
Stateful Entities: Object-oriented Cloud Applications as
Distributed Dataflows

Kyriakos Psarakis∗
Delft University of Technology

Delft, Netherlands
k.psarakis@tudelft.nl

Wouter Zorgdrager∗
Delivery Hero SE
Berlin, Germany

wouter.zorgdrager@deliveryhero.
com

Marios Fragkoulis
Delivery Hero SE
Berlin, Germany

marios.fragkoulis@deliveryhero.
com

Guido Salvaneschi
University of St. Gallen
St. Gallen, Switzerland

guido.salvaneschi@unisg.ch

Asterios Katsifodimos
Delft University of Technology

Delft, Netherlands
a.katsifodimos@tudelft.nl

ABSTRACT
Although the cloud has reached a state of robustness, the bur-
den of using its resources falls on the shoulders of programmers
who struggle to keep up with ever-growing cloud infrastructure
services and abstractions. As a result, state management, scaling,
operation, and failure management of scalable cloud applica-
tions, require disproportionately more effort than developing the
applications’ actual business logic.

Our vision aims to raise the abstraction level for programming
scalable cloud applications by compiling stateful entities – a pro-
gramming model enabling imperative transactional programs
authored in Python – into stateful streaming dataflows. We pro-
pose a compiler pipeline that analyzes the abstract syntax tree of
stateful entities and transforms them into an intermediate rep-
resentation based on stateful dataflow graphs. It then compiles
that intermediate representation into different dataflow engines,
leveraging their exactly-once message processing guarantees to
prevent state or failure management primitives from “leaking”
into the level of the programming model. Preliminary experi-
ments with a proof of concept implementation show that despite
program transformation and translation to dataflows, stateful
entities can perform at sub-100ms latency even for transactional
workloads.

1 INTRODUCTION
Organizations nowadays enjoy reduced costs and higher reliabil-
ity, but cloud developers still struggle to manage infrastructure
abstractions that leak through, in the application layer. As a
result, managing application components, such as service invo-
cation, messaging, and state management, require much more
effort than the development of the application’s business logic
[16]. Worse, moving a cloud application between cloud providers
is prohibitive, due to significant differences in the underlying
systems.

While there are multiple approaches for distributed applica-
tion programming (e.g., Bloom [4], Hilda [50], Cloudburst [41],
AWS Lambda, Azure Durable Functions, and Orleans [9, 12]),
in practice developers mainly use libraries of popular general
purpose languages such as Spring Boot in Java, and Flask in
Python.
∗Both authors contributed equally to this work.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-091-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

None of these approaches offers message processing guaran-
tees, failing to support exactly-once processing: the ability of a
system to reflect the changes of a message to the state exactly
one time. Instead, they offer at-most- or at-least-once processing
semantics. Programmers then have to “pollute” their business
logic with consistency checks, state rollbacks, timeouts, retries,
and idempotency [32, 34].

We argue that nomatter howwe approach cloud programming
unless an execution engine can offer exactly-once processing
guarantees so that it can be assumed at the level of the program-
ming model, we will never remove the burden of distributed
systems aspects from programmers. To the best of our knowl-
edge, the only systems able to guarantee exactly-once message
processing [13, 39] at the time of writing, are batch [1, 20, 51] and
streaming [14, 36, 45] dataflow systems. However, their program-
ming model follows the paradigm of functional dataflow APIs
which are cumbersome to use and require training, and heavy
rewrites of the typical imperative code that developers prefer to
use for expressing application logic.

For these reasons, we argue that the dataflow model should
be used as a low-level intermediate representation (IR) for the
modeling and execution of distributed applications, but not as
a programmer-facing model. Technically, one of the main chal-
lenges in adopting a dataflow-based IR is that the dataflow model
is essentially functional, with immutable values being propagated
across operators that typically do not share a global state. Hence,
adopting a dataflow-based IR entails translating (arbitrary) im-
perative code into the functional style. Compiler research has
systematically explored only the opposite direction: to compile
code in functional programming languages into a representation
that is executable on imperative architectures – like virtually all
modern microprocessors. Yet, the translation from imperative to
functional or dataflow programming remains largely unexplored.

This paper presents a prototypical programming model, com-
piler pipeline, and IR that compiles imperative, transactional
object-oriented applications into distributed dataflow graphs and
executes them on existing dataflow systems. Instead of designing
an external Domain-Specific Language (DSL) for our needs, we
opted for an internal DSL embedded in Python - a language that
is already popular for cloud programming. Specifically, a given
Python program is first compiled into an IR, an enriched state-
ful dataflow graph that is independent of the target execution
engine. That dataflow graph can then be compiled and deployed
to a variety of distributed systems. The current set of supported
systems includes Apache Flink Statefun and StateFlow – our own
dataflow system built for the needs of such low-latency cloud

Vision Paper

Series ISSN: 2367-2005 15 10.48786/edbt.2024.02

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.02

User Item

item.update_stock(-amount)

item.update_stock(amount)

item.price()

buy
_it

em1
(…)

buy_i
tem2(

…)

buy_item3(…)

buy_item5(…)

buy_item4(…)

@entity
class Item:

def __init__(self, item_name: str, price: int):
self.item_id: str = item_id
self.stock: int = 0
self.price: int = price

def __key__(self):
return self.item_id

def price(self) -> int:
return self.item_id

def update_stock(self, amount: int) -> bool:
self.stock += amount
return stock>=0

@entity
class User:

def __init__(self, username: str):
self.username: str = username
self.balance: int = 1

def __key__(self):
return self.username

@transactional
def buy_item(self, amount: int, item: Item) -> bool:

total_price: int = amount * item.price()

if self.balance < total_price:
return False

Decrease the stock.
available: bool = item.update_stock(-amount)

if not available:
item.update_stock(amount)
return False

self.balance -= total_price
return True

Figure 1: Two stateful entities: User and Item. The content of imperative functions is split into multiple functions that
access the common state of a given entity. Those functions are then encoded into a stateful dataflow that can be executed
in a distributed streaming dataflow engine. As a result, 𝑖) imperative code is executed in an event-based manner without
the need to block, and 𝑖𝑖) the code retains exactly-once processing guarantees without the need for programmers to write
failure-handling code such as state management, call retries or idempotency.

applications. The choice of a runtime system is completely in-
dependent of the application layer, which allows switching to
different runtime systems with no changes to the application
code.

The contributions of this paper go as follows:
• To the best of our knowledge, this is the first work to
propose compiling and executing imperative programs
into distributed, stateful streaming dataflows.

• We present a compiler pipeline that analyzes an object-
oriented application and transforms it into an IR tailored
to stateful dataflow systems.

• We describe an IR for cloud applications and how that
IR translates to a dataflow execution graph, targeting a
variety of distributed systems, thereby making cloud ap-
plications portable across different systems and infrastruc-
tures.

• We compare Stateflow, a novel transactional dataflow sys-
tem, against Apache Flink Statefun and demonstrate the
limitations of existing dataflow systems, motivating fur-
ther research. Our experimental evaluation shows that
Stateflow incurs low latency in the YCSB+T [22] work-
load.

• Despite the promising early results, several research ques-
tions remain open. We detail those in this paper and lay
out a future research agenda.

The proposed system presented in this paper can be found at:
https://github.com/delftdata/stateflow. A preliminary version of
this paper is included as an abstract in CIDR 2023 [37].

2 FROM IMPERATIVE CODE TO
DATAFLOWS

Historically, imperative programming and functional program-
ming have evolved in parallel: imperative as a direct codification
of (operational) computational models (e.g., Von Neumann ar-
chitecture, Turing machines), and functional inspired by mathe-
matical abstractions (e.g., lambda calculus, program denotation).
While functional programming has been embraced by a num-
ber of languages (e.g., Haskell [29], ML [27]) imperative pro-
gramming has taken the scene, with most mainstream languages
featuring object-oriented (mutable) abstractions. Over the last

years, imperative languages like Java and Python, which support
a large variety of domain-specific packages, e.g., networking, sta-
tistics, numeric computation, etc. have become extremely popular
among non-expert programmers.

Yet, the benefits of functional programming have been known
for a while. Most notably, functional code is often embarrassingly
parallelizable because of the lack of side effects and mutability.
Developers working with imperative languages – let alone non-
expert developers – can hardly access this feature.

2.1 Approach Overview
The main principle behind our compiler pipeline is that devel-
opers simply annotate Python classes with @stateflow and the
system automatically analyzes and transforms these classes into
an intermediate representation which is then transformed into
stateful dataflow graphs, ready to be deployed on a dataflow sys-
tem. Similar to (Virtual) Actors [12, 49], entities can make calls
to methods of other entities. Figure 1 depicts two sample entities:
User and Item. Details of the programming model are provided
in Section 2.2.

In the first pass of anAbstract Syntax Tree (AST) static analysis,
we extract the class’s variables (i.e. instance attributes referenced
with self), the names of each method, and all respective types
indicated by the programmer (Section 2.2). In the second round
of analysis, classes that interact with each other are identified in
order to create a function call graph (Section 2.3). Then the call
graph is analyzed to identify calls to other functions (possibly
residing in a remote machine), at which point functions have to
be split, composing the final dataflow (Section 2.4).

This dataflow graph enriched with the compiled classes, ex-
ecution plans, and all metadata obtained from static analysis
comprises the intermediate representation (Section 2.5). Finally,
that intermediate representation can be translated, deployed, and
executed in different target systems (Section 3).

Note that a complete account of the analysis and transforma-
tion algorithms is not possible due to space limitations, but it
will be provided in the extended version of this paper.

16

User

Managed Operator State

Fu
nc

tio
n

In
bo

xe
s

Ev
en

t R
ou

te
r

Item

User

…

…

Input/Output Message Queues

…

Control Event (txn commit/prepare, snapshot marker, etc.)

Payload Message Operator State

buy_item1(…){…}
buy_item2(…){…}

buy_item3(…){…}

buy_item4(…){…}

buy_item5(…){…}

buy_item(…){…}

Figure 2: Logical dataflow graph of five entities, focusing
on the User entity found in Figure 1.

2.2 Programming Model & Limitations
Expressiveness. Our programming model allows programmers
to specify simple, object-oriented Python programs. Classes can
have references to other classes and call their functions. We term
an instance of such a class as a stateful entity. The StateFlow com-
piler currently can analyze conditionals, for-loops that iterate
through Python lists as well as general while loops.
Limitations. StateFlow requires static type hints for the in-
put/output of stateful entity functions; ensures the existence
of those hints via a static pass over the analyzed classes. More-
over, the functions cannot be recursive. Another assumption that
StateFlow makes is that each entity contains a key() function.
This key() function is used by a routing and translation mecha-
nism to partition and distribute the load among parallel instances
of that entity within a cluster. Furthermore, the key of a stateful
entity cannot change throughout that entity’s lifetime. Finally,
the entities’ state needs to be serializable, i.e., connections to
databases, local pipes, and other non-serializable constructs are
not allowed and will eventually generate a runtime error.
Running Example. Figure 1 contains the code for a User and
an Item entities. Note that since Item is a stateful entity, a call to
item.update_stock(...) is a remote function call. Both User,
and the Item entities are partitioned across the cluster nodes,
using the given entity’s key function.

2.3 From Entities to Dataflow Operators
Each Python class translates to an operator (also called a vertex)
in the dataflow graph. In a dataflow graph, an operator cannot
be "called" directly, like a function of an object. Instead, an event
has to enter the dataflow and reach the operator holding the
code of that entity (e.g., the User class) as well as the actual state
of the entities that instantiate the class (e.g., the balance, and
username of the User in Figure 1).

Specifically, each dataflow operator is capable of executing
all functions of a given entity and it is triggered depending on

the incoming event. Since operators can be partitioned across
multiple cluster nodes, each partition stores a set of stateful
entities indexed by their unique key. When a function of an entity
is invoked, the entity’s state is retrieved from the local operator
state. Then, the function is executed using the arguments found
in the incoming event that triggered the call, as well as the state
of the entity at the moment that the function is called.
Example. A User operator as seen in Figure 2, is partitioned on
username. Upon invocation of a function of the User entity, an
event is sent to the dataflow graph’s input queues. The incoming
event is partitioned on username by an ingress router. Via the
dataflow graph, the event ends up at the operator storing the
state for that specific User. The system then reconstructs the
User object using the operator’s code and the function’s state
and executes the function. Finally, the function return value is
encoded in an outgoing event which is forwarded to the egress
router. This egress router determines if the event can be sent
back to the client (caller outside the system, such as an HTTP
endpoint) or needs to loop back into the dataflow in order to call
another function.
The need for function splitting. For simple functions that do
not call other remote functions, both the translation to dataflows
and the execution is straightforward. However, if the function
User.buy_item calls the (remote) function item.update_stock
whose state lies on a different partition, the situation becomes
more complicated. Note that a streaming dataflow should never
stop and wait for a remote function to complete and return be-
fore moving on with processing the next event. Instead, it must
“suspend” the execution of e.g., buy_item of Figure 1, right at the
spot that the remote function item.price() is called until the
remote function is executed and an event comes back to the User
operator with a return value.

In order to do this, we adopt a technique to transform the
imperative functions into the continuation passing style (CPS)
[38]. More specifically, we propose an approach to split a function
definition into multiple ones (Section 2.4) at the AST level as
depicted (approximately) in Figure 1.

2.4 From Imperative Functions to Dataflows
References to Remote Functions. After the first round of
static analysis, the compiler identifies if a function definition
has references to a remote stateful entity using Python type an-
notations. These functions may require function splitting. The
algorithm traverses the statements of a function definition and
the function is split either when a remote call occurs or on a
control-flow structure. For example, the following buy_item calls
the remote function item.update_stock:

1 def buy_item(self, amount: int, item: Item):
2 total_price:int = amount * item.price
3 is_removed:bool = item.update_stock(amount)
4 return total_price

This function is split at the assign statement on line 3 and results
in two new function definitions:

1 def buy_item_0(self, amount: int, item: Item):
2 total_price:int = amount * item.price
3 update_stock_arg = amount
4 return total_price, {"_type": "InvokeMethod",
5 "args": [update_stock_arg], ..}
6
7 def buy_item_1(self, total_price, update_stock_return):
8 is_removed:bool = update_stock_return
9 return total_price

17

The buy_item_0 function defines the first part of the original
function and it evaluates the arguments for the remote call. The
buy_item_1 function assumes the remote call item.update_stock
has been executed and its return variable is passed as an argu-
ment. In general, each function that was split takes as arguments
the variables it references in its body and returns the variables
it defines. For example, since buy_item_0 defines the variable
total_price, its value is returned from the function. Next, since
buy_item_1 uses total_price, it is defined as a parameter.
Control Flow. The compiler also needs to split functions when
encountering remote function calls within control flow constructs
like if -statements or for-loops. In short, an if -statement is split
into three new definitions: one that evaluates its conditional, one
that evaluates the ‘true’ path, and one that evaluates the ‘false’
path. Similarly, a for-loop is also split into three new definitions:
one that evaluates the iterable, one that evaluates the for-body
path, and one that evaluates the code path after the loop. The
function splitting algorithm is recursively applied to the state-
ments inside the for path and inside the true and false path of
the if -statement.

2.5 Intermediate Representation
Our intermediate representation is a stateful dataflow graph en-
riched with a number of aspects. After the static analysis, each
dataflow operator is enriched with the entity/method names that
it can run, their input/return types, as well as their method body.
After splitting functions, we also need to build what we term a
state machine. For every split function (Section 2.4), we maintain
an execution graph that tracks the execution stage of a given
stateful entity’s function invocation.

Essentially, the process of deriving the state machine consists
of unrolling the control flow graph of the program. Conceptually,
the translation to a state machine is possible by deriving a finite
representation of the program. To this end, we 𝑖) do not allow un-
bounded recursion and we 𝑖𝑖) keep track of the current iteration
for loop control structures, by enriching the state machine with
the additional state. When invoking a function that was split, the
state machine is inserted into the function-calling event. As the
event flows through the system, the execution graph is traversed
and the proper functions are called. The execution graph stores
intermediate results – the return values of the invoked functions.

3 RUNTIME DATAFLOW SYSTEMS
Stateful entities can be deployed as dataflow graphs to streaming
dataflow systems, offering exactly-once fault-tolerance guaran-
tees.
Flink’s Statefun. The IR is translated to a streaming dataflow
graph that, for example, Apache Flink can execute. In that case, a
Kafka source pushes events to the ingress router, which is a map
operator performing a keyBy operation to route an event to the
correct stateful map operator instance where function execution
will take place. Each execution’s output is forwarded to the egress
router, which forwards outputs to a Kafka sink.

We use Kafka to re-insert an event to the streaming dataflow,
thereby avoiding cyclic dataflows, which are not supported by
most streaming systems. Notably, our system implements all
the logic required for routing and execution in this process. On
the downside, when an event reenters a dataflow to reach the
next function block of a split function, race conditions attributed
to events coming from non-split functions could lead to state
inconsistencies due to other events changing the same function’s

state in the meantime. Time tracking with watermarks, support
for cyclic dataflows, and locking could solve these problems.
Since the IR is well-aligned with Statefun’s dataflow, only simple
translation and mapping is required when using the Statefun
runtime.
StateFlow: a transactional dataflow system. Existing dataflow
systems cannot execute multi-partition transactions. To this end,
we built StateFlow, a prototype dataflow system in Python. State-
Flow treats each function – and the state effects it creates via calls
to other functions – as a transaction with ACID guarantees. We
achieve consistency by implementing an extension of Aria [35], a
deterministic transaction protocol. The dataflow system is built to
allow for dataflow cycles used in function-to-function communi-
cation and leverages co-routines for optimal resource utilization.
For fault-tolerance StateFlow implements the consistent snap-
shots protocol [13, 15], which has been adopted by many stream-
ing dataflow systems [5, 14, 30] alongside a replayable source as
an ingress, allowing StateFlow to rollback messages and restore
the snapshot upon failure. Although still a prototype, StateFlow
is already able to execute transactional workloads (YCSB-T [22]
and partly TPC-C) with promising performance (Section 4).
Local. A StateFlow dataflow graph can execute all its compo-
nents in a local environment. The only difference is that the state
is kept in a local HashMap data structure instead of a state man-
agement backend. Local execution allows developers to debug,
unit test, and validate a StateFlow program as they would do for
an arbitrary application. Afterward, they can simply deploy the
program to one of the supported runtime systems.

4 PRELIMINARY EXPERIMENTS
For the experiments of this section, we opted for running Apache
Flink Statefun against StateFlow (Section 3).
Workload.We are using workloads A and B from the original
YCSB benchmark [18]. A is update-heavy – 50% reads 50% up-
dates and B is ready-heavy – 95% reads 5% updates. In addition,
we use the transactional workload T from YCSB+T [22], which
atomically transfers an amount from one entity’s bank account to
another (2 reads and 2 writes). For the throughput test, we defined
a mixed workload M (45% reads 45% updates 10% transfers). For
the latency tests, we use Zipfian and uniform key distributions.
Setup. We conducted all the experiments on 14 CPUs: 4 for the
Kafka cluster, 6 for the systems, and 4 for the benchmark clients.
For Statefun, we gave half of the resources to the Flink cluster
and the other to the remote functions. StateFlow requires a single
core coordinator, and the rest are used for its workers.
Baseline. In StateFlow, we execute complex business logic result-
ing in state operations. YCSB is a benchmark that supports simple
inserts, deletes, and updates, not complete executions of trans-
actions across multiple function calls. It is therefore expected
for Stateflow, since it executes function calls and application
logic, to have a larger overhead than key-value stores. StateFlow
is not a key-value store; instead, it is a stateful function-as-a-
service compiler and runtime that allows programmers to author
object-oriented python code.
Latency. In the first experiment, we measured the end-to-end
latency of all the YCSB workloads against the integrated back-
end systems with both Zipfian and uniform key distributions
at the low amount of 100RPS. As seen in Figure 3 both systems
perform well with low latencies across all workloads and dis-
tributions. Some interesting observations go as follows. First,

18

A-zipfian A-uniform B-zipfian B-uniform T-zipfian T-uniform
YCSB Workloads

0
25
50
75

100
125
150
175
200

La
te

nc
y

(m
s)

Statefun
Stateflow

Figure 3: Average latency at the 99th percentile, in YCSB
(100 RPS) with both Zipfian and uniform key distribu-
tions.

Statefun performs the same in both the A and B workloads and
in both Zipfian and uniform distributions. This happens because
Statefun does not use locking, allowing for concurrent access
(but also inconsistency). Additionally, since all functions need to
go to an external Python runtime, the cost of reads and writes
are the same due to the network costs. We also observe that
StateFlow outperforms Statefun because it allows for internal
function-to-function communication and does not require the
roundtrips to Kafka. Note that StateFlow additionally supports
transactional workloads with higher latency than the rest but
still, if we consider that a transfer operation is 2 read and 2 write
operations, the transactional overhead of the system is minimal.
Finally, we did not run Statefun against transactional workloads
since it offers no support for transactions.
Throughput. In the second experiment, we gradually increase
the input throughput and measure the end-to-end latency. This
time we use the mixed workload that we defined, M (45% reads
45% updates 10% transfers). In Figure 4, we observe consistent
results with the latency experiment up until the point where
the difference in efficiency appears. The reason for this is that
StateFlow is using more execution cores since it bundles execu-
tion, state, and messaging. In contrast, the Statefun deployment
uses half its CPUs for messaging and state within the Apache
Flink cluster and the other half for execution in a remote state-
less function runtime. In the current experiments this balanced
deployment was the optimal one in terms of resource utilization.
System overhead. Finally, we also measured the overhead that
program translation (function splits, instrumentation, etc.) incurs
as part of the complete runtime (not depicted for the sake of space
preservation). We created a synthetic workload in which we var-
ied different state sizes from 50 to 200kb. For each event, we
measured the duration of different runtime components. Some
of the components, like object construction, are attributed to
program transformation overhead, whereas others, like state
storage, are attributed to the runtime. In short, function split-
ting/instrumentation is only responsible for less than 1% of the
total overhead.
Conclusion. The experimental evaluation demonstrates the po-
tential of dataflows as an intermediate representation and ex-
ecution target for scalable cloud applications. In short, these
preliminary experiments show that we can translate imperative
programs that hide all the aspects of distributed systems and
error management from programmers and still achieve high per-
formance. That said, the experiments also uncover the limitations
of dataflow systems and implementation issues that we address
in the following section.

1000 1500 2000 2500 3000 3500 4000
Input Throughput (requests/s)

0

100

200

300

400

500

La
te

nc
y

(m
s)

Stateflow 50p
Stateflow 99p
Statefun 50p
Statefun 99p

Figure 4: Average and 99th percentile latency for the M
workload, with increasing input throughput.

5 OPEN PROBLEMS & OPPORTUNITIES
The ability to query the global state of a dataflow processor, as
well as perform transactional state updates on its state, can trans-
form a dataflow processor into a full-fledged, distributed data-
base system. The envisioned system will be capable of executing
Turing-complete “stored procedures” (such as the entity func-
tions in the case of this paper) that are distributed, partitioned
and can perform function-to-function calls with exactly-once
guarantees. This is the ultimate goal of this work.

In this section, we discuss a number of opportunities emerging
mainly from transactional workloads with low-latency require-
ments and outline future research directions to enable the adop-
tion of dataflow systems for executing general cloud applications.
Program Analysis. The dataflow model is essentially a finite
state machine where nodes are the functions from the original
(Turing-complete) program and arcs indicate event flow. In the
case of loops, events also carry information about the previous
iterations of the loop (e.g., the variables that are read and written
in the loop body and in the loop condition clause). This informa-
tion handles loops correctly (Section 2.5). For method calls, if a
method is mapped to a single state, it would be problematic to
determine where to return after a call if in the codebase there
are multiple calls that have different return points. We map each
method call into a transition to a state that is specific for that call.
This means that calls to the same method may result in a different
state in the automata, ensuring that each of these states has as
a next state the correct return point. This approach requires to
unroll the program, expanding each potential method call that
may occur at runtime into a different state.

Following this approach, recursive functions would result in a
state for each recursive step. Since unbounded recursion would
result in infinite automata, we prohibit recursion. Yet, from a
compiler perspective, since a program can be CPS-transformed,
recursion can be translated into loops via tail-call elimination [8],
which could potentially affect the dataflow engine’s performance.

In addition, in what is traditionally referred to as dataflow lan-
guages (e.g., Esterel [11], Lucid [47]), the computation is driven
by data propagation – just like in streaming dataflows. How-
ever, the expressivity of such languages has been intentionally
limited to enable efficient execution (automatic) verification tech-
niques. While in this work we aim to target Turing-complete
Python programs, the trade-off between expressivity, efficiency,
and automatic verification is yet to be researched in the future.
Transactions. Current dataflow systems guarantee the consis-
tency of single-event effects on a given key of the state. In order
to support transactional executions across stateful entities, we

19

could employ single-shot transactions [31] or, like in our pro-
totypical dataflow system (Section 3), borrow ideas from deter-
ministic databases [2, 35, 44] for minimizing the coordination
of transactions. In practice, a large percentage of transactions
can be expressed as single-shot transactions [43]; very popular
databases such as Amazon’s DynamoDB [40] and VoltDB [42]
support single-shot transactions. These ideas can define how a
programmingmodel can support patterns that have been adopted
by practitioners in the last years, starting from SAGAs [25] and
Try-Confirm-Cancel [28].
Exactly-once, Latency&External Systems. Exactly-once guar-
antees can incur high latency: the outputs of a dataflow only be-
come visible after an epoch terminates successfully [13]. Epoch
intervals cannot be too small because they would incur a high
overhead. However, one can leverage causal recovery [48] and de-
terminants [39] alongside replayable sinks in order to minimize
the latency within each epoch. The replayable sinks are required
to be able to retrieve determinants. However, at the border of a
system, i.e., when a message leaves the dataflow graph and is sent
to an external system, replayable sinks may be hard to assume. In
that case, one should make use of more traditional techniques for
deduplication (e.g., the common idempotence keys used in the
HTTP protocol). Under certain assumptions (deterministic com-
putations, persistent/replayable request queues, etc.), such idem-
potence keys can be generated automatically. However, this will
not be the case for a generic distributed application, which will
have to generate, keep track of, check, and recycle unique iden-
tifiers to enforce the delivery of its output exactly-once. These
issues have not been studied enough in the context of distributed
databases, neither in models for cloud programming.
Querying Stateful Entities. In previous work [46], we have
shown that querying the global state of a dataflow processor can
be, not only efficient but can also come with certain correctness
guarantees. Some work on querying actors has already been
done in the context of Orleans [10]. However, querying (e.g.,
with SQL) a set of entities still poses a number of challenges,
especially with respect to the tradeoff between the freshness and
consistency of query results. To this end, we could borrow ideas
from RAMP (read-atomic) transactions [7] that match well the
execution model of transactions and read operations in stateful
entities.

6 RELATEDWORK
The idea of democratizing distributed systems programming
is not new. For instance, in [17], the authors mention that a
combination of dataflows and reactivity would provide a good
execution model for cloud applications. In this work, we share
the same belief and build a prototype towards that direction.
Programming models. In the past, approaches like Distributed
ML [33], Smalltalk [21], and Erlang [6] aimed at simplifying the
programming and deployment of distributed applications. Many
of those ideas, including the Actor model, can be reused and
extended today. Erlang implemented a flavor of the actor model.
Akka [49] offers a low-level programming model for actors. Clos-
est to our work is the Virtual Actors model introduced by Orleans
[9, 12], which aims at simplifying Cloud programming and even
supports some form of transactions [23]. However, Orleans re-
quires a specialized runtime system for virtual actors, which does
not support exactly-once messaging and does not compile its ac-
tors into stateful dataflows. Nonetheless, our work is heavily
inspired both by Orleans and by Pat Helland’s entities [28].

Imperative programming to Dataflows. The idea of trans-
lating imperative code to dataflow is not new. In the database
community, there has been work on detecting imperative parts
of general applications that can be converted into SQL queries
(e.g., [24]) but also for automatic parallelization of imperative
code in multi-core systems. For instance, the work by Gupta and
Sohi [26] compiles sequential imperative code to dataflow pro-
grams and executes them in parallel. Our work draws inspiration
from both these lines of work and extends them by taking into
account the partitioning of state as well as other considerations
that we outline in Section 5.
Stateful Functions. A new breed of systems marketed as state-
ful functions such as Cloudburst [41], Lightbend’s Cloudstate.io
and Apache Flink’s Statefun.io [19], as well as our early pro-
totype in Scala [3] also aim at abstracting away the details of
deployment and scalability. However, none of those compiles
general-purpose object-oriented code into dataflows.

7 CONCLUSIONS
In this vision paper we argue that if we want to hide failures from
the top-level programming models of Cloud applications, exactly-
once guarantees should become a first-class citizen.While dataflow
systems can provide such guarantees, their programming model
makes the development of general Cloud applications cumber-
some. To this end, we have developed a compiler pipeline that
statically analyzes an object-oriented Python application in order
to create an intermediate representation in the form of a dataflow
graph, and then submit that dataflow graph to existing dataflow
systems. Leveraging dataflow systems’ exactly-once guarantees
can essentially hide all Cloud failures from programmers with low
overhead: our preliminary experimental evaluation demonstrates
that function splitting and program transformation incur less
than 1% overhead and the YCSB+T benchmark, with low-latency
execution.
Current Status. Despite the encouraging results, lots of prob-
lems remain open: specifically in the area of transaction exe-
cution, programming models, program analysis, and dataflow
engines for general cloud applications. Our work currently fo-
cuses primarily on 𝑖) strengthening the formal underpinnings
of program transformation to dataflows, 𝑖𝑖) extending the pro-
gramming model with different transactional paradigms, and 𝑖𝑖𝑖)
further developing StateFlow, our novel transactional dataflow
system.

ACKNOWLEDGMENTS
This publication is part of project number 19708, of the Vidi
research program which is partly financed by the Dutch Research
Council (NWO).

In memory of Eelco Visser.

REFERENCES
[1] [n.d.]. Apache Spark project. http://spark.apache.org/.
[2] Daniel J. Abadi and Jose M. Faleiro. 2018. An Overview of Deterministic

Database Systems. In Commun. ACM.
[3] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. Stateful

functions as a service in action. In VLDB.
[4] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M Heller-

stein, and Russell Sears. 2010. Boom analytics: exploring data-centric, declara-
tive programming for the cloud. In EuroSys.

20

[5] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured
Streaming: A Declarative API for Real-Time Applications in Apache Spark. In
SIGMOD.

[6] Joe Armstrong. 2013. Programming Erlang: software for a concurrent world.
Pragmatic Bookshelf.

[7] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica.
2016. Scalable atomic visibility with RAMP transactions. ACM Transactions
on Database Systems (TODS) 41, 3 (2016), 1–45.

[8] Henry G. Baker. 1995. CONS Should Not CONS Its Arguments, Part II: Cheney
on the M.T.A. SIGPLAN Not. (1995).

[9] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin.
2014. Orleans: Distributed virtual actors for programmability and scalability.
MSR-TR.

[10] Philip A Bernstein, Mohammad Dashti, Tim Kiefer, and David Maier. 2017.
Indexing in an Actor-Oriented Database.. In CIDR.

[11] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous program-
ming language: design, semantics, implementation. Science of Computer Pro-
gramming 19, 2 (1992), 87–152. https://doi.org/10.1016/0167-6423(92)90005-V

[12] Sergey Bykov, Alan Geller, Gabriel Kliot, James R Larus, Ravi Pandya, and
Jorgen Thelin. 2011. Orleans: cloud computing for everyone. In SoCC.

[13] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and
Kostas Tzoumas. 2017. State Management in Apache Flink&Reg;: Consistent
Stateful Distributed Stream Processing. In VLDB.

[14] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, VolkerMarkl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink TM : Stream and Batch Processing
in a Single Engine. In IEEE Data Eng. Bull.

[15] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining
global states of distributed systems. In TOCS.

[16] Cheng Chaoyi, Han, Han Mingzhe, Nuo Xu, Spyros Blanas, Michael D. Bond,
and YangWang. 2023. Developer’s Responsibility or Database’s Responsibility?
Rethinking Concurrency Control in Databases. In CIDR.

[17] Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Matthew Milano.
2021. New Directions in Cloud Programming. In CIDR.

[18] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. 2010. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM symposium on Cloud computing. 143–154.

[19] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsi-
fodimos. 2021. Distributed transactions on serverless stateful functions. In
DEBS.

[20] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data pro-
cessing on large clusters. In Communications of the ACM.

[21] L Peter Deutsch and Allan M Schiffman. 1984. Efficient implementation of
the Smalltalk-80 system. In SIGACT-SIGPLAN.

[22] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe Röhm. 2014. YCSB+ T:
Benchmarking web-scale transactional databases. In 2014 IEEE 30th Interna-
tional Conference on Data Engineering Workshops. IEEE, 223–230.

[23] Tamer Eldeeb and Philip A Bernstein. 2016. Transactions for Distributed
Actors in the Cloud.

[24] K Venkatesh Emani, Tejas Deshpande, Karthik Ramachandra, and S Sudarshan.
2017. Dbridge: Translating imperative code to sql. In SIGMOD.

[25] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. InACM Sigmod Record.
[26] Gagan Gupta and Gurindar S Sohi. 2011. Dataflow execution of sequential

imperative programs on multicore architectures. In MICRO.
[27] Robert Harper, David MacQueen, and Robin Milner. 1986. Standard ml. De-

partment of Computer Science, University of Edinburgh.
[28] Pat Helland. 2016. Life beyond distributed transactions: an apostate’s opinion.

In ACMQueue.
[29] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,

Joseph Fasel, María M Guzmán, Kevin Hammond, John Hughes, Thomas
Johnsson, et al. 1992. Report on the programming language Haskell. SigPlan
Not. (1992).

[30] Gabriela Jacques-Silva, Fang Zheng, Daniel Debrunner, Kun-Lung Wu, Victor
Dogaru, Eric Johnson, Michael Spicer, and Ahmet Erdem Sariyüce. 2016. Con-
sistent Regions: Guaranteed Tuple Processing in IBM Streams. Proc. VLDB
Endow. 9, 13, 1341–1352. https://doi.org/10.14778/3007263.3007272

[31] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stone-
braker, Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-Store: A High-
Performance, Distributed Main Memory Transaction Processing System. In
VLDB.

[32] Tom Killalea. 2016. The Hidden Dividends of Microservices. ACM Queue
(2016).

[33] Clifford Dale Krumvieda. 1993. Distributed ML: Abstracts for efficient and
fault-tolerant programming. Cornell University.

[34] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. 2021. Data Management in Microservices: State of the
Practice, Challenges, and Research Directions. PVLDB 14, 13 (2021).

[35] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and
practical deterministic OLTP database. In VLDB.

[36] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: a timely dataflow system. In ACM SOSP.

[37] Kyriakos Psarakis, Wouter Zorgdrager, Marios Fragkoulis, Guido Salvaneschi,
and Asterios Katsifodimos. 2023. Stateful Entities: Object-orienter Cloud

Applications as Distributed Dataflows. In CIDR.
[38] John C. Reynolds. 1993. The discoveries of continuations. LISP and Symbolic

Computation.
[39] Pedro Silvestre, Marios Fragkoulis, Diomidis Spinellis, and Asterios Katsi-

fodimos. 2021. Clonos: Consistent Causal Recovery for Highly-Available
Streaming Dataflows. In SIGMOD.

[40] Swaminathan Sivasubramanian. 2012. Amazon dynamoDB: a seamlessly
scalable non-relational database service. In SIGMOD.

[41] Vikram Sreekanti, ChenggangWu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloud-
burst: Stateful Functions-as-a-Service. In VLDB.

[42] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main Memory
DBMS. IEEE Data Eng. Bull. 36, 2 (2013), 21–27.

[43] Doug Terry. 2019. Transactions and Scalability in Cloud Databases—Can’t We
Have Both?. In USENIX Association.

[44] Alexander Thomson and Daniel J. Abadi. 2010. The Case for Determinism in
Database Systems. In VLDB.

[45] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, et al. 2014. Storm@ twitter. In SIGMOD.

[46] Jim Verheijde, Vassilios Karakoidas, Marios Fragkoulis, and Asterios Katsifodi-
mos. 2022. S-QUERY: Opening the Black Box of Internal Stream Processor
State. In 2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 1314–1327.

[47] William W. Wadge and Edward A. Ashcroft. 1985. LUCID, the Dataflow
Programming Language. Academic Press Professional, Inc., USA.

[48] StephanieWang, John Liagouris, Robert Nishihara, PhilippMoritz, Ujval Misra,
Alexey Tumanov, and Ion Stoica. 2019. Lineage stash: fault tolerance off the
critical path. In ACM SOSP.

[49] Derek Wyatt. 2013. Akka concurrency. Artima Incorporation.
[50] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald, and Johannes

Gehrke. 2006. Hilda: A high-level language for data-drivenweb applications.
In 22nd International Conference on Data Engineering (ICDE’06). IEEE, 32–32.

[51] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Gunda, and Jon Currey. 2008. DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level Language.
In OSDI.

21

