP operator approach of FCEP.We first compare the

performance of elementary operators in Section 5.2.1, followed

by the impact of pattern parameters in Section 5.2.2. For both sets

3
The data is no longer available on the public data portal𝑚𝐶𝐿𝑂𝑈𝐷 [63]. All utilized

samples are provided in our GitHub repository: github.com/arianeziehn/CEP2ASP.
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Figure 3: Elementary operator performance with the impact of different parameters.

of experiments, we use patterns that do not allow for naive key

partitioning and thus skip the evaluation of O3. In Section 5.2.3,

we evaluate the effect of data characteristics, followed by the study

of resource utilization in Section 5.2.4. Finally, we turn towards

the scalability of both approaches in Section 5.2.5.

5.2.1 Elementary Operator Performance. In this experiment,

we evaluate three simple patterns that each consist of one elemen-

tary operator, i.e., 𝑆𝐸𝑄1 (2) and 𝐼𝑇𝐸𝑅3
1
(1) with a sample of 10 mil-

lion tuples (10M tuples) from QnV-Data (0.89GB) and 𝑁𝑆𝐸𝑄1 (3)
with a sample of 10M tuples (0.5GB) from QnV- and AQ-Data.

For all patterns, we use an output selectivity 𝜎𝑜 = 0.00005% and

a window size𝑊 =15.

Observations. In Figure 3a, we show the results of our baseline

evaluation.We observe that the throughput of FASP is higher than

FCEP for all patterns.While for𝑆𝐸𝑄1 and 𝐼𝑇𝐸𝑅
3

1
the throughput of

FASP is, on average, 28% higher (min. 3%, max. 33%), the through-

put of𝑁𝑆𝐸𝑄1 differs severely, where FASP is up to 20x faster than

FCEP. FASP-O1 (Interval Join) provides equivalent throughput for

𝑆𝐸𝑄1 and 𝐼𝑇𝐸𝑅
3

4
and shows a throughput drop compared to FASP

by 50% for 𝑁𝑆𝐸𝑄1. FASP-O2 (Aggregations) provides the highest

throughput for 𝐼𝑇𝐸𝑅3
1
.

Discussion. We conclude that our elementary operator map-

pings outperform FCEP for patterns with small windows and

low output selectivity. The significant performance differences

for 𝑁𝑆𝐸𝑄1 can be explained as follows. In contrast to the other

patterns, 𝑁𝑆𝐸𝑄1 requires events from an additional source, i.e.,

AQ-Data, that lead to an additional union for FCEP. The ordered-

based evaluationmechanismof FCEPcauses additional processing

overhead by handling the negation constraint retrospectively. In

particular, for 𝑁𝑆𝐸𝑄1 (𝑇1;¬(𝑇2);𝑇3), initially, the matches of the

𝑆𝐸𝑄 (𝑇1,𝑇3) are detected. Afterward, the negation constraint is

evaluated for each match of 𝑆𝐸𝑄 (𝑇1,𝑇3). This evaluation process
requires buffering of events as well as calculating and pruning of

partial matches 𝑆𝐸𝑄 (𝑇1,𝑇3). Our mapping uses a UDF to identify

whether a relevant event of the negated stream occurs after 𝑇1
within𝑊 . Thus, our mapping circumvents the buffering of events

and retrospective evaluation of the negation constraint. The lower

throughput of FASP-O1 stems from the much higher frequencies

of𝑇1 compared to𝑇3 for 𝑁𝑆𝐸𝑄 . In contrast, 𝑆𝐸𝑄1 and 𝐼𝑇𝐸𝑅
3

1
use

similar frequencies for all involved streams. Finally, FASP-O2 lever-

ages the lightweight count aggregation to determine the number

of occurring events for 𝐼𝑇𝐸𝑅3
1
.

5.2.2 Impact of Pattern Parameters. In the following, we in-

vestigate the performance impact of three essential pattern pa-

rameters [54, 76], i.e., output selectivity 𝜎𝑜 , window size𝑊 , and

pattern length 𝑛.

Selectivity: In this experiment, we determine the impact of in-

creasing output selectivities on throughput and detection latency.

We use 𝑆𝐸𝑄1 and increase its output selectivity 𝜎𝑜 from 0.003%

up to 30% by varying the filter selectivity of the types Q and V.

Observations. In 3b,wepresent the throughput for increasing se-
lectivities. First, we observe an initial throughput difference of 60%

for 𝜎𝑜 =0.003% between FASP and FCEP. Second, FCEP’s through-

put drops drastically for increasing selectivities, while FASP’s

throughput remains constant for 𝜎𝑜 ≤ 1%. Third, for 𝜎𝑜 = 30%,

FASP’s throughput drops from 145k to 70k, while FCEP drops its

throughput to below500 tpl/s. Fourth, FASP-O1 (Interval Join) pro-

vides equivalent throughput results for selectivities up to 1%. For

a selectivity of 30%, we observe that the Interval Join outperforms

the Sliding Window Join (FASP) with a 27% higher throughput

by circumventing duplicate calculations of overlapping windows.

Finally, we turn toward the observed detection latency. In accor-

dancewith the throughput behavior, the latencyof FCEPandFASP

increases with higher selectivities. In particular, we observe an

average latency of 414 ms for 𝜎𝑜 =0.003% and 18 s for 𝜎𝑜 =30% for

FCEP. FASP provides an average latency of 240 ms up to 𝜎𝑜 =1%

and 2 s for 𝜎𝑜 =30%. FASP-O1 provides the lowest latency results

with 75 ms over all runs.

Discussion. Higher selectivity increases the number of valid

tuples. Thus, more (partial) matches are created, resulting in an

increase in computational workload and a corresponding drop

in performance. The severity FCEP is affected by increasing se-

lectivities is critical because patterns usually contain various se-

lections to define interesting behavior in the data [46]. Moreover,

stream processing is dynamic, including a high correlation be-

tween events. Thus, high selectivities may appear during peak

times when the system must detect matches efficiently. We ob-

serve that the throughput of FCEP decreases to below 10k tpl/s

with a latency of 1 s for 𝜎𝑜 = 1%, whereas in realistic scenarios,

the selectivity can go as high as 10% [76]. In contrast, the effects

of high selectivities on our mapping are less severe and enable

more efficient pattern detection in dynamic stream processing

scenarios with up to 150x higher throughput than FCEP.

Window Size: In this experiment, we examine the effect of

varyingwindow sizes𝑊 on throughput and detection latency.We

use 𝑆𝐸𝑄1 and increment its window sizes𝑊 from 30 to 360.

Observations. In Figure 3c, we present the throughput for in-

creasing window sizes. First, we observe an initial throughput

difference of 40% for𝑊 =30. Second, FCEP’s throughput drops by

76% fromwindow size 30 to 360, while the throughput of FASP is

constant overall patterns. Third, FASP-O1 (Interval Join) provides

equivalent throughput results as FASP for allwindowsizes. Finally,

we turn toward the observed detection latency. The latency of

FCEP increaseswithhigherwindowsizes. Inparticular,weobserve

an average latency of 265 ms for𝑊 =30 and 590 ms for𝑊 =360.

In contrast, both FASP and FASP-O1 provide a constant average

latency over all runs, with 210ms for FASP and 85ms for FASP-O1.
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Discussion. Larger windows prolong the lifetime of events and,

thus, increase the state. The relaxed time constraints on pattern

matches raise𝜎𝑜 , i.e., from 0.00016% to 0.00032% for 𝑆𝐸𝑄1, primar-

ily causing FCEP’s throughput drop. For FASP, larger windows

increase the window state and, due to the usage of sliding win-

dows with a slide size equal to one minute, also the number of

concurrent windows. However, since FASP and FASP-O1 perform

similarly, we conclude that the overhead of concurrent windows

and the state increase are neglectable for low selective workloads.

Pattern Length:We assess the performance implications of

pattern length, i.e., the impact of an increased number of events

contributing to a match. To this end, we examine how throughput

behaves when dealing with nested 𝑆𝐸𝑄 (𝑛) and 𝐼𝑇𝐸𝑅𝑚 patterns.

Nested Sequence. In this experiment, we run five 𝑆𝐸𝑄𝑛 (𝑛) to
investigate how the pattern length 𝑛 affects throughput. We in-

crementally increase 𝑛 from 2 to 6 by progressively combining

all available event types from QnV- and AQ-Data (10M tuples

(0.5GB)). For all 𝑆𝐸𝑄𝑛 , we use an output selectivity 𝜎𝑜 =0.00032%

and a window size𝑊 =15.

Observations. In Figure 3d, we present the throughput for in-

creasing pattern lengths 𝑛. We observe that FCEP is severely af-

fected, dropping its throughput by 80% from 𝑆𝐸𝑄2 to 𝑆𝐸𝑄3 and

50% from 𝑆𝐸𝑄4 to 𝑆𝐸𝑄5. In contrast, FASP and FASP-O1 provide

stable throughput for all patterns with a 13x higher throughput

for pattern lengths beyond 4.

Discussion.Nested 𝑆𝐸𝑄 (𝑛) compose events from 𝑛 event types

contained in potentially different streams. The drop in through-

put for FCEP is primarily due to the additional union of these

streams. In particular, we introduce the stream of 𝑆𝐷𝑆011 sensors

(𝑃𝑀10 and 𝑃𝑀2.5) for running 𝑆𝐸𝑄3 and 𝑆𝐸𝑄4, and the stream

of𝐷𝐻𝑇 22 sensors (𝑇𝑒𝑚𝑝 and𝐻𝑢𝑚) for creating 𝑆𝐸𝑄5 and 𝑆𝐸𝑄6.

Since 𝜎𝑜 remains constant for all 𝑆𝐸𝑄𝑛 , FCEP yields nearly iden-

tical throughput results for patterns using the same number of

sources, such as 𝑆𝐸𝑄3 to 𝑆𝐸𝑄4 and 𝑆𝐸𝑄5 to 𝑆𝐸𝑄6. In contrast, our

mapping decomposes nested 𝑆𝐸𝑄 (𝑛)s into n-1 consecutive joins.
Thus, it avoids the union of input streams and leverages pipeline

parallelism, enabling it to maintain a consistent throughput for

extended nested patterns.

Iteration. In this experiment, we increase the pattern length𝑚

from 3 to 9 for 𝐼𝑇𝐸𝑅𝑚 using 10M tuples of QnV-Data. In particular,

we use the event type V and run 𝐼𝑇𝐸𝑅𝑚
2
with a constraint between

subsequent events, i.e., 𝑣𝑛 .𝑣𝑎𝑙𝑢𝑒 <𝑣𝑛+1 .𝑣𝑎𝑙𝑢𝑒 , and 𝐼𝑇𝐸𝑅𝑚
3
with a

threshold filter, i.e., 𝑣𝑛 .𝑣𝑎𝑙𝑢𝑒 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . For all patterns, we use

an output selectivity 𝜎𝑜 =0.003% and a window size𝑊 =15.

Observations.Wepresent the throughput for increasing pattern

lengths𝑚 for 𝐼𝑇𝐸𝑅𝑚
2
in Figure 3e and for 𝐼𝑇𝐸𝑅𝑚

3
in Figure 3f. We

observe that FCEP decreases its throughput with increasing𝑚

regardless of the applied constraint.However, this effect is less pro-

nounced for 𝐼𝑇𝐸𝑅3, which involves threshold filters. Conversely,

FASP and its optimizations provide similar throughput, which re-

mains consistent for all 𝐼𝑇𝐸𝑅𝑚 and is up to 15x higher than FCEP.

Discussion. The higher the pattern length𝑚, the more events

need to occur in𝑊 to form a match of 𝐼𝑇𝐸𝑅𝑚 . To maintain a con-

stant𝜎𝑜 forall 𝐼𝑇𝐸𝑅
𝑚
,we increase the selectivityof theconstraints

for all𝑚. Thus, more relevant events occur that need to be kept in

the operator state. For this reason, FCEP decreases its throughput

for higher𝑚. Constraints between subsequent events are more

restrictive than threshold filters and additional force the testing

of the ancestor event in the partial match, contributing to the

greater throughput decrease. In contrast, FASPmaintains a con-

stant throughput for all 𝐼𝑇𝐸𝑅𝑚 , irrespective of the constraints and
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Figure 4: Impact of varying data characteristics.

optimizations applied. FASP and FASP-O1 benefit from breaking

the pattern intom-1 joins, while FASP-O2 employs an aggregation

to approximate 𝐼𝑇𝐸𝑅𝑚 patterns.

5.2.3 Data Characteristics. In this experiment, we measure

the performance impact of different data characteristics on FCEP

and FASP. To this end, we enable data partitioning by key and thus

FASP-O3, i.e., the usage of Equi Joins. As a result, the CEP operator

in FCEP and stateful ASP operators run in parallel.We run twopat-

terns, i.e.,𝑆𝐸𝑄7 (3)withanoutput selectivity𝜎𝑜 =1%andawindow

size𝑊 =15, and 𝐼𝑇𝐸𝑅4
4
(1) with an output selectivity𝜎𝑜 =1% and a

window size𝑊 =90, usingQnV- andAQ-Data samples.We use the

sensor 𝑖𝑑 as a key attribute and to control the data characteristics,

i.e., each sensor increases the data volume (approx. 8.5M tuples

(0.35GB) per event type) and the number of keys. We evaluate the

throughput for both patterns on one worker with 16 task slots.

Observations. In Figure 4, we show the impact of an increasing

number of keys on the throughput. Our observations are five-fold.

First, comparing the overall performance of 𝑆𝐸𝑄7 and 𝐼𝑇𝐸𝑅4, we

observe that both approaches decrease throughput whenmultiple

streams are involved and the data volume is higher. In particular,

FCEP is severely affected by an throughput drop of 70%, while

FASP drops by 40% for 16 keys. Second, for all workloads, we ob-

serve that our approach outperforms FCEP. Third, with respect to

the increasing number of keys, we observe that FCEP stagnates or

even drops its throughput for data characteristics beyond 16 keys,

i.e., cases where the number of keys is larger than the number

of available task slots. In contrast, all FASP queries slightly in-

crease their throughput by, on average, 15% from 16 to 128 keys for

𝑆𝐸𝑄7 and 30% from 16 to 128 keys for 𝐼𝑇𝐸𝑅4. Fourth, with respect

to O1 (Interval Joins), we observe that its throughput is below

FASP-O3 for 𝑆𝐸𝑄7 while it outperforms it for 𝐼𝑇𝐸𝑅4. With respect

to O2 (Count Aggregations), we observe that it outperforms all

approaches for 𝐼𝑇𝐸𝑅4. Fifth, while exploring the throughput for

FCEP, we observe that FCEP is severely affected by high ingestion

rates. In particular, we encounter execution failure due tomemory

exhaustion for any ingestion rate higher than 1.3M tpl/s.

Discussion.Our experiment shows that both approaches lever-

age key partitioning. However, our mapping outperforms FCEP

by an, on average, 60% higher throughput (min. 25%, max. 80%).

Furthermore, while FCEP fails for ingestion rates beyond 1.3M

tpl/s, our mapping handles ingestion rates in the range of 2.4M

(FASP-O3) to 6.8M tpl/s (FASP-O2+O3). Furthermore, our evalua-

tion reveals that the two suggestedwindow types for joins, Sliding

Window Joins (FASP-O3) and Interval Joins (FASP-O1+O3), lever-

age distinct data and pattern characteristics. First, the Interval Join

creates windows onlywhen events occur, benefiting from reorder-

ing streams based on their frequency to reduce window creation

for less frequent streams. This can lead to superior performance

in scenarios like 𝐼𝑇𝐸𝑅4, where each join decreases the output fre-

quency. In contrast, SlidingWindow Joins cannot reducewindows

for subsequent Self Joins, limiting their performance. Second, the
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Figure 5: Resource usage for 𝑆𝐸𝑄7 and 𝐼𝑇𝐸𝑅4.

small slide size of our mapping has a negative performance im-

pact on larger windows. In particular, the number of concurrent

windows, duplicate computations, and the operator state increase,

leading to a maintenance overhead that limits the throughput

for FASP-O3, as shown in 𝐼𝑇𝐸𝑅4. In contrast, for small window

sizes, as applied in 𝑆𝐸𝑄7, the late creation of windows delays the

Interval Join and leads to the slight performance benefit of the

SlidingWindow Join. Note that our mapping allows us to reorder

joins and combine SlidingWindow Joins and Interval Joins in one

query. Furthermore, FASP-O2 can leverage the lightweight ASP

count aggregation to determine the number of occurring events

for a single stream in a specified time window and can, therefore,

outperform FCEP and other mapping solutions.

5.2.4 Resources Utilization. In this experiment, we investigate

the resource utilization, i.e., CPU andmemory usage, of FCEP and

FASP for 𝑆𝐸𝑄7 and 𝐼𝑇𝐸𝑅4 using 32 and 128 keys.

Observations. In Figure 5,we show themeasuredCPUandmem-

ory usage with 32 and 128 keys for both patterns, i.e., Figure 5a for

𝑆𝐸𝑄7 and Figure 5b for 𝐼𝑇𝐸𝑅4. First, we observe that the memory

usage of FCEP is equivalent to or higher than thememory usage of

FASP even though FCEP’s ingestion rate is at least 50% lower. Sec-

ond, we observe that all approaches do not fully exploit available

CPU resources, whereas FASP-O3, which constantly creates and

processes sliding windows, has the highest CPU consumption.

Discussion.Our evaluation shows that the performance of all

approaches depends on the available memory resources. Whereas

FASP leverages available memory to cope with higher ingestion

rates, the high memory consumption of FCEP is caused by the us-

age of its stateful model, i.e., the NFA. In particular, the unary CEP

operator of FCEP uses implicit windowing. To this end, the oper-

ator is required to maintain partial matches, i.e., discard outdated

partial matches that cannot lead to a full match anymore or keep

them otherwise. This cumbersome maintenance process leads to

high memory consumption, which is the reason for the observed

performancebottleneckofFCEP inSection5.2.3. Inparticular,with

an ingestion rate of 1.3M tpl/s, FCEP demands almost all available

memory. If higher ingestion rates occur, Flink throttles the sources

to prevent memory exhaustion, as the data cannot be processed

at the speed of the ingestion rate. This behavior is known as back-

pressure and is prevented by determining themaximal sustainable

throughput the systemcanprovidewithout creating any backpres-

sure [53]. However, as the memory usage of FCEP still increases

as the operator state grows while processing, the system fails due

to memory exhaustion, as observed in Section 5.2.3. As opposed

to FCEP, our mapping leverages explicit windowing to discard

processed tuples efficiently. As a result, it utilizes the available re-

sources more efficiently and can thus support high ingestion rates.

5.2.5 Scalability. In this experiment, we run the workloads

of 𝑆𝐸𝑄7 and 𝐼𝑇𝐸𝑅4 with the data characteristic of 128 keys (appr.

45GB for 𝐼𝑇𝐸𝑅4 and 135GB for𝑆𝐸𝑄7) usingQnV- andAQData.We
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Figure 6: Scalability.

scale out to fourworkers and increase the number of parallel tasks

by 16 slots per worker to assess the scalability of both approaches.

Observations. In Figure 6, we show the impact on throughput

for increasing numbers of workers. Our observations are two-fold.

First, both approaches leverage the additional memory and suc-

cessfully increase throughput. Second, FCEP benefits most from

the additional memory and increases its throughput by up to 6x

(min. 1.4x, avg. 3.2x), while FASP increases, on average, by 2.6x

(min. 1.7x,max.4.2x). However, FCEP cannot reach the throughput

of our mapping, which is, on average, 60% (min. 24%, max. 82%)

higher.

Discussion.Our results suggest that both approaches scale out
over several nodes and leverage additional resources to increase

their performance. However, FCEP is not capable of reaching the

throughput obtained with our mapping, which decapsulates the

pattern workload into multiple operators and thus leverages both

key partitioning and pipeline parallelism. To this end, the usage

of our mapping is more robust in the presence of high ingestion

rates, leverages the workload distribution over multiple operators

and the reordering of operators.

6 RELATEDWORK
In this section, we contrast our mapping to related work in the

intersection between CEP and ASP.

The origin of CEP and ASP:Although both paradigms, ASP

andCEP, introducedifferentflavorsof streamprocessing [60], both

address the need to process streams instead of bounded batches.

Thus, they share a common history visualized in Figure 7. As de-

picted on the left, in the early 00s, fundamental concepts to handle

unbounded data streams and continuous queries were introduced

in seminal SPSs, e.g., STREAM [20], Aurora [10], Borealis [9], or

TelegraphCQ [31]. These systems provide essential stream pro-

cessing features but lackCEP requirements to specify the time and

cause relationships between events [36, 61], e.g., before 2016,most

ASPSs did not providewindowing by event time [14], or dealtwith

out-of-order arrivals [26, 60, 69]. Thus, some years later, the first

generation of CEP systems appeared with common representa-

tives such as SASE [49], ZStream [64], and Esper [40]. In contrast

to ASP, CEP is highly influenced by a diversity of other research

lines (integrated by jump-in arrows in Figure 7) such as seminal

ASPSs (CEDR [22]), active databases [29, 68], pub/sub-systems
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Figure 7: History of ASP and CEP systems.

(Cayuga [39]), or logical Prolog-based systems (RTEC [21]). This

diversity leads to heterogeneous CEP solutions with distinct lan-

guages and different pattern detection mechanisms.

After the introduction of MapReduce [38] in 2004, modern

ASPSs evolved for processing large data volumes [26] and scale-

out over hundreds of nodes in cloud environments. Prominent

examples are open-source projects, e.g., Flink [18], Spark [75],

or Kafka Streams [58], as well as commercial systems such as

Microsoft Quill [30] and IBM Streams [50]. As opposed to ASP,

traditional CEP systems are optimized for single-node execution

or centralized architectures with serial processing models, which

are cumbersome for parallel and distributed processing. Thus,

these solutions provide limited resource capacities for the ever-

increasing data volume and velocity [26, 42]. Some CEP solutions

tackle these limitations by enabling horizontal scaling over sev-

eral nodes and messaging as communication strategy to handle

missing shared memory, e.g., T-Rex [35] or NextCED [71]. Most

distributed CEP solutions are mainly research prototypes that

focus on parallelizing ordered-based evaluation mechanisms on

homogeneous cluster environments without considering network

bandwidth or high ingestion rates [35, 71]. Other limitations are

themissing control over the degree of parallelism, which prevents

load balancing [42] and multi-query optimization for serial pro-

cessing models [24]. In sum, no CEP system exists that provides a

complete set of features, i.e., parallel processing, flexible resource

allocation, window distribution, and multi-query optimization,

to fully leverage cloud environments with potentially unlimited

scaling capabilities [26, 42, 44].

ASPSs with CEP Features: Two approaches exist that enable
CEP on cloud-optimized ASPSs: Approach (1) proposes to run

instances of CEP systems on worker nodes of an ASP-manged

cluster, i.e., Stratio Decision [2]. Approach (2) is to provide CEP

functionality as an additional unary operator of the ASPS. Esper
on Storm [1] with Esper running in Storm Bolts, as well as Flink

and KafkaStreams with built-in support for CEP (FlinkCEP [3],

KafkaStreamsCEP [52]) are representatives of approach (2). Both

approaches leverage the cloud-optimized data gathering and dis-

tribution features of the underlying ASPS. However, all solutions

bring along the limitations of their order-based evaluation mech-

anisms, e.g., multi-pattern optimization or parallel execution, and

design shortcomings, i.e., an unary CEP operator. In contrast,

we solve the problem independent of traditional CEP systems

by translating CEP patterns into ASP queries. Thus, our derived

mapping overcomes the limitations of traditional CEP detection

mechanisms and leverages the provided optimization of the state-

of-the-art ASPS. To the best of our knowledge, we are the first

to propose a general mapping of CEP operators towards ASP to

enable large-scale distributed CEP. Nevertheless, the relationship

between both paradigms has also been studied from the opposite

direction, i.e., CEP systems that leverage ASP features.

CEP Systemswith ASP Features: ZStream [64] introduces

the tree-based pattern detection mechanism for CEP by imple-

menting its operators as join variants. Its advantage compared to

the common order-based detection mechanism is the possibility

to optimize pattern detection plans, i.e., the order of event type

compositions. By using tree-based pattern plans and referring to

its operator implementation as join variants, ZStream is in line

with our findings. In contrast to our mapping, ZStream does not

allow for parallel execution or multi-pattern optimization, which

prevents its use for cloud environments and large data volumes.

One recent theoretical and experimental study by Kolchinsky and

Schuster [55], proves the equivalence of CEP pattern plan and

multi-join query plan generation. In particular, they observe that

tree-based pattern detection plans and logical join query plans

look alike and apply multi-join optimization techniques for pat-

tern plans. In contrast to our solution, Kolchinsky and Schuster

use the inverted direction and apply database optimizations on

CEP systems. Our mapping is based on different join types and

profits from available optimization in the target domain, as well

as manual reordering based on known data characteristics.

7 CONCLUSION
In this paper, we investigated how to efficiently combine ASP and

CEP in one HSPS for distributed cloud environments. To this end,

we first show that CEP andASP have a joint base for operations on

sets of time-stamped tuples that allow the mapping between their

operators. Second, we derive formal definitions for the complete

set of CEP operators proposed in SEA andmap each operator to its

ASP counterpart. As a result, we enable commonASPSs to provide

a wide range of CEP functionality. Our evaluation shows that

our mapping outperforms the state-of-the-art solution FlinkCEP

under various parameters, data characteristics, and distributed

settings with an, on average, 60% higher throughput and up to

6x higher ingestion rates. To do so, our mapping decomposes the

pattern workload into multiple operators and leverages explicit

windowing, whereas FlinkCEP composes an entire pattern into a

single operatorwith a statefulmodel. Thus, ourmapping leverages

pipeline parallelism and provides high throughput for challenging

workloads with high selectivities or ingestion rates. In contrast,

FlinkCEP massively decreases its throughput or even fails the

entire execution for such workloads due to its excessive mem-

ory consumption and garbage collection stalls. As a result, our

mapping empowers common general-purpose ASPS to operate as

HSPS that efficiently evaluate CEP patterns in distributed settings

and on a large scale, leveraging their cloud optimizations.

Future work in this area might target the specification of a PSL

for BigData and the IoT combinedwith a parser that automatically

transforms declarative patterns into their respective execution

pipeline using the API of the ASPS. Furthermore, collecting in-

formation on data and pattern characteristics such as frequency

and selectivity enables the automated application of the proposed

optimization opportunities. Finally, our formal definitionsmay en-

courage engineers to implement CEP-specific join variants, such

as the Interval Join, to optimize ASPSs for CEP workloads.

ACKNOWLEDGMENTS
This work was funded by the German Federal Ministry of Educa-

tion and Research as BIFOLD - Berlin Institute for the Foundations

of Learning and Data (ref. 01IS18025A and ref. 01IS18037A). We

thank the NebulaStream team for their insightful comments and

fruitful discussions.

458



REFERENCES
[1] 2012. Esperonstorm. Accessed Mar. 2023: https://github.com/tomdz/

storm-esper.

[2] 2016. Stratio Decision. Accessed Mar. 2023: https://github.com/Stratio/

Decision.

[3] 2019. FlinkCEP - Complex event processing for Flink. Accessed May

2023: https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html.

[4] 2022. Apache Beam. Accessed Mar. 2023: https://beam.apache.org.

[5] 2022. Apache Flink. Accessed Sept. 2023: https://flink.apache.org.

[6] 2022. Apache Kafka. Accessed Jan. 2023: https://kafka.apache.org.

[7] 2022. Apache Spark. Accessed Jan. 2023: https://spark.apache.org.

[8] 2022. Apache Storm. Accessed Jan. 2023: https://storm.apache.org.

[9] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch

Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex

Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik.

2005. The Design of the Borealis Stream Processing Engine. In Second Biennial
Conference on Innovative Data Systems Research, CIDR 2005, Asilomar, CA, USA,
January 4-7, 2005, Online Proceedings. www.cidrdb.org.

[10] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian

Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B.

Zdonik. 2003. Aurora: a new model and architecture for data stream

management. VLDB J. (2003).
[11] Arif Ahmed, HamidReza Arkian, Davaadorj Battulga, Ali J. Fahs, Mozhdeh

Farhadi, Dimitrios Giouroukis, Adrien Gougeon, Felipe Oliveira Gutierrez,

Guillaume Pierre, Paulo R. Souza Jr., Mulugeta Ayalew Tamiru, and LiWu. 2019.

Fog Computing Applications: Taxonomy and Requirements. CoRR (2019).

[12] Mert Akdere, Ugur Çetintemel, and Nesime Tatbul. 2008. Plan-based complex

event detection across distributed sources. Proc. VLDB Endow. (2008).
[13] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances

Perry, Eric Schmidt, and SamWhittle. 2015. The DataflowModel: A Practical

Approach to Balancing Correctness, Latency, and Cost in Massive-Scale,

Unbounded, Out-of-Order Data Processing. Proc. VLDB Endow. (2015).
[14] Tyler Akidau, Slava Chernyak, et al. 2018. Streaming systems: the what, where,

when, and how of large-scale data processing. " O’Reilly Media, Inc.".

[15] SamiraAkili. 2019. On theNeed forDistributedComplex Event Processingwith

Multiple Sinks. In Proceedings of the 13th ACM International Conference on Dis-
tributed and Event-based Systems, DEBS 2019, Darmstadt, Germany, 2019. ACM.

[16] Samira Akili and Matthias Weidlich. 2021. MuSE Graphs for Flexible Distri-

bution of Event Stream Processing in Networks. In SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25, 2021,
Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM.

[17] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios

Paliouras. 2017. Probabilistic Complex Event Recognition: A Survey. ACM
Comput. Surv. (2017).

[18] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph

Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker

Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax,

Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and DanielWarneke. 2014.

The Stratosphere platform for big data analytics. (2014).

[19] James F. Allen and George Ferguson. 1994. Actions and Events in Interval

Temporal Logic. (1994).

[20] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,

Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. 2016.

STREAM: The Stanford Data Stream Management System. In Data Stream
Management - Processing High-Speed Data Streams, Minos N. Garofalakis,

Johannes Gehrke, and Rajeev Rastogi (Eds.). Springer.

[21] Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. 2015. An Event

Calculus for Event Recognition. IEEE Trans. Knowl. Data Eng. (2015), 895–908.
[22] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng Hong.

2007. Consistent Streaming Through Time: A Vision for Event Stream Process-

ing. InThirdBiennialConference on InnovativeData SystemsResearch,CIDR2007,
Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org.

[23] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and

Kenneth L. Knowles. 2019. One SQL toRule ThemAll - an Efficient and Syntacti-

cally Idiomatic Approach toManagement of Streams and Tables. In Proceedings
of the 2019 InternationalConference onManagement ofData, SIGMODConference
2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan
Manegold, AnastasiaAilamaki, AmolDeshpande, andTimKraska (Eds.). ACM.

[24] Lars Brenna, Johannes Gehrke, Mingsheng Hong, and Dag Johansen. 2009.

Distributed event stream processing with non-deterministic finite automata.

In Proceedings of the Third ACM International Conference on Distributed
Event-Based Systems, DEBS 2009, Nashville, Tennessee, USA, July 6-9, 2009,
Aniruddha S. Gokhale and Douglas C. Schmidt (Eds.). ACM.

[25] Shijiu Cao, HaihongW, Meina Song, and Ken Zhang. 2018. Optimization of

Data Distribution Strategy in Theta-join Process based on Spark. In Proceedings
of the 2018 2nd International Conference on Algorithms, Computing and Systems,
ICACS 2018, Beijing, China, July 27-29, 2018. ACM.

[26] Paris Carbone, Gábor E. Gévay, Gábor Hermann, Asterios Katsifodimos, Juan

Soto, Volker Markl, and Seif Haridi. 2017. Large-Scale Data Stream Processing

Systems. InHandbook of Big Data Technologies, Albert Y. Zomaya and Sherif

Sakr (Eds.). Springer.

[27] Iliano Cervesato,Massimo Franceschet, andAngeloMontanari. 2000. AGuided

Tour through Some Extensions of the Event Calculus. Comput. Intell. (2000).

[28] Iliano Cervesato and Angelo Montanari. 2000. A Calculus of Macro-Events:

Progress Report. In Seventh International Workshop on Temporal Representation
and Reasoning, TIME 2000, Nova Scotia, Canada, 2000. IEEE Computer Society.

[29] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. 1994.

Composite Events for Active Databases: Semantics, Contexts and Detection.

In VLDB’94, Proceedings of 20th International Conference on Very Large Data
Bases, September 12-15, 1994, Santiago de Chile, Chile, Jorge B. Bocca, Matthias

Jarke, and Carlo Zaniolo (Eds.). Morgan Kaufmann.

[30] Badrish Chandramouli, Raul Castro Fernandez, Jonathan Goldstein, Ahmed

Eldawy, and Abdul Quamar. 2016. Quill: Efficient, Transferable, and Rich

Analytics at Scale. Proc. VLDB Endow. (2016).
[31] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,

Frederick Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous Dataflow

Processing. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA, June 9-12, 2003, Alon Y.

Halevy, Zachary G. Ives, and AnHai Doan (Eds.). ACM.

[32] Jianxia Chen, Lakshmish Ramaswamy, David K. Lowenthal, and Shivkumar

Kalyanaraman. 2012. Comet:DecentralizedComplexEventDetection inMobile

Delay Tolerant Networks. In 13th IEEE International Conference on Mobile
Data Management, MDM 2012, Bengaluru, India, July 23-26, 2012, Karl Aberer,
Anupam Joshi, Sougata Mukherjea, Dipanjan Chakraborty, Hua Lu, Nalini

Venkatasubramanian, and Salil S. Kanhere (Eds.). IEEE Computer Society.

[33] E. F. Codd. 1972. Relational Completeness of Data Base Sublanguages. Research
Report / RJ / IBM / San Jose, California (1972).

[34] E. F. Codd. 1983. A Relational Model of Data for Large Shared Data Banks

(Reprint). Commun. ACM (1983).

[35] Gianpaolo Cugola and Alessandro Margara. 2012. Complex event processing

with T-REX. J. Syst. Softw. (2012).
[36] Gianpaolo Cugola and Alessandro Margara. 2012. Processing flows of informa-

tion: Fromdata stream to complex event processing. ACMComput. Surv. (2012).
[37] Gianpaolo Cugola and Alessandro Margara. 2015. The Complex Event Pro-

cessing Paradigm. InData Management in Pervasive Systems, Francesco Colace,
Massimo De Santo, Vincenzo Moscato, Antonio Picariello, Fabio Alberto

Schreiber, and Letizia Tanca (Eds.). Springer.

[38] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data

Processing on Large Clusters. In 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, December 6-8,
2004, Eric A. Brewer and Peter Chen (Eds.). USENIX Association.

[39] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun

Sharma, andWalker M.White. 2007. Cayuga: A General Purpose Event Moni-

toring System. InThird Biennial Conference on InnovativeData Systems Research,
CIDR 2007, Asilomar, CA, USA, 2007, Online Proceedings. www.cidrdb.org.

[40] EsperTech. 2006. Complex Event Processing Streaming Analytics. Accessed

Aug. 2023: http://www.espertech.com/.

[41] Wang Fengjuan, Zhang Xiaoming, et al. 2013. The research on complex event

processing method of internet of Things. In ICMTMA. IEEE.
[42] Ioannis Flouris, NikosGiatrakos,AntoniosDeligiannakis,MinosN.Garofalakis,

Michael Kamp, andMichael Mock. 2017. Issues in complex event processing:

Status and prospects in the Big Data era. J. Syst. Softw. (2017).
[43] Antony Galton and Juan Carlos Augusto. 2002. Two Approaches to Event

Definition. InDatabase and Expert Systems Applications, 13th International Con-
ference, DEXA 2002, Aix-en-Provence, France, September 2-6, 2002, Proceedings
(Lecture Notes in Computer Science), Abdelkader Hameurlain, Rosine Cicchetti,

and Roland Traunmüller (Eds.). Springer.

[44] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis,

and Minos N. Garofalakis. 2020. Complex event recognition in the Big Data

era: a survey. VLDB J. (2020).
[45] Alejandro Grez, Cristian Riveros, and Martín Ugarte. 2017. Foundations of

Complex Event Processing. CoRR (2017).

[46] AlejandroGrez,CristianRiveros, andMartínUgarte. 2019. AFormal Framework

for Complex Event Processing. In 22nd International Conference on Database
Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal (LIPIcs), Pablo Barceló
and Marco Calautti (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[47] Philipp M. Grulich, Sebastian Breß, Steffen Zeuch, Jonas Traub, Janis von

Bleichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly:

Efficient Stream Processing Through Adaptive Query Compilation. In Pro-
ceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini,

and Hung Q. Ngo (Eds.). ACM.

[48] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman. 2008. On

Supporting Kleene Closure over Event Streams. In Proceedings of the 24th Inter-
national Conference on Data Engineering, ICDE, 2008, Cancún, Mexico, Gustavo
Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.). IEEE Computer Society.

[49] Daniel Gyllstrom, EugeneWu, Hee-Jin Chae, Yanlei Diao, Patrick Stahlberg,

and Gordon Anderson. 2006. SASE: Complex Event Processing over Streams.

CoRR abs/cs/0612128 (2006).

[50] Martin Hirzel, Henrique Andrade, et al. 2009. SPL stream processing language

specification. IBM Research Report: RC24897 (W0911 044) (2009).
[51] Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm.

2013. A catalog of stream processing optimizations. ACMComput. Surv. (2013).
[52] Florian Hussonnois. 2018. Complex Event Processing on top

of Kafka Streams Processor API. Accessed July 2023: https:

//github.com/fhussonnois/kafkastreams-cep.

459



[53] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri

Heiskanen, and Volker Markl. 2018. Benchmarking Distributed StreamData

Processing Systems. In 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer Society.

[54] Ilya Kolchinsky and Assaf Schuster. 2018. Efficient Adaptive Detection of

Complex Event Patterns. Proc. VLDB Endow. (2018).
[55] Ilya Kolchinsky and Assaf Schuster. 2018. Join query optimization techniques

for complex event processing applications. Proc. VLDB Endow. (2018).
[56] Ilya Kolchinsky and Assaf Schuster. 2019. Real-TimeMulti-Pattern Detection

over Event Streams. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,

Amol Deshpande, and Tim Kraska (Eds.). ACM.

[57] Robert A. Kowalski and Marek J. Sergot. 1986. A Logic-based Calculus of

Events. New Gener. Comput.
[58] Jay Kreps. 2016. Introducing Kafka Streams: Stream Processing

Made Simple. Accessed Jan. 2023: https://www.confluent.io/blog/

introducing-kafka-streams-stream-processing-made-simple/.

[59] Samuele Langhi, Riccardo Tommasini, and Emanuele Della Valle. 2020.

Extending Kafka Streams for Complex Event Recognition. In 2020 IEEE
International Conference on Big Data (IEEE BigData 2020), Atlanta, GA, USA,
December 10-13, 2020, Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Hu,

Olivera Kotevska, Siyuan Lu, Weija Xu, Srinivas Aluru, Chengxiang Zhai,

Eyhab Al-Masri, Zhiyuan Chen, and Jeff Saltz (Eds.). IEEE.

[60] David Luckham. 2019. What’s the Difference Between ESP and

CEP? Accessed June 2023: https://complexevents.com/2019/07/15/

whats-the-difference-between-esp-and-cep-2/.

[61] David C. Luckham. 2008. The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems. Springer.

[62] MBA Prashan Madumal et al. 2016. Adaptive event tree-based hybrid CEP

computational model for Fog computing architecture. In ICTer. IEEE.
[63] mCloud. 2015. Public Data in Motion (Öffentliche Daten in Bewegung).

Accessed Dez. 2023: https://www.mcloud.de/.

[64] YuanMei and Samuel Madden. 2009. ZStream: a cost-based query processor

for adaptively detecting composite events. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2009, Providence,
Rhode Island, USA, June 29 - July 2, 2009, Ugur Çetintemel, Stanley B. Zdonik,

Donald Kossmann, and Nesime Tatbul (Eds.). ACM.

[65] Mauro Negri, Giuseppe Pelagatti, and Licia Sbattella. 1991. Formal Semantics

of SQL Queries. ACM Trans. Database Syst. (1991).
[66] Guadalupe Ortiz, Adrian Bazan-Muñoz, et al. 2023. Evaluating the integration

of Esper complex event processing engine and message brokers. PeerJ
Computer Science (2023).

[67] Adrian Paschke. 2006. ECA-RuleML: An Approach combining ECA Rules with

temporal interval-based KR Event/Action Logics and Transactional Update

Logics. CoRR (2006).

[68] Norman W Paton and Oscar Díaz. 1999. Active database systems. ACM
Computing Surveys (CSUR) (1999).

[69] Srinath Perera and Sriskandarajah Suhothayan. 2015. Solution patterns for

realtime streaming analytics. In Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, DEBS ’15, Oslo, Norway, June
29 - July 3, 2015, Frank Eliassen and Roman Vitenberg (Eds.). ACM.

[70] Lana Ramjit, Matteo Interlandi, EugeneWu, and Ravi Netravali. 2019. Acorn:

Aggressive Result Caching in Distributed Data Processing Frameworks. In

Proceedings of the ACM Symposium on Cloud Computing, SoCC 2019, Santa
Cruz, CA, USA, November 20-23, 2019. ACM, 206–219.

[71] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter R. Pietzuch. 2009.

Distributed complex event processing with query rewriting. In Proceedings
of the Third ACM International Conference on Distributed Event-Based Systems,
DEBS 2009, Nashville, Tennessee, USA, July 6-9, 2009, Aniruddha S. Gokhale
and Douglas C. Schmidt (Eds.). ACM.

[72] SENSOR.COMMUNITY. 2022. Global Sensornetzwork. Accessed Jan.

2022: https://sensor.community/de/.

[73] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash

Chaturanga, Srinath Perera, and Vishaka Nanayakkara. 2011. Siddhi: a second

look at complex event processing architectures. In Proceedings of the 2011 ACM
SCWorkshop on Gateway Computing Environments, GCE 2011, Seattle, WA, USA,
2011, RionDooley, Sandro Fiore,Mark L. Green, CameronKiddle, SureshMarru,

Marlon E. Pierce, Mary P. Thomas, and NancyWilkins-Diehr (Eds.). ACM.

[74] EugeneWu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance complex

event processing over streams. In Proceedings of the ACMSIGMOD International
Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006,
Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis (Eds.). ACM.

[75] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael

Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica.

2016. Apache Spark: a unified engine for big data processing. (2016).

[76] Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On Complexity and

Optimization of Expensive Queries in Complex Event Processing. In SIGMOD.
[77] Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On complexity and

optimization of expensive queries in complex event processing. In International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014, Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu (Eds.). ACM.

[78] Shuhao Zhang, Hoang Tam Vo, Daniel Dahlmeier, and Bingsheng He. 2017.

Multi-Query Optimization for Complex Event Processing in SAP ESP. In 33rd
IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA,
USA, April 19-22, 2017. IEEE Computer Society.

460


